CVS difference for ais/ai-00296.txt

Differences between 1.13 and version 1.14
Log of other versions for file ais/ai-00296.txt

--- ais/ai-00296.txt	2003/11/27 02:01:14	1.13
+++ ais/ai-00296.txt	2004/01/23 04:59:25	1.14
@@ -1,7 +1,9 @@
-!standard G.3 (01)                                     03-11-05  AI95-00296/07
+!standard G.3 (01)                                     04-01-13  AI95-00296/08
 !standard G.3.1 (01)
 !standard G.3.2 (01)
 !class amendment 02-06-07
+!status Amendment 200Y 04-01-13
+!status ARG Approved 12-0-1  03-12-11
 !status work item 03-10-29
 !status ARG Approved 10-0-0  03-10-03
 !status work item 03-01-23
@@ -143,10 +145,6 @@
                          First_1, First_2 : Integer := 1)
                                             return Real_Matrix;
 
-private
-
-   -- implementation-defined
-
 end Ada.Numerics.Generic_Real_Arrays;
 
 The library package Numerics.Real_Arrays is declared pure and defines the
@@ -355,8 +353,10 @@
 the relaxed mode. In the strict mode the modulus of the absolute error of
 the inner product X*Y shall not exceed g*abs(X)*abs(Y) where g is defined as
 
-   g = X'Length * Machine_Radix**(1-Machine_Mantissa)
+   g = X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa)
 
+Documentation Requirements
+
 Implementations shall document any techniques used to reduce cancellation
 errors such as extended precision arithmetic.
 
@@ -1038,11 +1038,13 @@
 the relaxed mode. In the strict mode the modulus of the absolute error of the
 inner product X*Y shall not exceed g*abs(X)*abs(Y) where g is defined as
 
-   g = X'Length * Machine_Radix**(1-Machine_Mantissa) for mixed
+   g = X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa) for mixed
                                                     complex and real operands
+
+   g = sqrt(2.0) * X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa) for
+                                                    two complex operands
 
-   g = sqrt(2.0) * X'Length * Machine_Radix**(1-Machine_Mantissa) for two
-                                                            complex operands
+Documentation Requirements
 
 Implementations shall document any techniques used to reduce cancellation
 errors such as extended precision arithmetic.
@@ -1397,10 +1399,6 @@
                          First_1, First_2 : Integer := 1)
                                             @b<return> Real_Matrix;
 
-@b<private>
-
-   -- @ft<@i<implementation-defined>>
-
 @b<end> Ada.Numerics.Generic_Real_Arrays;>
 
 The library package Numerics.Real_Arrays is declared pure and defines the
@@ -1608,8 +1606,10 @@
 For operations involving an inner product, no requirements are specified in
 the relaxed mode. In the strict mode the modulus of the absolute error of
 the inner product X*Y shall not exceed g*abs(X)*abs(Y) where g is defined as
-@xindent<g = X'Length * Machine_Radix**(1-Machine_Mantissa)>
+@xindent<g = X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa)>
 
+@i<@s8<Documentation Requirements>>
+
 Implementations shall document any techniques used to reduce cancellation
 errors such as extended precision arithmetic.
 
@@ -2282,11 +2282,13 @@
 For operations involving an inner product, no requirements are specified in
 the relaxed mode. In the strict mode the modulus of the absolute error of the
 inner product X*Y shall not exceed g*abs(X)*abs(Y) where g is defined as
-@xindent<g = X'Length * Machine_Radix**(1-Machine_Mantissa) for mixed
-                                                    complex and real operands>
+@xindent<g = X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa) for mixed
+complex and real operands>
+
+@xindent<g = sqrt(2.0) * X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa)
+for two complex operands>
 
-@xindent<g = sqrt(2.0) * X'Length * Machine_Radix**(1-Machine_Mantissa) for two
-                                                            complex operands>
+@i<@s8<Documentation Requirements>>
 
 Implementations shall document any techniques used to reduce cancellation
 errors such as extended precision arithmetic.

Questions? Ask the ACAA Technical Agent