Final Minutes of 7" ARG Meeting
7-9 October 1998
Paris, France

Attendance: John Barnes, Randy Brukardt, Robert Dewar (third day), Gary Dismukes, Pascal Leroy, Erhard
Ploedereder, Jean-Pierre Rosen, Tucker Taft

Meeting Summary

The meeting convened on 7 October at 9:00 a.m. at the Rational Offices in Paris/Montigny, and adjourned at 2:15
p-m on 9 October.

Roughly one day and a half were spent on Als, a half-day on future extensions, and the remainder on the draft of the
conformance standard, from section 5 to the end of the document. The details on these topics are found in later
sections of these minutes, which, as usual, are not in chronological order.

The order of discussion items on the agenda was significantly influenced by a strike of the local transportation
system, which caused unpredictable delays in arrivals and early departures.

The ARG unanimously thanked Pascal and Rational profusely for the generous hosting of the meeting.

Al Summary

The Als were discussed during the meeting in nearly the same order as listed in the meeting agenda and (more than)
the whole agenda was covered.

The following Al were approved without changes:

Al-119 - Is Normal Termination an "External Interaction"? (9-2-0)
AI-206 - Ada.Task Identification.Is_Callable for the environment task (7-0-0)

The following Als were approved with small changes, soon ready for editorial review:

Al-164 - Definition of remote access type (7-0-0)

AI-166 - Parameterless Handler values designate default treatment (7-0-0)

AI-168 - Aliased objects can not have discriminants modified (7-0-0)

Al-184 - View conversion to an indefinite subtype (7-0-0)

AI-190 - Compile-time vs. Run-time Errors (6-0-0)

AI-192 - A library subprgram_body should replace, not complete, an instance (7-0-0)
AI-197 - Aggregate initialization of controlled subcomponents (7-0-0)

AI-199 - Does pragma convention for a generic unit apply to instances? (5-0-2)
AI-203 - S'Digits when T'Machine Radix is 10 (6-0-1)

AI-205 - Priority Changes in abortable Part (6-0-0)

The following approved Al was not discussed and the letter ballot will be held soon:

Al-160 - Daylight savings and Ada.Calendar (10-1-2)

Version of 07.11.98 Page 1 of 11

The intention for the following Als was approved but they require a rewrite:

AI-130 - Should no_Local Allocators disallow nested instantiations? (5-0-1)

Al-147 - Optimization of Controlled Types (6-1-0)

Al-161 - Default-initialized objects (7-0-0)

Al-188 - The definition of setting a task base priority is too vague (5-0-2)

Al-193 - Classwide Adjust and exceptions (5-0-2)

Al-195 - Streams (8-0-0)

AI-202 - Primitives of formal type derived from another formal type (no vote recorded)

The following Als were discussed and require rewriting for further discussion or vote:

AI-085 - Questions about Append File mode (12-0-0 -- old vote)
Al-131 - Interface to C - passing records as parameters of mode "in"
Al-162 - Anonymous allocators and tasks/finalization

The following Als were discussed and a first write-up assigned to an editor:

Al-169 - Exceptions raised by Adjust/Finalize -- Missing case

AI-170 - Can an attribute defined in an annex be set in an attribute definition clause?
AI-198 - Pragma Convention(Intrinsic) is not a completion

AI-200 - Generic formal subprograms as dispatching operations

Al-204 - Interfaces.Fortran must be absent, right?

AI-207 - Pragma Inspection_Point affects only the current unit

AI-208 - What is the meaning of "same representation” in all partitions?

AI-209 - pragma Reviewable; can objects become uninitialized?

AI-210 - Questions on pragma Restriction No_Recursion and No_Reentrancy

The following Als were not discussed awaiting their pending rewrite or write-up:

AI-051 - Size and Alignment Clauses for Objects

AI-058 - Accessibility Rules for Shared Passive Packages

AI-100 - Truncation required if Machine Rounds false?

AI-109 - Size and Alignment Attributes for Subtypes

Al-117 - Calling Conventions

AI-133 - Controlling bit ordering

AI-148 - Requeue of protected entry calls

AI-153 - Picture String Grammar or Composition Rules Need Tightening
AI-158 - T'Class as generic actual type

AI-167 - Erroneous scalar Unchecked Conversion?

AI-172 - Optional main subprogram ?

AI-173 - Optimizations and the use of 'Address

Al-174 - Are 'Read and "Write guaranteed to be "inverses" for predefined types
AI-185 - Branch cuts of inverse trigonometric and hyperbolic functions
AlI-186 - Range of root_integer

AI-187 - Task attribute operations are atomic but not sequential

AI-189 - The meaning of the terms "processor"”, "multiprocessor”, and "processing node"
The following Als were not discussed and still seek an editor:

AI-175 - Full conformance of expressions with attributes

AI-178 - Which 1/O operations are potentially blocking?

AI-191 - An OBJECTive View
AI-196 - Assignment and tag-indeterminate calls with controlling results

Version of 07.11.98 Page2 of 11

Draft Conformance Testing Standard

The ARG did a paragraph by paragraph reading of the draft, beginning at section 5. Detailed suggestions for
improvements were noted and Erhard will incorporate these comments in a revised version that will be distributed in
the near future to the ARG. These minutes do not record these detailed comments, but rather summarize the general
impression of the document.

On an editorial level, there are several almost verbatim repetitions. These will be eliminated. Some terminology was
found to be inappropriate. At times, the terminology is not consistently applied (e.g., compiler vs. language
processor). It was felt that, at several places, there was unneeded deviation from current practices or unneeded
detail. The role of the ACAA in keeping commonality of the validation process seemed underdeveloped; for
example, the ACAA seemed to have no say in the formulation of the testing procedures employed by the ACALs.
There was surprise at the downplay of registration of derived compilers.

Language Enhancements

At the last meeting, WG9 passed a motion charging the ARG with also looking at language enhancements in view of
future standard revisions. The ARG picked up this topic and collected a set of enhancement issues for further
consideration, as time will allow. This list, in a very terse form of topics is:

e circular types" (a.k.a. cyclic dependencies among specification units)

e Conventions of (overriding and primitive) subprograms (Al 117)

e Stream_Size attribute (Al 195)

e Pragma for preelaborable initialization of types (Al 161)

e "Unchecked Union" for interfacing with C and C++

e Representation control for streams (e.g., endianness)

¢ specifying non-default bit-order (Al 133)

o allow overriding of fixed-pt. multiply (Al 163)

o user-defined dereferencing

e pragmas for specifying units (kg, m, inch, etc.)

e syntax to distinguish intentional overloading/redefinitions

o upward-closures for subprogram parameters

¢ support for mapping (Java) interfaces onto Ada

¢ additional annex for interfacing to C++ and Java

e "out" parameters for functions

Als that closely relate to an issue are noted in parentheses. Excepting 163, these Als are still "in the works" and, in
almost all cases, a language enhancement would provide a much nicer and cleaner solution than a mere

"interpretation” of the standard.

This is an initial list, more the result of a brainstorming than an agenda for future work, even though some of the
issues on this list are very important to address.

At this meeting we discussed two of the enhancements not associated with any present Al: "circular types" and
"Unchecked Union". The minutes of these discussions are appended.

Next Meeting

The next meeting will be in the USA, most likely on the east coast. The dates of STC and of Easter will be avoided.

Erhard will set a date and location shortly. On the east coast, Boston at Intermetrics or NYC at ACT are obvious
choices.

Version of 07.11.98 Page 3 of 11

Action Items
Action items were reviewed. Many have been accomplished. Old action items that remain on the list are:

Ben Brosgol: AI-153

Norm Cohen: Al-133, Al-167, Al-173

Gary Dismukes: AI-158

Bob Duff.: AI-051, AI-058, AI-109

Bob Eachus.: AI-100, AI-153, Al-172, Al-174, AI-185, AI-186 (2 meetings old!)
Pascal Leroy: extension Al to Al-161 (obsolete, see details on AI-161)

Stephen Michell: Al-148, AI-187, AI-189 (may have to be reassigned)

Erhard Ploedereder: Al-117 (was misassigned to Bob Eachus in the meeting summary)

Erhard and Bob: Prototype a few Als to determine how to handle the remainder of the Als in Standard
Corrigendum form.(2 meetings old !)

Tucker Taft: Produce a draft Al on a language extension to allow for mutually dependent types in separate
package specifications

Randy will assume Bob's role in drafting the Corrigendum.

New action items on the drafting or completion of Als were assigned to the following ARG members:

John Barnes: AI-192, AI-204, AI-207

Randy Brukardt: AI-119, AI-184, Al-194, Al-197, AI-203, AI-205, AI-208
Gary Dismukes: Al-169, AI-200, AI-202

Pascal Leroy: AI-85, AI-131, AI-161, AI-168, AI-195

Erhard Ploedereder: AlI-147, AlI-164, AI-166, AI-190, AI-209

Jean-Pierre Rosen: AI-170

Tucker Taft: AI-130, AI-162, AI-188, AI-193, AI-198, AI-199, AI-210

The following action items were also assigned:

Erhard: Set the data and place of the next ARG meeting in the USA.
Erhard: Revise the Draft of the Conformance Standard.
Robert: Distribute an "Append" test to comp.lang.ada and collate results (AI-85).

Details on Enhancement Proposals

The first enhancement proposal deals with the issue of eyclically dependent type definitions, as they often arise
when two or more graph structures contain nodes with components that reference nodes in the other graph structures,
respectively. Within a single package, Ada solved the problem with the concept of incomplete types. Unfortunately,
no good solution is available across the boundaries of packages. (The "Taft Amendment" of Ada83 applies only
under very restricted circumstances.) The problem has reemerged in a different guise with the advent of object-
oriented languages, most of which allow unrestricted mutual references between components of different classes.
Mapping such a (frequently encountered) class design onto the Ada type model requires either a major rethinking of
the data structures or the aggregation of the type definitions in a single package. Both approaches are highly
undesirable and cumbersome.

Generally speaking, what is needed is a capability to extend the concept of incomplete types to apply across Ada
packages. In deference to the Ada library model, an approach is preferred that preserves a linear compilation order
despite the potentially cyclic nature of the type dependencies.

Tucker presented an initial design of such a capability.

Version of 07.11.98 Page 4 of 11

Syntax:

with type [Ancestor Name.]Package 1d.Type Id
[is access [all | constant | Subtype Mark | ;
package P is

In the first form of this context clause, the name Package 1d.Type 1d for an incomplete type is introduced.

All the rules for incomplete types apply to this type in P, except that its completion is expected to be provided by the
prefix package. However, no semantic dependency is created on that package; the package need not exist at all.
Ancestor Name, if present, must be the name of an existing package, which is implicitly "with"ed at this

point.

In the second form, the name for an access type is introduced and its target type is made known. The target type may
(but need not) be an incomplete type introduced earlier. The syntax allows for 'Class at this point to introduce a class-
wide access type. All rules for access types apply.

In either case, discriminants are disallowed.

The compilation of a unit that has semantic dependencies BOTH on P and Package Id must check that the named
incomplete type does indeed exist in Package Id. (Note that this is a compile-time, not a link time check !) This rule
applies in particular to the body of P, if it withes the package Package 1d, as will usually be the case. Within this
dependent unit, the type declarations in Package 1d act as completions for the incomplete types of P.

The model has some very nice properties: compile-time checkable, no disturbance of the linear compilation order,
linking of a system without package Package Id is possible and meaningful, since, in that case, the type remained
incomplete and cannot have any effect on the execution.

Why the need for identifying a target type ? Because some ILs require that access types identify their target type (e.g.,
Java bytecode).

During the discussion, the question was raised, whether it wouldn't be possible to add additional information to the
incomplete type, similar to the contract promises made by generic formal types. This was not pursued in detail, as it
seemed to complicate the approach without gaining much. It would affect only usage of the type in the package
specification, since the body can always refer to the full information simply by withing the respective package.

Another question was whether child units might provide a means for introducing incomplete types in a parent and
completing them in a child. At first and second glance this seemed to introduce many problems that the above
approach avoids, in particular problems that are caused by the exporting of incomplete types. Note that the proposal
above does not make the incomplete type visible to the outside world.

As an issue with the proposal, an interaction with the "remote types" classification was noted, which needs to be
resolved.

Tucker will write up the proposal in an Al

The second enhancement discussed was the issue of modeling C unions in Ada when interfacing with C and C++.
Tucker presented his proposal for this capability, termed "pragma Unchecked Union'', and contrasted it with the
approach taken by GNAT. The main difference between the two approaches can be characterized as follows: The
GNAT model maps a union to a discriminated record, with the alternatives of the union being single component
variants of the single variant part of the record. The discriminant is not represented in the record layout. A
consequence of this mapping is that anonymous unions, used quite often within C structs, need to be mapped as a
named record type in Ada and the union in the struct modelled as a single component. The Taft model maps
anonymous unions roughly to a variant part and thus is able to "flatten" out C structs containing anonymous unions of
structs into single Ada record types.

Version of 07.11.98 Page S of 11

We mainly discussed the following questions and issues in the Taft model to explore the technical consequences and
any difficulties in answering them affirmatively. In all cases, the simpler but much less elegant GNAT model denies
these capabilities, while the Taft model appears to allow them.

1) Should we allow a non-variant part?

2) Should we allow a list of components in a variant alternative?
These two questions are at the heart of the difference between the two models. Technically, there appears to be no
reason to disallow them.

3) Should we allow nested variants?

4) Should we allow multiple discriminants?
These two questions address the degree to which various C structs can be mapped to a single Ada record type. Again,
no technical obstacles were found.

5) Should we allow defaults on non-discriminant components?
The answer to this question is arguable, as the C code will clearly not obey such defaults and hence provide no
guarantee for validity of the component values. However, in mixing languages such guarantees cannot be provided
anyway, regardless of the specification of default values in one language. One might still provide the convenience of
defaults for objects created by Ada code.

6) Should we not require defaults on discriminants?
There is a slew of issues regarding the size of such record objects and the answer to this question will be heavily
dependent on the size prescriptions.

7) Should we allow the declaration of constrained subtypes?
There doesn't seem any technical harm in doing so (as long as the constraint is not used to calculate size for a non-
limited type). Of course, no constraint checks are possible. However, if the constraints are static, compilers might be
nice enough to issue stern warnings against constraint violations.

Related questions were:

1) What size should be allocated for objects?

The appropriate answer is to allocate the maximum size if the type is non-limited (to accomodate assignments by
the C code without memory implications), while the constrained size may be sufficient when the type is limited. This
of course presumes that the C code adheres by contract to the limitedness declared for the Ada type or else serious
damage can be done by memory overwrites.

2) What should equality and assignment mean?
We would like them to mean a block compare and block move. These semantics are safe for those types with a

maximum size allocation.

One observation made was that, quite obviously, discriminants of these record types are not allowed to be used in any
other context but the expression of a variant part (e.g., no discriminant-dependent array bounds).

Details of the AI Review

Al-*

It was observed that many authors did not update the administrative data of the Als (version numbers, dates on the
sections, etc.). Randy is asked to check specifically for the accuracy of these data before entering the Als in the data-
base. Authors are asked to pay more attention to these data.

Many binding interpretations come in with empty !wording sections. The !wording sections should be filled and

should at least identify the affected paragraphs, e.g. "Paragraphs x.x(x) and y.y(y) need to be adjusted to reflect the
intent of the AL." "see summary" can be used, if the summary identifies the paragraphs.

Version of 07.11.98 Page 6 of 11

AI-85

Initial sentiment was that the third paragraph of the Isummary should be changed to give an unconditional permission
for the Use Error alternative, to let it be applied when positioning support is available, but unsuitable for the
postulated semantics. The Al should then be turned into a binding interpretation (with wording section).

Further discussion then asked the question for the prevalent implementation behavior. Robert volunteered to write a
test program, eliciting the "C/Unix model”, "the Ada model”, the "Use Error model” and anything else, distribute it
to comp.lang.ada, tabulate the results and pass them on to the ARG.

The Al will then be adjusted by Pascal depending on the outcome of this experiment. If the outcome demonstrates
that most implementations follow the Ada model, the Al will be worded as implementation permission to raise
Use_Error. Otherwise, Use Error will be the required behavior.

Depending on the amount of change and the divergence from the initial consensus above, the Al may then go out for
editorial review rather than further discussion at a meeting.

Al-119

Apart from the necessary updates to the status information, no further changes are needed. The old approval vote
stands.

Randy will do the final update.

Al-130

We discussed the issue of data flow dependency, in particular in the context of conditional compilation. (if Debug
then...). The consensus is that the "primary" semantics should be expressed as a static compilation and/or post-
compilation check, but that an implementation permission should exist that allowed the omission of the check in code
that is unreachable and actually not generated by the compiler.

The first sentence of the recommendation should go to the summary to make clear that post-compilation enforcement
is allowed. The !wording should be filled. In the subject and the !summary, several members felt that "may" should
be replaced by "might".

The intent of the ATl was approved 5-0-1. Tucker will update the Al.

Al-131

There is agreement with the basic content. Partially in light of the discussion on enhancements in general, partially in
response to the WG-9 motion, the proposed pragma will become a mandatory part of the Annex as opposed to a
recommended implementation-defined pragma.

Both the verbiage and the details on the semantics of the pragma need to be refined. It should roughly read as "...that
any 'in' parameter of the type T is passed by copy to a subprogram of convention C. The convention of the type is
implicitly set to C. The pragma is applicable only to (untagged) record types. "

The last paragraph of the !response is deleted.

Pascal will very soon rewrite the Al accordingly. Erhard would like to bring this Al to WG9 in November.

Version of 07.11.98 Page 7 of 11

Al-147

Tucker raised the issue of external effects within the omitted calls (as opposed to after the calls), which aren't yet
covered by the Al. A change to accommodate them is to alter the permission in the !summary to refer to "additional
effects" rather than only "side-effects on other objects".

Jean-Pierre then explored the question whether every object created will be finalized. Erhard discovered that the
wording of the !summary (unintentionally) did not cover the case, where an explicit initialization by aggregate is done
(which, by another Al, must be done directly in the object without Initialize or Adjust calls). While this can be fixed
by adding the case in the Al, the group went on to revisit the decision made at Burlington to exclude Initialize from
the optimization. The opinion swayed towards the Henley model (i.e., not to distinguish initialization and
assignment), in order to go for the simple rule: For limited controlled types, Initialization and Finalization are
guaranteed to occur, while for controlled types only the intermediate usage of the object's value between
Initialize/Adjust and subsequent Finalize will prevent the option of optimizing away the assignment operation along
with the corresponding implicit call and subsequent Finalize.

This Henley intent is approved 6-1-0. Erhard is asked to "revert" the Al accordingly.

Al-161

This is a binding interpretation, not a confirmation. The order of the !summary paragraphs should be inverted. The
question should include 10.2.1(5) to make sense. The wording should use "does not" in licu of "doesn't". In the
!discussion, change "the.." to "a full view". The second paragraph of the wording needs to be changed into
appropriate bullets under C.4.(4) to exclude objects of controlled type, descendants of generic formal types, private
types and private extensions. We discussed as some length, what type features are likely to cause code to be
generated.

On a deeper issue, the question was (re-)raised why the pragma was not introduced in this Al, and how much its later
introduction would alter the semantic content of the AI. Given the WG9 attitude that the ARG can begin thinking
about extensions, here would be a quite perfect opportunity to "do the right thing". It was also suggested, but not
discussed in detail, to let the pragma apply to all types, not just to the types that cause the problem. A further
suggestion was to explore using such a pragma as a means to assert properties of generic formal types to be enforced
at instantiation time.

Consensus developed to include the pragma directly in this Al and not write a separate "extension" Al, especially if
this helped spelling out a simpler solution.

The table of types affected by the issue should drop all those, whose package is not preelaborable.
Ada.Strings.Maps.Character Mapping, Ada.Strings.Maps.Character Set and
Ada.Strings.Unbounded.Unbounded_String change from "no" to "yes".

The above intent on adding a pragma was approved 7-0-0. Pascal will make the changes.

Al-162

It was observed that the terminology used ("executing a master") inadvertently led to a semantics that allowed
altogether omitting execution of the constructs in question, which is clearly wrong. It was observed that the AT first
goes to great trouble of defining new masters and then gives permission to implementation to ignore them altogether.
It was then mused whether one needs to use the heavy gun of changing the master concept to come to grips with this
issue. The group was clearly divided on this issue. In any case, both the finalization of controlled objects and the
completion semantics of task objects need to be handled. The various alternatives presented in the discussion were
discussed again in search for new insights.

Straw votes establish that 7-0 can live with a change to the master concept. 3 favor the master approach, 4 prefer a
special "deferred waiting" rule. It is clear that the issue needs to be worked some more, either in the direction of a

Version of 07.11.98 Page 8 of 11

simpler "master"-extension, or special rules.
The Al was then tabled without further resolution.

On the second day, consensus (7-0-0) was established to a) simplify the Al significantly, b) tie into 7.6.1(13) and
3.10.2(13) and include impl. permissions there.

The title of the Al needs to be fixed, e.g., "Anonymous access types and their masters".

Tucker will take a look into simplifying the presentation.

Al-164

n "

Several editorial fixes were requested: change "e." to "E." in the !question. Add the question why the target type
needs to be private. Correct the hyphenation of RACW. Delete reference to the Henley meeting in the wording
section. Change the 1.para. of the !'wording to better terminology to express the recursive nature of the private
extensions.

The Al was approved (7-0-0) with these editorial changes. Erhard will do the edits.

Al-166

Approved with minor editorial changes (7-0-0). Assigned to Erhard.

Al-168

The summary should be expressed in terms of "is illegal" to assert the compiler's obligations. The title should add a
"not". Approved with these changes (7-0-0). Pascal will make the change.

Al-170
Annex attributes cannot be set unless stated otherwise in the respective Annex.

Jean-Pierre will write-up the Al.

Al-184
In the !summary, fix the typo "object" -> "object's"

Approved with this editorial change (7-0-0). Randy will make the change.

Al-188

After some discussion, consensus developed to confirm the RM rather than the intent of the comment for reasons
explained in part in Ted's rejoinder.

The reversal is approved (5-0-2). Tucker will do the rewrite.

Version of 07.11.98 Page 9 of 11

AI-190

The question of this Al should be rewritten to be of the lesser scope that is present in the comments and the summary.
In the summary, change the verbiage to "of a pragma Restrictions" and delete 2. paragraph. Add a reference to
D.7(15). Change the title to "Compile-time enforcement of pragma Restrictions". Make it a binding interpretation.
The wording should refer to 13.12 and might reincarnate AARM 13.12(9b).

Approved with these changes (6-0-0). Erhard will make the changes.

Al-192

Approved (7-0-0) with a change to replace the term "noninstance" in the !wording by something more appropriate.
John will make the change.

AI-193

Discussion revealed a misunderstanding of the term "initialized by assignment", which was meant by Tucker as
explicit initialization by other than an aggregate. This needs to be clarified in the Al. !wording needs to be filled in.

Discussion then turned to intent. It was observed that the comment actually asked for a relaxation, while the Al is
currently more in the spirit of tying down semantics into one direction, rather than giving more freedom to
implementations to exploit their idiosyncrasies in this bounded error situation. Two implementation models with
contrary semantics actually in use were discussed and there did not seem to be a possible compromise to
accommodate both without giving up on being specific on the semantics. There also are reasonable arguments for
and against Finalization after an Adjust with exception.

Thus, the consensus was to leave it unspecified whether Finalize is called after Adjust raised an exception.

This intent was approved (5-0-2). Tucker will do the rewrite.

Al-194

This looks like a typographical error. Randy will investigate and, if so, add it to Al-presentation.

AlI-195

We decided to postpone the discussion on stream base range to the second day, but to examine the other issues
presented by the Al.

In the 1.para., the word "default" should be added before "initialization", in the 2. para. "[limited] type", in the 3.
para., "limited [tagged]". Early in the !discussion, "takes [place]".

There was a lengthy discussion over current component-wise semantics of the calls on Read/Write of a stream. What
is desired is added freedom to let predefined 'Read and "Write of composite types to act in larger chunks, when
possible, but guarantee that there is no buffering at the attribute subprogram level. The proposed rule requiring at
least one call seems to run afoul, however, of null arrays and records. Pascal will fix this somehow.

Discussion of the other questions and conclusions of the Al did not yield any requests for changes.

The Al was then tabled for the 2. day.

On the 3. day we examined the stream representation. A satisfactory solution is to define the default stream size of
elementary types as follows:

Version of 07.11.98 Page 10 of 11

o for floating-point and decimal types this size is implementation-defined
o for all other elementary types:
o if the minimal size required is less than the word size, then the stream size is the minimal size increased
to the smallest integral factor of the word size,
o if the minimal size is larger than the word size, the stream size is the minimal size increased to the
smallest integral multiple of the word size

The intent was approved (8-0-0). Pascal will complete the write-up.

Al-197

The Al-title was changed to "Aggregate initialization of controlled subcomponents".
It should have a Ireference to AI-83.

Approved with these changes (7-0-0). Randy will fix the Al.

Al-199
After some discussion consensus developed for the conclusion of the Al. An addition to the Al is requested that
introduces the notion that a pragma explicitly given for an instance will override a pragma "inherited" from the

generic unit.

Approved with this addition (5-0-2). Tucker will add the necessary words.

AT-202

The Al was briefly discussed. It was felt that the issue was difficult to grasp. Several sentences were suspected to
have one indirection too few. Gary was asked to try to come up with a summary and recommendation that would be
easier to understand. As it was late in the day, the Al was tabled for discussion on the next day. It was not picked up

again for the rest of the meeting.

Gary will take another look at the Al

Al-203

In the !question, add "no" as answer to the question. Add "see summary" to the !'wording section. The title should be
changed to something more appropriate.

Approved with this change (6-0-1). Randy will fix the Al

Al-204

The consensus is that the package must be absent if the convention pragma is not meaningfully supported (e.g., for
Fortran, multi-dim. arrays better have column-major representation). In order to be meaningfully supported, the
compiler provider must identify the compiler(s), with which the conventions agree. For COBOL, the compiler need
not be on or for the same host of the Ada compiler; this allows for the fact that the interfacing capability is mainly
provided to provide a means for binary compatibility of file contents.

This interpretation applies to conventions and interface packages of all languages.

John will write the Al

Version of 07.11.98 Page 11 of 11

Al-205
Change "that it must be" to "that the update must occur"” in the !question. Check punctuation.

Approved with these minor editorial changes (6-0-0). Randy will do the updates.

Al-206

Approved without change (7-0-0).

Al-207

This will be a binding interpretation. The pragma without arguments applies only to all object whose declarations are
visible at the inspection point. Anything more encompassing is technically impossible in a separate compilation
model. However, it is safe to assume that a compiler supporting Annex H has a global setting that guarantees that all

global variables are up-to-date at any execution point, anyway.

John will write it up.

Al-208
The paragraph is much too restrictive. It would be outright foolish to mandate it in general on a heterogeneous system
without shared memory. If there were shared memory (e.g., on an embedded system board), the compiler would have

to be much more clever about it anyway; consider, for example, incompatible floating-point representations.

The consensus is to delete the paragraph in its entirety, since on a homogeneous system the compiler can be trusted to
do this anyway.

Randy will write it up.

Al-209
In H.3(9), the term "reference to" definitely needs to be replaced by "reading of" or similar usage terminology.

Erhard and Robert had a lively discussion, whether or not "uninitialized" should be a transitively "infecting" concept,
as would be true for the "invalid" property, and how much flow information needs to be used in the analysis.

Erhard will write up the Al and pass it to the HRG for comment.

Al-210
The answers are "no" to the first question and "yes" to the second one.

Tucker will write it up.

Version of 07.11.98 Page 12 of 11

