
Final Minutes of the 3. ARG Meeting
Bennington, VT, USA, 7-9 October 1996

Attendance: Barnes, Cohen, Dewar, Dismukes, Duff, Eachus, Ishihata, Kamrad, Leroy,
Michell, Ploedereder, Schonberg (for days 1 & 2).

Host facilities were graciously supplied by Robert Dewar and ACT. The ARG expressed its
appreciation.

These minutes first summarize the voting results on the AIs that were discussed, then present
all procedural issues that came up during the meeting and the action items assigned. The
record of the detailed discussions on AIs is appended in AI order for easier reference. This
order does not correspond to the chronological order in which the AIs were discussed.

Summary of the action taken on the AIs:

Approved in final form (some with minor editorial changes):

AI95-00004/02 -- Conversions to types derived from remote access types
Approved (12-0-0)

AI95-00031/00 -- Unpacking a record type with primitive subprograms
Approved (11-0-0)

AI95-00035/01 -- Type descriptors can be laid out at compile time
Approved (12-0-0)

AI95-00037/04 -- In Interfaces.C, nul and wide_nul represent zero
Approved (12-0-0)

AI95-00040/02 -- Does <> for a formal subprogram default freeze the actual ?
Approved (11-0-1) with change to title

AI95-00041/04 -- Program unit pragmas in generic units
Approved (12-0-0)

AI95-00044/01 -- Overriding of Declarations
Approved (11-1-0) with change to title

AI95-00048/04 -- Can an RCI unit be a library subprogram?
Approved (12-0-0) with change to title

AI95-00071/01 -- Correction to the Valid function in COBOL Interface
Approved (8-0-4)

AI95-00072/01 -- Clarification of result length for conversions in COBOL Interface
Approved (7-0-5)

AI95-00087/00 -- Saving and restoring Current_Output
Approved (12-0-0)

AI95-00089/01 -- Float_Random.Value, Discrete_Random.Value
Approved (11-0-0)

AI95-00106/02 -- Freezing Rules
Approved (11-0-0)

AI95-00107/03 -- Base attribute for non-scalar subtypes?
Approved (12-0-0)

AI95-00110/01 -- No Constraint Check on 'out' Parameter of an Access Type
Approved (12-0-0)

AI95-00112/01 -- Wide_String file names?
Approved (12-0-0) with change to title

AI95-00118/01 -- Termination signals query of Terminate attribute
Approved (9-0-3)

AI95-00127/01 -- Expected type of a 'Access attribute
Approved (8-0-4)

AI95-00128/01 -- String Packages
Approved (12-0-0)

AI95-00136/02 -- Placement of Program Unit Pragmas in Generic Packages
Approved (12-0-0)

Approved in final form, but to be editorially reviewed, since this was the first vote on these
confirmation AIs:

AI95-00006/00 -- private child in with_clause
Approved (10-0-0)

AI95-00012/00 -- The first subtype of a type defined by an access[_type]_definition
Approved (10-0-0)

AI95-00018/02 -- Inconsistency with Ada'83 in the definition of exponentiation
Approved (10-0-0)

AI95-00025/01 -- Matching rules for generic formal access-to-constant types
Approved (9-0-1)

AI95-00032/00 -- visible part of a renaming
Approved (10-0-0)

AI95-00042/01 -- use of incomplete types
Approved (10-0-0)

AI95-00045/01 -- Entry calls
Approved (10-0-0) with a change of title

AI95-00077/01 -- Separate compilation of generic bodies
Approved (6-1-2)

AI95-00078/01 -- semantic dependence on illegal or obsolete units
Approved (11-0-0)

Approved (with changes) for editorial review:

AI95-00033/03 -- delayed declaration of inherited primitive subprograms
Approved (11-0-0) with editorial review

AI95-00034/01 -- Unconstrained Formal types
Approved (9-0-2) with editorial review

AI95-00095/01 -- Modular types on one's complement machines.
Approved (6-0-5)

AI95-00097/04 -- Conversions between access types with different representations.
Approved (10-0-2)

AI95-00121/01 -- Pragma Attach_Handler on Nested Objects
Approved (11-0-1) with editorial review

AI95-00123/01 -- Equality for Composite Types
Approved (10-0-2) with editorial review

AI95-00124/00 -- Ligatures Are Allowed in Identifiers
Approved (11-0-0)

AI95-00145/01 -- Profile of predefined operators for scalar types
Approved (7-0-3)

Approved pending letter ballot:

AI95-00126/03 -- Remote_Types Packages
Approved (8-0-2) letter ballot requested

Discussed but sent back for substantive revision:

AI95-00051/03 -- Size and Alignment Clauses for Objects
tabled

AI95-00058/01 -- Accessibility Rules for Shared_Passive Packages
tabled

AI95-00064/03 -- Elaboration checks for renamings-as-body
tabled

AI95-00085/02 -- Questions about Append_File mode
 tabled
AI95-00104/01 -- Version and Body_Version attributes

Approved (12-0-0) with editorial review and Annex E author feedback
AI95-00109/02 -- Size and Alignment Attributes for Subtypes

tabled (jointly with AI-51)
AI95-00117/01 -- Calling Conventions

tabled
AI95-00131/01 -- Interface to C -- passing records as parameters of mode 'in'

rewrite (7-0-5)
AI-95-00132/01 -- Exceptions Raised at End of Stream

Intent approved (10-0-1) for alternative 3
AI95-00141/03 -- Exceptions in Interfaces.C and its Children

Rejected (2-5-3)
AI95-00147/01 -- Optimization of Controlled Types

Intent Approved (5-1-4), see minutes
AI95-00157/01 -- Visibility of Inherited Private Components

Intent Approved (12-0-0) for editorial review
AI95-00158/00 -- T'Class as generic actual type

tabled
AI95-00163/00 -- User-defined fixed-fixed multiplying op

Intent established (10-0-1), see minutes

Deleted:

AI95-00155/01 -- Stream-Oriented attributes for language-defined private types

Procedural Issues:

Erhard reported contacting the AdaIC about HTML-versions of approved AIs to be made
available on sw-eng to the general public. The AdaIC is hard at work to make this happen.

On the question of producing standard Corrigenda, Erhard reported that he has asked for but
not yet received editorial instructions from Bob Mathis.

How to handle editorial changes to AIs that have already undergone editorial review and how
to handle rejection of editorial comments by the AI author ? To avoid polishing AIs to death,
we adopted the procedure that unless the commentor demands a vote on the content of their
rejected comment, no additional vote will be taken. Similarly, such AIs with additional
editorial changes decided at an ARG meeting will not be delayed by yet another editorial
review.

There was general consensus that the requirement for new Wording in AIs will continue to be
considered on a case-by-case basis and it was suggested that missing Wording should be
supplied by the requestor of such wording.

The need to vote on simple confirmations was raised again. It was decided to deal with
confirmation AIs that already have a number in the standard fashion, while new simple
confirmations should go into one big "Confirmations" AI.

There is an apparent problem in the current ada-comment setup, which forwards to ada9x-
mrt@inmet.inmet.com. If the Intermetrics system "coughs", redistribution of ada-comments
gets delayed and there is the danger of loss of comments. Action Item: Erhard will contact
Tuck about the state of the Intermetrics software to determine how the comment data base
plus software could be moved to sw-eng, then to contact AdaIC to solicit their support of the
system.

There was some discussion about an additional meeting per year for the purpose of speeding
up the AI examination and approval process. However, most ARG members have funding
problems that makes it difficult to travel to an extra meeting. Besides, the deliberate process
seems to have kept pace with the current flow of AIs and has, in some cases, prevented
mistakes of premature AI resolutions.

Next Meeting:

John Barnes offered to host the next meeting in the UK, Greater London area, from April 11
to 13, 1997, adjacent to the RT-Workshop in Wales. The dates may change by a day,
depending on whether the organizers of the RT-Workshop are willing to move their meeting
by a day off the 13th. This offer is gratefully accepted by the ARG and the venue and time of
the next meeting are so decided.

Action Items:

Pending old action items:

Dewar: AI-54
[Landwehr: analyze old UIs; post remaining ones to ada-comment]
Ploedereder: get corrigenda format from Bob Mathis
Duff: create subdirectory of WG-9 approved AIs

New action items:

Taft: AI-158
Annex E experts: AI-58, AI-104
Barnes: organize next meeting
Duff: post editorially revised AIs, AI-*, split stream AI from AI-85
Ploedereder: minutes, prepare for next meeting, check possibility of transfering ada-comment
data base to sw-eng, invite Gnat distribution team to London meeting, notify ACVC team
about AI-127 and AI-128; present approved AIs to WG-9
Kamrad: minutes
all: editorial review of approved AIs as soon as posted

===
Details of the AI Review:

AI-04 -- Conversions to types derived from remote access types

The ballot brought out comment(s) on the intent of the AI. Storage pools are perceived to be
in the partition in which referenced objects are allocated. Remote access types should NOT be
permitted to do allocation and this restriction is the premise of the AI, cast in terms of storage
pools. Robert Dewar questioned this rationale; he opines that the storage pool can be
distributed (implying the use of "fat pointers"). But the conceptual memory model that
supports primarily a client-server model and avoids implicit communication calls precludes
such a distributed memory model. Robert conceded that the latter model is the one really
intended by the language. More text in the Distributed System Annex explaining this model
would have been beneficial. Approved as is (12-0-0).

AI-06 -- private child in with_clause

Approved without substantive discussion (10-0-0).

AI-12 -- The first subtype of a type defined by an access[_type]_definition

Approved without substantive discussion (10-0-0).

AI-18 -- Inconsistency with Ada'83 in the definition of exponentiation

Approved without substantive discussion (10-0-0).

AI-25 -- Matching rules for generic formal access-to-constant types

Approved without substantive discussion (9-0-1).

AI-31 -- Unpacking a record type with primitive subprograms

Editorial changes requested by reviewers had been suitably reflected.
Approved 11-0-0.

AI-32 -- visible part of a renaming

Approved without substantive discussion (10-0-0).

AI-33 -- delayed declaration of inherited primitive subprograms

There are two problems here, if the RM stays as is. First, without adding the "immediately
within the declarative region" rule, the implicit declaration can appear in nested scopes which
is surprising. Second, without this rule, there is an upward incompatibility with Ada83 and
thus a very compelling reason to correct the RM.

It was suggested to change the example by adding a call to Op (value of type T), which
explicitly shows the illegality. Stephen raised the question about the relationship of this AI to
the issues addressed in AI 157. Since there is a similarity, it was recommended to add a
!reference to AI-157 which is also a ramification of visibility rules.

Approved 11-0-0 with these editorial changes.

AI-34 -- Unconstrained Formal types

Erhard was concerned that ignoring the constraint on the instantiating type might open a hole
for out-of-range indexing. He provided an example...[that was unfortunately lost, but is
recreated in spirit as follows]

generic
 type ptr is access all string;
 O: in out ptr;
package P ...
package body P is
 subtype str_ptr is ptr(26..28);
 X: aliased string(26..28);
 Y: str_ptr := X'access;

 O := Y; ...
end P;

type ptr1 is access all string;
subtype string20 is ptr1(1..20);
Obj: string20;
package New_P is P(string20, Obj);

Somwhat surprisingly, the assignment of "O := Y" must yield a run-time check of the bounds
of the pointer subtypes of the two variables. This check must fail for this instantiation. (If that
were not the case, havoc would result for indexing into Obj after the instantiation.)

This AI points out an unfortunate consequence but it is necessary to remain upward
compatible with Ada83. It was approved 9-0-2 subject to editorial review.

AI-35 -- Type descriptors can be laid out at compile time

Editorial changes requested by reviewers had been suitably reflected.
Approved 12-0-0.

AI-37 -- In Interfaces.C, nul and wide_nul represent zero

The editorial changes were limited to the presentation in the Question section where the intent
is explained in the two paragraphs with the "yes" answers. After some spirited discussion on
the technical issue, the group arrived at the same technical conclusion.
Approved 12-0-0.

AI-40 -- Does <> for a formal subprogram default freeze the actual ?

Editorial changes requested by reviewers had been suitably reflected. The subject line is now
stated in the affirmative.
Approved 11-0-1.

AI-41 -- Program unit pragmas in generic units

The changes were limited to fixes of typos and a sentence added to the Summary, stating the
rule for pragma Inline. The Appendix of this AI was inadvertently left off and will be added.
Approved 12-0-0.

AI-42 -- use of incomplete types

Approved without substantive discussion (10-0-0).

AI-44 -- Overriding of Implicit Declarations

The Wording section is missing which caused ARG members to withhold approval during the
letter ballot. The opposing view is that the ARG should not always spend the time to find the
exactly right wording, since this is difficult, time-consuming, and incurs the risk of making
mistakes with the new wording. The Summary seems to have enough information to guide
implementers. The title was changed. Approved 11-1-0.

AI-45 -- Entry calls

It was decided that the subject of the AI should be changed to something less encompassing.
Otherwise approved without substantive discussion (10-0-0).

AI-48 -- Can an RCI unit be a library subprogram?

This AI reversed the intent of its original version and was passed 11-0-1 in the letter ballot.
An editorial change of turning the subject question into an affirmative statement was agreed
upon. Approved 12-0-0.

AI-51 -- Size and Alignment Clauses for Objects

Pascal recommends that parts of the Discussion be moved to the Wording section.

Robert Dewar calls for an explanation of the Summary, revisiting the previous technical
discussion, specifically on point 2 of the Summary. He believes that this point overspecifies
the convention with the "and should not" phrases. He argues that there are processors, like the
x86 (and R6000) where alignment differences are not significant and therefore coercing an
implementation to make it significant (with the wording, "and should not") is bad practice and
misleading. It also runs counter to the additional implementation flexibility that has been
introduced into Section 13. Stephen and Erhard are unconvinced by Robert's argument and
argue portability and misguided procurement eagerness. Robert reenforced his point by
stating that the term "need not" permits an implementation to do what it can correctly and to
reject that which it can't do correctly. Erhard conceded on the alignment issue, but holds fast
to the size issue. He provides an example to describe the technical issue:

type my_int is range 0..255;
for my_int'size use 32;
type my_int_acc is access all my_int;
...
type R is record
 x: aliased my_int -- at 0..7;
 y: aliased my_int -- at 8..15;...

Any reasonable implementation (without pointers fattened specifically for that purpose with
size information) will simply have to reject such a component clause for x. Creating correct
code for a dereferenced my_int_acc yielding x would indeed require fat pointers, which we
surely should discourage.

A straw vote to remove "should not" is approved 9-3-0.

Next the discussion turned to consider Robert Eachus' editorial comments.

Robert Dewar complains that the no-maximum-size rule for composite objects will require
implementation to not take advantage of efficient default implementations. He recommends
that composite objects be handled like fixed point, floating point and access types as described
by the previous point of the AI, namely, it need not support a size that would not be chosen by
default.

Robert Dewar brings up an example to highlight some of the composite type/object sizing

type q1 is record
 x: integer;
 y: string (1..ident_int (2));
end record;

type q2 is record
 x: integer;
 y: string (1..2);
end record;

The DEC implementation insists on support of size-clauses that force both records to have a
size of 48, but ACT has sizes of 64 for the first and 48 for the second. Ed Schonberg points
out that RM 13.1(23) says that support of a size clause is not required for the first case. Erhard
notes that this is an interesting example, but that it is beside the point, since the AI does not
deal with the smallest possible size, but rather with the largest size to support.

It is also pointed out that the wording doesn't cover the sizing and alignment implied by
component clauses, which is a very tough issue to implementations.

A vote on the AI was postponed until Tuesday, when it was agreed to table the AI until the
discussion has been reflected in the AI.

AI-58 -- Accessibility Rules for Shared_Passive Packages

The discussion focused on the visibility and lifetimes of Shared Passive packages as it pertains
to the access to and from packages in its own partition and other partitions. A set of rules to
get correct accessibility without unduly expensive checks for violations are intended in the
RM as follows:

− Shared passive partitions live at least as long as active partitions
− Active partitions access passive partitions but never the reverse
− Semantic dependence with a "with" clause permits the withing package not only visibility

but reliable access

The examples from the discussion section of the AI illustrate these rules:

− Example 1 shows how a compile check prevents passive access to a package it doesn't
with.

− Example 2 shows how a compile check prevents access by a passive partition to a shared
passive package it doesn't with.

− Example 3 shows that a compile check cannot prevent access, at runtime, by a shared
passive package to a package to which it doesn't have visibility. A simple runtime check
(simple comparison of integer values assigned to packages) is proposed to address
straightforward access (through a type conversion and through the passing of access
parameters) as illustrated by the example. More complex access checks are not known and
thus these accesses can be erroneous.

− Example 4 addresses several additional points. The first half of the example shows how
the equal accessibility levels of shared passive packages prevents legal accessibility of a
body of one of those packages to the spec of the other package despite the presence of
proper withing between the body and spec.

Then the discussion turned towards methods to permit co-location/co-addressing of mutually
dependent shared passive packages (from a system viewpoint), as illustrated by example 2.
The two choices appear to be: either to use runtime checks to find out if both passive
packages have correct accessibility or to introduce a pragma to put those packages into
partitions/hardware configuration that permit correct accessibility. The pragma alternative
was the preferred choice and the discussion turned towards proposals that were acceptable and
tasteful.

Two typos were noted: "than [,] that" in the summary and "{F1.}T1" in package body P2.

The AI was then tabled, expecting an in-depth review by Annex E specialists.

AI-64 -- Elaboration checks for renamings-as-body

Erhard had trouble with the current Wording section, since the term "execution of the body" is
overloaded to mean both the elaboration of the body (declarative_item) and the execution of
the body as part of calling the subprogram. There doesn't seem to be any need for this
potentially confusing reuse. Besides, he notes that the summary doesn't say for which
subprogram the checks are done and when. The Summary should be expanded to state that
elaboration checks need to be performed during the call and that two checks are being done
(namely, that the renaming and the renamed subprogram body are elaborated.). After much
discussion the AI was tabled until Bob can modify the AI to address these concerns.

AI-71 -- Correction to the Valid function in COBOL Interface

This AI fixes a bug in the interface description. Both Robert Dewar and Robert Eachus verify
that the AI proposes the correct solution. Approved 8-0-4.

AI-72 -- Clarification of result length for conversions in COBOL Interface

Return strings always have a lower bound of 1 to match COBOL conventions. Tying the
length to Format as recommended by the AI fits COBOL methods better than tying the length
to the minimal number of characters. The AI is doing the right job. Approved 7-0-5.

AI-77 -- Separate compilation of generic bodies

Compiling here means checking for the legality of the instantiation, not necessarily the actual
creation of code or another recompilation.

The details of the Note in 10.1.4(10) (which is the subject of the AI) were discussed. In
particular, the Note says in effect that changing the generic body must not force the
recompilation of all client instantiations. Obviously, code for the instantiated bodies needs to
exist no later than (successful) linking. An implementation is free to force steps to cause the
(automatic) code generation for all the instantiations of the generic unit (among other steps it
could take) before linking.

The point of this Note was a specific user requirement during the revision process and nothing
to the contrary has occurred to change this requirement.

Gary Dismukes pointed out that the Summary was not directly responding to the original
question. But apparently not worth making changes.

Approved as is (6-1-2).

AI-78 -- Semantic dependence on illegal or obsolete units

Robert Dewar points out the ASIS group has spent lots of time confirming the point of the last
sentence of the Summary.

Approved (with dropping of "ensuring" in the last sentence of Summary) 11-0-0.

AI-85 -- Questions about Append_File mode

This AI has as yet reached no conclusions with regard to operations in Append Mode. The
discussion notes that there also are problems with the lack of an IN_OUT mode for
Stream_IO.

Robert Dewar argues that Ada-unique I/O is a bad decision and we should match C or Unix
conventions for I/O. Unfortunately it may be too late to make these corrections.

References to A.12.1(28, 35) and A.8.2(16) need to be added.

The AI appears to answer the append-specific questions with respect to Tuck's response but it
says nothing substantial about the stream problem. Consequently this AI will only address the

specific questions regarding Append mode and Set_Index as raised by Keith Thompson. A
new AI will need to be created to handle the other identified problems of Stream_IO.

AI-87 -- Saving and restoring Current_Output

The only change was removing a Scribe command. Initially Erhard decided no vote was
needed due to the insignificance of the change but later returned to a vote nevertheless in order
to treat all AIs consistently. Approved 12-0-0.

AI-89 -- Float_Random.Value, Discrete_Random.Value

Recent changes by Bob Duff addressed the comments from Pascal Leroy, Robert Eachus and
Jean-Pierre Rosen and were confirmed by the meeting. Approved 11-0-0.

AI-95 -- Modular types on one's complement machines.

A request has been made to make an exemption for modular types on one's complement
machines. These architectures are disappearing and so is it worth the work to grant the
exemption by explicit binding interpretation? An easier alternative will be to encourage the
implementer to use the permission granted by the old Ada83 AI-325.

Three choices were enumerated:
1. Do nothing
2. Allow for the "hole" in the range of supported values or allow an extra supported modulus

value outside the base range.
3. Tell the implementer to use a non-standard type to achieve his goal.

The third alternative was felt to be too restrictive because of the rule prohibiting such types as
formal types in generics.

The meeting chose the current approach taken in the AI by 6-0-5.

Discussion returned to the rule that nonstandard numeric types are not permitted as actual
parameters to generics. Robert Dewar argued that this limitation should be implementation-
defined rather than being imposed on all such types. Instead of solving this problem, the
meeting chose to wait until someone complains about it to ada-comment.

AI-97 -- Conversions between access types with different representations.

The only requested change was to add the parenthetical remark in the Summary.

Stephen Michell wants the type conversion to be implementation-defined, revisiting the same
arguments from the last meeting. Robert Eachus proposed that "implementation-defined"
wording should be added to the Summary. Eventually it was agreed that the words "not
specified" in the Summary and "unspecified" in the 1. line of the Response be changed to
"implementation-defined". A straw-vote on this change yielded 7-2-3.

Next came a discussion on whether this AI is still a confirmation or a binding interpretation.

It remained a confirmation and was approved by 10-0-2 with the above changes.

AI-104 -- Version and Body_Version attributes

The discussion exposed two conceivable ways of determining when a new version of a
software module has been created by the developer:
- when the software has been (re)compiled
- when statements in the software source code have been changed

In the first case, a time stamp of the (re)compilation time can be used as a version number. In
the second case, checksums on source without comments and ignoring case and extra spaces
can be used, which is what GNAT does. Norm recommends that identified mechanisms (such
as the ones above) be moved/added in an enumerated list to the paragraph in Discussion
section that begins "The mechanism for ensuring...".

Robert Eachus provided a very complex example that caused the group to consider the impact
of a renaming declaration of a library unit on this. It would appear that Annex E says that the
'Body_Version of the new unit takes the 'Body_version of the renamed unit and therefore has
no impact on this AI. However, the manual isn't really clear on this. Bob Duff will put some
additional discussion in the AI to show that the AI recommendations work in the presence of
renaming.

Robert Dewar suggests that units without completions should not have a 'Body_Version value
different from all others (as stated in the Summary) but the version value of the corresponding
spec.

And then there were presentation comments pertaining to the size of the Summary section and
the lack of the Wording section. Bob will add "see Summary" in the Wording section.

The discussion moved to understand the use of these version values to the programmer. In
particular, none of the attendees could come up with an example in which the 'Version
attribute could yield useful information, given the consistency checking required by Section
10. Input will be sought from the Distribution Annex authors and implementers to provide
guidance in this area.

Provisionally approved (12-0-0) subject to editorial review, and a specific review and
contributions by Annex E authors.

On the next day, Robert Dewar returned to this AI, showing an example where changes in
subunits might be construed to cause a change in the value of 'Body_version of the enclosing
bodies.

The AI is then tabled, confirming that we really need input from authors and implementers of
the Distributed Systems Annex to provide guidance in this area.

AI-106 -- Freezing Rules

Robert Eachus is alarmed that the freezing rules might imply a runtime check.
His example of the problem is

package A is
 type T is tagged record
 I: Integer;
 end record;
 type A is access T'Class;
 function F(...) return A;
end A;

package B is
 type C is new T with private;
 AV: A.A := F(3); -- (1)
 AI: Integer := AV.I; -- (2)
...
end;

Is C frozen at (1) or (2)? No. There is neither a rule nor a reason for freezing C, since code
for (1) and (2) can be generated without freezing C. In fact no value of C is involved in the
evaluation of F or the dereference of AV. The conclusion is that his example is not a problem.

The AI is approved (11-0-0).

AI-107 -- Base attribute for non-scalar subtypes?

The change requested by Norm Cohen had been reflected in the AI. Norm is happy.
Approved by 12-0-0.

AI-109 -- Size and Alignment Attributes for Subtypes

This AI was tabled jointly with AI-51.

AI-110 -- No Constraint Check on 'out' Parameter of an Access Type

The editorial change was limited to removing the superfluous ">" characters in the quotation
of the AARM.reference. Approved 12-0-0.

AI-112 -- Wide_String file names?

Changes were aimed at depersonalizing the Question section. The question mark was
removed in the new title. Approved 12-0-0.

AI-117 -- Calling Conventions

There was considerable discussion on the special rule defining implicitly declared dispatching
"/=" operator to be intrinsic. This led to a hopscotch journey through the reference manual to
(successfully) find conclusive evidence to show that this part of the AI is a ramification.

The binding interpretation portion deals with the inheritance of calling conventions for
inherited or overriding subprograms. Robert Dewar questioned the motivation for this revised
rule (as opposed to the need for explicit Convention pragmas, where needed, under current
rules). This was countered by the observation that such pragmas would in fact be required for
all the inherited/redefined subprograms, while the pragma argument was limited to the
convention of the original subprogram anyhow, i.e., this would be strictly busywork for the
programmer. The argument that this might be good documentation foundered under the
observation that usually an entire type with all its subprograms would share the same
convention and umpty convention pragmas would not really be so beneficial after all.

Bob will rewrite the AI with these points in mind and a ballot will be taken on the AI.

AI-118 -- Termination signals query of Terminate attribute

The issue is the validity of global variable values that are manipulated by task T1 and read by
a task querying the termination of T1. We discussed whether T1'Terminated should be a
synchronization point between the querying task and T1. This was quickly resolved to be an
inappropriate model, since the query is asynchronous to T1 and hence the notion makes no
sense in this generality. The signaling notion, on the other hand, seems the right model, but do
we want to live with the cost implied ? We then returned to the intent of the AI. Should it be
the case that, if the attribute yields true, the querying task can be assured that global shared
variables have reliably updated values ? This implies not only that, upon termination, a task
updates its cached globals (no disagreement here), but also that the querying task needs to
refresh its caches. If T1 is not terminated, then accesses by T1 are in any case subject to the
usual hazards of unsynchronized access to shared data.
The focus of the discussion was whether the efficiency cost of requiring such cache refreshes
was warranted, given that most uses of the 'Terminated attribute can be expected to not be
(ab?)used with this intent. A secondary question was whether the query will always refresh
registers and caches regardless of its returned value or will do so only for a "true" as result. It
was argued that even the "false"-case of conditional refreshing impacts code quality, since
register management will have to assume the worst of both cases after the query. Robert
Dewar notes that this worry is moot for GNAT in light of the flushing that is always done for
runtime calls, which T'Terminated can be expected to be.
It was noted that this is another piece of evidence that programming with shared variables is
VERY ADULT programming and should be carefully considered before being used.

After lengthy discussion, the current version of the AI was approved (9-0-3) with the editorial
correction of adding an "end" to the example.

AI-121 -- Pragma Attach_Handler on Nested Objects

The issue is the presentation of the Summary, where the description of the problem should be
in terms of the semantics of program execution as opposed to placing requirements on the
programmer. Erhard suggested the following new wording for the first sentence, which was
approved:
A program execution is erroneous if the handlers for a given interrupt attached via pragma
Attach_Handler are not attached and detached in a stack-like (LIFO) order.

The second sentence remains unchanged.

Approved 11-0-1.

AI-123 -- Equality for Composite Types

The discussion focused on paragraph 2 of the Summary, namely whether equality of
System.Address composes. At the previous meeting, there was some reluctance to include
Address in the list of types for which equality composes. The discussion determined that the
problems created for the programmer by excluding this type far outweighed the hypothetical
consideration of bizarre address representations. On almost all systems, address equality will
be defined as a bitwise comparison. Erhard proposes that System.Address be added to the list
of types that compose correctly. Norm recommends that now the Summary should state that
the correct composability applies to all language-defined types with equality operator.
Approved 10-0-2 with these changes.

AI-124 -- Ligatures Are Allowed in Identifiers

Pascal objects to the Summary because it uses "ligature" which is an outdated term by a
Corrigendum to ISO 10646. He recommends that the Summary be stated so that the capital
and small AE are letters and therefore be allowed in identifiers. It remains a binding
interpretation because it forces implementations to bind to the corrected ISO document, while
the RM cites the original 10646. Bob rewrote this AI for a final vote on the next day when it
was approved 11-0-0.

AI-126 -- Remote_Types Packages

Bob did analyse all the predefined packages in preparing this revision. He was concerned that
Ada.Exceptions is not on the list. Furthermore he believes that it is important that
Ada.Finalization is included in the list for safely cleaning up remote types.

Robert Dewar proposed that any additional classification of packages be implementation-
defined to expedite the release of this AI because the complete analysis is time-consuming.
Furthermore, implementations will do the "right thing" for their implementations which may
conflict with a list that strives for completeness. The opposing voices mentioned the obvious
portability consequences of such implementation-definedness.

The Ada.Finalization package is categorized as a Remote_Types package. Robert Eachus is
concerned that there is a hole in the model of Controlled types that makes this a potential
problem, while others contend that careful analysis by Pazy and Gargaro and experience of
GNAT distributed systems implementers has not uncovered a hole like this.

Robert's nervousness over the other packages was alleviated with the promise that the AI
should get close analysis from implementers.

Robert Dewar recommends that the GNAT Distribution team be invited to the London
meeting to offer comments on the distribution-specific AIs.

The specific changes to the AI were enumerated as follows:

- The title should be changed to reflect the more global scope of the AI
- Elevate the cases of additional Pure pragmas to the summary section
- Remove the "???"-paragraph from the exception paragraph in the !discussion section
- Remove the "I guess" comments in the list of packages

The Remote_Types classification of Ada.Finalization should be under particular scrutiny by
the implementers and any such decision should depend on the feedback received. Robert
Dewar will "poke" his team to take a look. Other implementers are strongly encouraged to do
likewise.

Approved 8-0-2. A letter ballot (and input from implementers) is requested.

AI-127 -- Expected type of a 'Access attribute

Latest changes handle the comment from Norm during the ballot and are confirmed by the
meeting. Approved 8-0-4.

AI-128 -- String Packages

An objection had been raised about point 2 of the Summary, whether an upper bound that is
greater than the actual upper bound yields an exception and whether Constraint_Error is raised
instead of Index_Error. This has real impact on the ACVC tests. It seems that some existing
compilers (such as, Thomson and GNAT) already handle the situation as described by point 2.
If point 2 is accepted, then this AI becomes a Binding Interpretation because the description of
the Slice subprogram is silent on this point. Gary proposes that the AI include a reference to
Annex A. Also, point 4 of the summary should end with "paragraphs of the RM".

Approved 12-0-0 as a Binding Interpretation with these editorial changes.

AI-131 -- Interface to C -- passing records as parameters of mode 'in'

The AI was viewed by some as going overboard; the change should apply at best to types with
pragma Convention(C) applied. Tuck also commented that it must not apply to tagged
(record) types. In favor of the AI (duly modified) it was argued that the parameter convention

of C is indeed "by value" for structs and that "by reference" could always be achieved on the
Ada side using 'Access, while a "by-value" cannot be achieved by any means, if the AI is not
passed. Against the AI it was argued that, although the current Implementation Advice is bad
advice, it is being followed by implementations. The situation is not "sufficiently wrong", the
AI shouldn't tamper with this situation. Besides, few C programs take structs as parameters;
they usually take pointers to structs. There is opposition to this latter statement, citing
occurrences of structs in signatures of standard bindings. Tuck has recommended a way of
passing records and blocks of data by copy, using two new pragmas, C_pass_by_copy and
Convention (C_pass_by_copy, record_type); implementations could pick up these pragmas to
give users "by-value" passing conventions.

Several alternatives are thus being considered:

1. Do nothing and turn the AI into a confirmation of the RM, elimination most of the
Discussion.

2. Restrict the current AI to types covered by C Convention.
3. Confirm the RM with additional wording recommending a pass-by-copy pragma.

A straw vote of 7-0-5 gives direction to Bob to write up the third alternative.

AI-132 -- Exception Raised at End of Stream

Bob has rewritten the AI to present four alternatives for handling the end of stream. We need
to pick one alternative for the Summary.

Several people argue that it is important to check with implementations on how they handle
this particular situation, such as OCS, GNAT, Intermetrics, so that the approved alternative
doesn't choose semantics that run counter to the majority of implementations.

As in the previous meeting, much of the discussion focused on the meaning of "end of input"
for a stream and on whether it was necessary, important or even desirable to distinguish a
situation, in which no more data can be obtained from a stream, versus one, in which
insufficiently long input can be obtained (e.g., to fill some, but not all components of a record
or array).

There was some discussion verifying uses for streams in Ada:
- Stream_IO
- Partition Communication Subsystem
- Abstract communication gizmo, such as support for sockets.

An apparent conflict has been uncovered on this issue. Paragraph 13.13.1 (8) states that a
T'Read will produce no exception in the presence of an end-of-file but that the number of
components read (in Last) is less than the length of the Item array. Paragraph A.13(12) says
that a read past the end-of-file produces an End_Error exception. This apparent contradiction
in the RM has produced much of the confusion.

The discussion turned to this question: Does the user expect the end of stream when doing a
read or does the user have the responsibility to test for end of file when stream is mapped to

stream_IO?. If the user has this responsibility, can stream conversion to Stream_IO be done
easily to get to the end-of-file function for the I/O? Apparently they can as follows:

if not End_of_file (Infile) then
 T'Read (Stream (Infile), Value)

-- infile is stream file and is the implementation of the stream
[Note: the example used at the meeting applied a conversion to Root_Stream_Type to Infile.
This would not match the signature of T'Read and hence I changed the example. E.P.]

In the end, much of the problem is due to not knowing how the stream is implemented
− If the implementation of the stream is a real file, then end-of-file translates into end-of-

stream and end-of-stream has meaning.
− If the implementation is a buffer, then end-of-stream is not meaningful.

Under these circumstances it appears that the best semantics for this issue is:
1. If the data read is invalid, then Data_Error is raised.
2. If there is no data or not enough data, then End_Error is raised (Note that, if the user wants

to know more detail, he/she can drop down to the file level and do EOF tests as shown
above.)

This meeting approved the intent of alternative 3 by 10-0-1 and Bob Duff will update the AI
for further review.

AI-136 -- Placement of Program Unit Pragmas in Generic Packages

Two small wording changes have brought this back to our attention.
Approved 12-0-0.

AI-141 -- Exceptions in Interfaces.C and its Children

The AI deals with a small problem that exposes a larger organization/architecture problem
with the positioning of exception declarations in standard libraries. Do we fix this problem in
the architecture now, barely in time, or is it already too late, these packages being standard
bindings to C code ? The last meeting encouraged with overwhelming majority an AI that
would fix this architectural problem.

While there was consensus in acknowledging the technical justification of the revised AI,
there was considerable discussion, disagreement and rhetoric on the political side of making
such a change to the language. Two straw-votes taken during the discussion showed a
growing majority against the language change proposed by the AI.

The second part of the Summary section was closely examined by Robert Eachus and seemed
to withstand close examination.

Further discussion and a vote was tabled until the third day, when the AI was voted down as
written by 2-5-3. The AI will "revert" to a previous version and merely answer the original
question about the exception raised by Virtual_Length.

AI-145 -- Profile of predefined operators for scalar types

This AI resolves an inconsistency between sections 4.5.2 and A.1. There was considerable
discussion about the difficulty of explaining the notion of Boolean'Base to the unsuspecting
programmer but, in the end, consensus on the AI was unavoidable. The following changes
were agreed upon:
1. add appropriate references to the header of the AI
2. change the classification of this AI to a binding interpretation
3. insert "...subtype-conformant {but has to be mode-conformant}" in the last line of the

summary

Approved with these changes (7-0-3).

AI-147 -- Optimization of Controlled Types

There was reasonable consensus about the intent of the first part of the summary, i.e., that
Initialize and Finalize calls on otherwise unused variables of limited controlled types are not
to be eliminated.

There was also reasonable agreement on allowing the optimization of eliminating temporaries
(and the Adjust/Finalize pairs) not just for assignment, but all other constructs involving the
copying of controlled values (as shown in the Question).

For non-limited types, the issue of eliminating Initialize/Finalize pairs is much more contro-
versial. Robert E. argued that in the simulation domain quite a bit of the application semantics
might be captured in the Initialize and Finalize subprograms, so that their elimination might
be a problem there. The counter argument to this view is, for Finalize, that the unknown
number of various finalizations of temporaries during value copies is likely to interfere with
this strategy most severely anyhow. Erhard poses the question whether high-level analyses of
source code that establish Set-Use connection must take such implicit calls as Initialize,
Adjust and Finalize into account (which is quite a burden, especially given the dispatching
nature of such implicit calls). He also reiterates earlier considerations in C++ compiler
construction, where elimination of unneeded implicit calls really make a difference in
efficiency of the code.

Somebody suggests that an implementation-defined pragma might be the right solution to
control the (non-)elimination of the Initialize/Finalize pairs and that such a pragma might be
coupled with control over garbage collection, a capability direly needed.

A vote to allow the elimination of Initialize and Finalize calls for non-limited types results in a
5-1-4 agreement. This AI was then tabled, waiting for a completed write-up.

AI-155 -- Stream-Oriented attributes for language-defined private types

Superseded by AI-108. AI-155 is now deleted.

AI-157 -- Visibility of Inherited Private Components

Erhard points out that there are different rules for creating the visibility to inherited operations
and to components of derived types. There needs to be an editorial change in the AI to reflect
this difference. Bob Duff disputes this statement and points to 3.4(10-14), where the
necessary implicit declarations are specified to occur.

It was requested that the example really should match the Summary in its choice of unit
names. It was also observed that the current example may not ideally illustrate the issues due
to distractions from generic and abstract types. So it was recommended that a better, simpler
example be chosen. Also Stephen Michell's example should be added:

package P is
 type Pt is tagged private...;
private
 type Pt is tagged record
 C: Integer;
 end record;
end P;

with P;
package Q is
 type Qt is new Pt with record
 C: Integer;
 end record;
end Q;

with Q;
private package P.child is
 type LocalT is new Q:Qt with record ...
 X: LocalT; -- X.C refers to the C component of Qt
 -- but X can be view-converted to get at the C component of Pt.

The intent of the AI is approved 12-0-0. Substantial editorial changes are necessary and the
result will be subject to editorial review and a vote.

AI-158 -- T'Class as generic actual type

Tuck wants to add more meaning to the case of when T'Class is passed as actual type to a
generic formal type, so that renaming of its primitive operations can be done with dispatching
being performed when referring to the renamed operations. In particular, dispatching
operations should match (implicitly) with generic formal subprograms.

It appears that Tuck's proposal doesn't break anything and provides an opportunity for a
apparently useful extension, as opposed to closing a hole (the semantics of renaming primitive
operations in a generic) with an illegality interpretation.

Input from implementers may be useful to determine if implementations could be unduly
affected by the general notion proposed by Tuck. There was a question whether this AI could
impact the ACVC and we concluded that the answer was no.

Gary Dismukes stated that the user could accomplish the same goals with wrappers, albeit
with much more work. Most members at the ARG see lots of value in the proposed
capability, yet now the question is to determine whether there is sufficient need that justifies
this extension. It was also noted that an AI phrased as a general overhaul of the dispatching
model has very little chance to get by the ARG, let alone WG-9.

Bob will complete the AI with (or without) the assistance of Tuck. Any further consideration
or votes await the completion of the AI.

AI-163 -- User-defined fixed-fixed multiplying op

It was noted that this incompatibility was known during the design of Ada95 and was deemed
acceptable in exchange for the user convenience of not having to apply explicit type
conversions to every result of a fixed-point operation.

Consequently the ARG decided (10-0-1) that this AI be written as a confirmation of the
existing rules.

