Minutes of Meeting #32

Minutes of the 32" ARG Meeting
1-3 June 2007

Paris, France

Attendees: Steve Baird, John Barnes, Randy Brukardt, Alan Burns (midday Friday only), Bibb Latting, Pascal
Leroy, Brad Moore, Erhard Ploedereder , Jean-Pierre Rosen, Ed Schonberg, Tucker Taft, Bill Thomas (except Friday
morning and Sunday).

Observers: Greg Gicca (except Sunday), Sergey Rybin (except Sunday).

Meeting Summary

The meeting convened on 1 June 2007 at 09:15 hours and adjourned at 15:40 hours on 3 June 2007. The meeting was
held in two different conference rooms at the offices of AdaCore in Paris, France. The meeting covered most of the
agenda (12 Ada 2005 Alswere not covered: 22, 23, 26, 32, 33, 36, 38, 39, 41, 44, 47, and 48).

Al Summary
The following Alswere approved:

A105-0008-1/04 General access values that might designate constrained objects (6-0-4)
A105-0037-1/01 Out of range <> associations in array aggregates (10-0-0)

Thefollowing Als were approved with editorial changes:

A105-0002-1/02 Unconstrained arrays and C interfacing (11-0-0)

Al05-0017-1/02 Freezing and incomplete types (7-0-3)

A105-0019-1/02 Primitive subprograms are frozen with atagged type (7-0-3)
A105-0024-1/03 Run-time accessibility checks (4-0-6)

A105-0028-1/04 Problems with preel aboration (10-0-0)

A105-0035-1/02 Inconsistencies with pure units (8-0-2)

A105-0040-1/01 Limited with clauses on descendants (10-0-0)

A105-0043-1/00 The Exception_Message for failed language-defined checks (8-0-2)
A105-0046-1/01 Null exclusions must match for profilesto be fully conformant (10-0-1)
A105-0055-1/01 Glitch in EDF protocol (10-0-2)

A105-0056-1/01 Wrong result for Index function (8-0-2)

The intention of the following Alswas approved but they require arewrite:

A105-0009-1/03 Confirming rep. clauses and independence (7-0-3)
A105-0030-1/01 Requeue on synchronized interfaces (10-0-2)
A105-0034-1/01 Categorization of limited views (9-0-1)

A105-0045-1/01 Termination of unactivated tasks (12-0-0)

A105-0050-1/01 Return permissions are not enough for build-in-place (10-0-1)
Al105-0053-1/01 Aliased views of unaliased objects (10-0-0)

The following Alswere discussed and assigned to an editor:

A105-0042-1/00 Overriding versus implemented-by

A105-0049-1/00 Extend file name processing in Ada.Directories

A105-0051-1/01 Accessibility of dispatching function calls (aka another Baird question)
A105-0052-1/01 Coextensions and distributed overhead

Al05-0054-1/01 Variable views of constant objects

Al105-0057-1/00 The class attribute of a constrained subtype

Final Version Page 1 of 27

Minutes of Meeting #32

Thefollowing Al was tabled for lack of agreement on how to proceed:
A105-0012-1/02 Independence and Representation Clauses for atomic objects
Thefollowing Al was voted No Action:;
A105-0018-1/02 Formal package matching rules (8-1-1)
The following Sls were approved:
S199-0003-1/03 Support overriding indicators (11-0-0)
Thefollowing Sls were approved with editorial changes:

S199-0009-1/03 Support new aggregate features (11-0-0)
S199-0026-1/01 Baseline version of ASIS standard (10-1-0)
S199-0027-1/01 Obsolescent features should have their own annex (8-0-2)
S199-0028-1/01 What does appropriate kinds mean? (9-0-2)

The intention of the following Sls was approved but they require arewrite:
S199-0004-1/03 Changes to Asis for changes to access types (10-0-1)
S199-0012-1/04 Add support for null procedure (8-0-2)

S199-0022-1/02 Add Boolean queries to ease use of trait kinds (9-0-1)
S199-0025-1/01 ASIS 99 alows too much variability between implementations (10-0-1)

The following Sls were discussed and assigned to an editor for further work:
S199-0023-1/01 Usages of subtypes Name and Name_List in the ASIS specifications
S199-0024-1/05 Provide a semantic model in additional to existing syntactic model
S199-0029-1/01 Inconsistent inconsistent list

Thefollowing SI was voted No Action:

S199-0016-1/03 Correct Corresponding_Body (10-0-1)

Detailed Minutes

Meeting Minutes

John describes a number of errors he found in the minutes of the previous meeting:
In the discussion of A105-0009-1, change “IA” to “Implementation Advice”.

Also in the discussion of Al05-0009-1, the paragraph starting with “ Should thisgo in Annex C...” needs a period at
the end.

In the fourth paragraph of the discussion of A105-0017-1, add amissing ‘s': “Taft Amendment type{s}”.
In the discussion of A105-0020-1, the paragraph starting “ Subject should be...” needs a period at the end.
In the first paragraph of the discussion of A105-0023-1, drop an extra‘t’: “No[t]”.

In the paragraph starting “We check Gary’s example...” in the discussion of A105-0024-1, drop one of the “the’s:
“the revised [the] rule”, and change “in given” to “as given”.

The minutes of the previous meeting were then approved with changes by acclamation.

Final Version Page 2 of 27

Minutes of Meeting #32

Date and Venue of the Next Meeting
Next meeting will be after the SIGAda conference: Washington DC, Nov 9-11, 2007.

We tentatively add (see discussion under Schedule of ASIS) an extra meeting in Tampa, Feb 8-10, 2008, with Greg
Gicca hosting.

ACATS test objective review plan

Randy reminds the ARG that they have oversight of the ACATS development. The ARA is currently having him
create anew ACATS version for Ada 2005. The planisto have afirst official new ACATSrelease for Ada 2005 in
thefal. Heis providing snapshots of the new tests; the current snapshot is the second one. There will be at least one
more snapshot before the release is generated.

The ARG will need to review in some fashion the test objectives and tests covered. Randy is developing test
objectives for the entire language, concentrating on subclauses with the most changes in the Amendment.

Randy notes that so far he has created objectives for 26 subclauses with 408 paragraphs, which has made 540
objectives. Of those, 275 are at least partialy covered by tests (62 objectives are covered by new testsin the latest
snapshot); 344 need additional testing. Many of these are fairly low priority (untested functionality whichis
commonly used and unlikely to be wrong; additional cases for existing tests — like protected subunits; and
objectives for which testing isimpractical).

A complete formal review of the devel oped test objectivesis out of the question, the volume s just too large. So how
should we do areview? After discussion, we decide on a two-pronged plan:

* Randy should circulate the current objective documents, in whatever format is convenient. (They'rein
Excel spreadsheets at the moment.)

« Randy will prepare alist of objectives covered by new tests for avote. W€ |l have aletter ballot on the
whole (with members being able to ask for separate consideration of specific objectives).

Randy should try to initiate the ballot in September or so, in order that the ballot can be completed before the full
release is made.

ASIS standard format (adherence to the drafting document)
Randy reads al of his research.

Font usage in the current standard is OK. ITTF requires “standard” fonts, but curiously does not list Courier. We're
not going to change the fonts we use (Courier surely seems “ standard”).

We're not supposed to have single subclauses (if thereis a6.5.1, there ought to be a 6.5.2). We're also not supposed
to have text in a (sub)clause that has subclauses (these are called hanging paragraphs). Hanging paragraphs and
single subclauses should be fixed. Tucker suggests of starting numbering with 0; Randy notes that the drafting rules
do not appear to disallow this. This reordering/numbering will be done last in the process.

The names of examples and notes are not properly noted in the original ASIS standard. The formatting tool has been
updated to the handle this properly. But not all examples and notes are marked as such in the original text. We'll fix
those as we find them. Similarly, the formatting tool has been updated to properly handle numbered/lettered lists.

The drafting standard says that a definitions section is optional, but it doesn’t make clear whether that is because
having any definitionsis optional or whether splitting them out is optional. (The Ada standard assumes the latter.)
We agree that making a separate definitions section isimportant, ASIS doesn’t have many definitions anyway.
Which clause isit? Some standards have it in 2 and some in 4. Anyway, it should be a clause near the top. Actually,
it could replace the current 1.3. Greg will decide (and create this section and an S| to match).

Randy needs to fix the numbering of tables and figures (in the formatting toal).

The wording rules will be checked on a case-by-case basis. We already follow most of them anyway.

Final Version Page 3 of 27

Minutes of Meeting #32

Schedule of ASIS

Pascal points out that we had discussed in Porto that we needed to have most of the technical work done this
summer. That doesn’t seem to be possible.

How do we get the work moving? Tucker suggests more/earlier deadlines; he claims to be deadline driven. Pascal
says that he tried to get Tucker to get the work done earlier thistime, and it didn’t work. Tucker saysthat he needs
real deadlines.

Maybe we need an extra meeting? That would provide an extra hard deadline for Tucker. Pascal says that should be
probably in the winter. We discuss a site; Steve offers Cupertino, Greg suggests Tampa. Tampa seems like a good
idea. We select the dates of Feb 8-10, 2008.

Thanks

By acclamation, the ARG thanks our host, AdaCore, for the accommodations for the meeting and for the sandwiches
on Sunday.

Old Action Iltems

Pascal did not do his SIsor Sl research (he was waiting for SI99-0024 to be completed). Tucker did not do A105-
0027 and the lower priority items A105-0003 and A105-0006. All other items were completed.

New Action ltems

The combined unfinished old action items and new action items from the meeting are shown below.

Steve Baird:
* AI05-0050-1
e AI05-0051-1 (with Tucker Taft)
* AI05-0053-1
* AI05-0057-1
« Al gplit from Al105-0051-1 to handle second question (see discussion of Al05-0051-1) (with
Tucker Taft)

e Createan Sl outlining problems and possible solutionsin the ASIS.Data Decomposition package
(see discussion of Jean-Pierre's request to find Size).

Randy Brukardt:
« AI05-0034-1
« AI05-0045-1
« Al05-0049-1
« S199-0004-1
« S199-0012-1
« S199-0025-1

» Update the formatting tool to handle numbering of tables and figures, and to create a table of
contents for them (see ASIS standard format).

e Circulate ACATS test objectives to interested parties.

* Createalisting of test objectives covered by new ACATS tests for aletter ballot by the ARG
starting in September or Octaber.

Editoria changes only:
+ AI05-0002-1
 AIO5-0017-1
Final Version Page 4 of 27

Minutes of Meeting #32

* AIO05-0018-1

* AI05-0019-1
* AI05-0024-1
* AI05-0028-1
* AIO05-0035-1
* AI05-0040-1

* AIO05-0043-1
* AI05-0046-1

« AI05-0055-1
« Al05-0056-1
« S199-0009-1
« S199-0026-1
« S199-0027-1
« S199-0028-1
Alan Burns:
« AI05-0030-1
Greg Gicca:

e Addnewly ARG approved Slsto the draft ASIS standard.

» Create adefinitions section for the draft ASIS standard and a matching Sl (see ASIS standard
format).

¢ Renumber clausesto eliminate so-called hanging paragraphs (at end of standard creation process,
not now; see ASIS standard format)

Bibb Latting:
* AI05-0009-1
Pascal Leroy:
e AIl05-0013-1 (see private editoria review e-mail)
e AI05-0042-1
* AI05-0052-1
e AIl05-0054-1
e S199-0007-1 (move to the semantic domain)
e S199-0019-1
e S199-0021-1 (move to the semantic domain)
e S199-0023-1
e S199-0029-1

e Study whether it is possible to properly define "=" for typesin ASIS rather than declaring ="
abstract - create an Sl to fix thisif possible (see Details of the ASIS Revision in the Albuquerque
minutes)

Tucker Taft:
e AI05-0003-1 (lower priority)
e AI05-0006-1 (lower priority)
« AI05-0027-1

Final Version Page 5 of 27

Minutes of Meeting #32
e AI05-0051-1 (with Steve Baird)
e Al05-0054-2 (version to make this non-erroneous)
e Al split from A105-0051-1 to handle second question (see discussion of Al05-0051-1) (with Steve

Baird)
+ S199-0024-1
Bill Thomas:
e S199-0022-1

Detailed Review

The minutes for the detailed review of Alsand Sls are divided into ASIS Issues (Sls), Ada 2005 non-amendment
Als, and Ada 2005 amendment Als. The Alsand Sls are presented in numeric order, which is not necessarily the
order in which they were discussed. Votes are recorded as “for”-" against”-“ abstentions” . For instance, avote of 6-1-
2 would have six votes for, one vote against, and two abstentions.

If aparagraph number isidentified as coming from the Amendment (with a/2 version), the number refers to the text
in the Final Consolidated AARM. Paragraph numbersin earlier drafts may vary.

Detailed Review of ASIS Issues

S199-0003-1/03 Support overriding indictors

Sergey does not like this design, because kinds are used mainly with elements. He would prefer Boolean query
functions.

Theissueisthat thisis athree state problem; Boolean does not map well to that.

After further discussion, Sergey drops his objection, because parameter modes are handled this same way. (They're
another case with multiple states.)

Randy notes that we approved this last time, but it was sent back because an item of Not_An_Overriding_Indicator
is needed to be consistent with other ASIS “kinds’.

Approve SI: 11-0-0.

S199-0004-1/03 Changes to Asis for changes to access types
Tucker tries to explain how the SI works now.

Pascal suggests that the result of Anonymous_Access_To_Object_Subtype Mark be ASIS.Name. Returns are
not controversial and should always be done.

Thereisatrait here, didn’t we decide to drop all changes to those? Let’s discuss that later as part of S199-0022-1
(note the resolution given in that S1).

Sergey suggests that Object_Declaration_View could have the semantics of Object_Declaration_Subtype; he
wants existing programs to work even with Ada 2005. That's not possible in general; programs will get unexpected
returns and fail. He argues that cases that are incompatible aren’t possible in Ada 95, so there is no problem with this
function.

Erhard asks if we need to be “bug compatible’? View is an Adatechnical term, it is abused here. Pascal suggests a
rename to provide the old name (and share the semantics). However, he then goes on to worry that there might exist
applications that depend on getting Not_A_Definition, where they won’t get those anymore.

Final Version Page 6 of 27

Minutes of Meeting #32

Tucker thinks that changing the values that are returned are much more likely to compromise compatibility than just
changing names of functions. If a program gets an unexpected return, it will fail in strange ways.

Pascal notesthat “View” will be used in its Ada sense in the semantic interface; that will be very confusing.

Why does this function return Nil_Element for tasks? That was just copied from the old ASIS. It would be better if
this was corrected to return something that would be marked as implicit. Someone looks up the function for
determining that; itisls_Part_of Implicit.

Sergey says that implicit items are never created for purely syntactic queries. It isimportant that thisis not changed.
We wonder about similar cases. ASIS doesn’'t provide away to find out private for an empty private part or declare
if there are no declarations. Sowhy ist ask T; differentfromtask T i s end;.Butthisisn't true: There are
queriesfor private and declar e (see 16.38 and 18.14).

Tucker proposes that this returns atask definition, and we add a query that to tell if the end; is present. It should be
named Is_Task_Definition_Explicit. As ageneral principle, Nil_Element should not convey semantic information.

Straw poll on thisidea: 10-1-3. (Sergey opposes, doesn’t like the extra query as it changes existing ASIS behavior.)

So remove “Returns aNil_Element for asingle task declaration that has no explicit task_definition.”, add
Is_Task_Definition_Present (which returns True only for an definition element). This name is more consistent.
That leads to much discussion.

The whole S| needs to be written using the new format and new standard (this mainly means removing the comment
symbols before every line).

For the function Result_Subtype, the old description was |eft accidentally. Delete the old description; that is the
entire paragraph that starts “ Returns the subtype_mark expression...”

Approveintent of Sl: 10-0-2.

Randy will update this Sl.

S199-0009-1/03 Support new aggregate features

Sergey argues that his original ideais better. His argument isthat <> is not an expression. He complains that you
have to construct an enclosing element. Pascal says that a good thing; once you get aNil_Element, you can't go
anywhere. Y ou can’t continue to an outer element or a next element.

Tucker points out that with Sergey’ s idea, code will break whenever it getsa<>. And it will break at runtime, and
not in an obvious way. There are many contexts where a <> is not allowed, and that al so true for other kinds of
expressions. Make sure that Box_Expression is last. Tucker suggests that maybe this should be second. Second is
somewhat nicer, because then the range of normal expressionsis contiguous.

Sergey asks what is the type of <>. It has the component type when the aggregate is normalized, does not have atype
when it is not normalized (it returns Nil or raises an exception). That should be said somewhere. For array
aggregates, you can always get the type of <> (it is the type of the component of the array).

Add abullet to thelist of 17.1: “A_Box_Expression returned by Component_Expression applied to an unnormalized
record association.” [Editor’ s note: this change will need to be reflected in the semantic interface, as 17.1 isthe
function Corresponding_Expression_Type, which will probably be obsolesced by the semantic interface.]

Sergey would rather that a <> never has atype, as that would be easier to implement. We're not terribly interested in
what is easier to implement, but rather what is more useful for users (assuming it is well-defined).

John wants the second last bullet to end with a period rather than a semicolon.

Correct typos:. “betore” should be “before”. “a[a] box expression”.

Approve Al with changes: 11-0-0.
Final Version Page 7 of 27

Minutes of Meeting #32
S199-0012-1/04 Add support for null procedure

Has_Null should be named Is_Null_Procedure
We re doing this the same way as abstract subprograms.

Jean-Pierre wonders whether this routine should raise an exception. No, predicates always return False and never
raise an exception.

With this name change, we seem to need Is_Abstract_Subprogram (even though you could say Has_Abstract),
because you could have types that have abstract.

Approve intent of this SI: 8-0-2.

Randy will update this Sl.

S199-0016-1/03 Correct Corresponding_Body
Thisis now handled by SI99-0025-1.

No action: 10-0-1.

S199-0022-1/03 Add Boolean queries to ease use of trait kinds

Typos: Capitalize Boolean in the subject of the SI. Thefirst line of the summary has ‘an’ instead of ‘a . Function
names and type names should be capitalized. There is an unclosed parenthesis in the summary. Get rid of extra
spaces.

Change Has_Limited description to:
“Returns True if the Element includes the reserved word limited.”
The other functions need a similar description.

Should there be aHas_Tagged function? We don’t have to have one, as that can be determined other ways. But it
seems more consistent to have it; Tucker saysthat having it could be simplifying.

Should Has_ Private work on private packages? (Y es.) What about private parts? (No, because that isanot a
separate syntactical option.)

Jean-Pierre notes that since these always return False for unusual elements, the parameter types of all Boolean
queries take an element (rather than one of the subtypes of element).

Tucker complains that “includes’ istoo nebulous, it could be thought to include things in inner items. Change the
wording to use “appears’, and possibly give a reference to the syntactic categories of the Ada Standard. So the
wording would be;

“Returns Trueif the reserved word limited appearsin the Element.”

Pascal wondersif Has_Private returns True for a private extension? It does include the reserved word private.
Tucker thinks that these need to apply to things that have optional syntax.

Steve suggests that these queries should not include anything that is determinable by the element kind.
Someone suggests deciding based on the actual syntax in the Ada standard. Pascal prefers that we not depend on

accidental writing of the syntax productions in the Ada standard; there are many different ways that the grammar
could have been written.

Final Version Page 8 of 27

Minutes of Meeting #32

Tucker thinks we have to modify Steve's rule for things that are commonly used together (tagged and untagged
records), we should have a query for those cases.

Looking at private extensions, Tucker says that once you have Has_Private, if an element has the word private,
then it should return True.

Should we have afunction Has_Tagged? It's not required (you can tell from the kind). Tucker thinksit’s unneeded.
Jean-Pierre saysthat it is cheap to implement, and it seems useful.

All of these functions need lists of expected elements.

Brad asks why we don’'t have Has_Task and Has_Protected for interfaces. Has_Synchronized isreally for
private extensions. Surely this and Has_ Limited will work on interfaces, it isweird to have two out of four
possibilities covered. Add these functions.

Has_Protected also would work on access protected procedures.

Perhaps we could get rid of all of the separate access protected kinds. Or maybe just make subranges of these sorts of
kinds. Randy should add An_Anonymous_Access_to_Object_Definition and
An_Anonymous_Access_to_Subprogram_Definition subtypes to SI99-0004-1. This would be consistent with
3.9.12. Drop the traits from SI99-0004-1.

Move the text currently in the summary section to the recommendation section (because it isn’t a summary!) and add
ashort summary.

Approve intent of this SI: 9-0-1.

S199-0023-1/01 Usages of subtypes Name and Name_List in the ASIS specifications

The issue is whether is acceptable to change the formal parameter names. We asked the ASIS community, and there
was aweak concern that thisis an unnecessary change without alot of value. Thus, Pascal suggests that we just
change the function results.

Jean-Pierre suggests that we change the subtype of parameters, and leave the parameter names alone. Pascal and
Tucker think that istoo ugly to do.

Sergey really would want to get rid of the subtypes completely. That is out of bounds, it would be highly
incompatible. He then says this change is completely useless and no one wantsit. But Jean-Pierre (who does alot of
ASIS programming) says that he wants this, he depends on these subtypes for documentation. Sergey’s contention is
thus proved to be fal se; he should have said hardly anyone wants this. ©

Pascal thinks that a note might be appropriate for these functions, as they could be mistakenly thought to work on an
expression.

Straw poll for changing subtypes of parameters from Expression to Name (when the formal parameter is still
Expression): 4-5-4. That was conclusive ©. We'll leaveit asit is.

The wording is empty so we can’t approve this now.
Approveintent of SI: 9-1-1. Erhard would like to change all of the parameters (both the name and subtype).

Pascal till has the action item to update this Sl.

S199-0024-1/05 Provide a semantic model in addition to existing syntactic model

Starting at the top. There is alarge enumeration and subtypes. Pascal comments that we should eliminate any
abbreviations (that is, Subp and Enum), since abbreviations are inconsistent with the existing ASIS.

Declared_Views are things with names.

Final Version Page 9 of 27

Minutes of Meeting #32

Ed asksif aprefixed view includes tasks and protected objects. Y es, those should be considered prefixed views.

The last three are connectors between the syntactic and semantic domains; an expression can be anything as it
includes Name.

Sergey comments that he wants this to be a tagged type hierarchy since you will need to deal with heterogeneous
lists (like View'Class).

Pascal does not understand why Tucker is worried about dangling pointers. It should be as easy as possible for users
to work with. There shouldn’'t be any need for anyone to worry about how memory is managed; that’s for the ASIS
implementer to get right.

Should we have strong typing here? It's surely necessary to process heterogeneous lists (which is View in Tucker's
model).

Jean-Pierre comments that he thinks that you will usually get an exception at runtime with either model. And alot of
conversions will be necessary, which they won't gain anything. Sergey seemsto agree. Tucker and Pascal strongly
disagree.

Sergey complains that there are multiple levels of strong typing. ASIS generally depends on dynamic checking; he
would like to flatten out this hierarchy.

Erhard says they have done projects with ASIS and with typed interfaces. The types make it easier to understand the
interface as compared to the untyped model of ASIS.

Straw poll on static strong typing: 10-1-2.
What are the connections between syntax and semantic worlds? They're at the end of the specifications.

How does Corresponding_View work? It returns what the expression denotes (“expression” might be aName).
For A + B, that isthe function "+". It does not return the type of an expression or anything like that.

Erhard wonders whether the function for "+" exists in the symbol table. Some of these items will need to be created
onthefly. The basic ideaisthat every item that exists in the semantics of Ada has arepresentation in thisinterface.

Steve comments that thereisn’t away to talk about uses; this only really returns declared items.

If you came from the syntactic domain, you surely should be able to get back. But when you come from something
(like a generic instance) that doesn’t necessarily exist, you may not be able to get back.

What does Expression_Denoting_View do? Does it point at the declaration or use?

Pascal wonders why Primitive_Subprograms returns an ASIS.Declarative_Item_List? These are likely to be
implicit, so we want to stay in the semantic domain here. It is not necessarily the case that the inherited routines have
syntax, so this might not be useful. Moreover, we don’t want to have to go back and forth.

Returning to the tagged vs. discriminants discussion.

Tucker saysthat he thinks it isimportant to be able to create single objects that aren’t initialized and don’t require
memory management. And that iswhy he wanted untagged types.

Pascal saysthat it isreally apity that we're not using tagged types. After al, they do everything “right” (equality,
composition, prefix calls, etc.). Tucker claims that the predefined equality will be fine here, as long as the untagged
typeisjust awrapper around atagged type. But that seems that to be the worst of both worlds; if you have to use
tagged types anyway, they ought to be visible to get the other advantages.

Tucker points out that the root operations are inherited in al of the subpackages.

Pascal and Randy wonder it there would be very much use of classwide operations. Most of the time, you would just
be dealing with a subtype or a subprogram, or with lists of entities. List can be handled easily with
Ada.Containers.Indefinite Doubly Linked Lists. Someone complains about the implicit alocation in that container,

Final Version Page 10 of 27

Minutes of Meeting #32

but that is likely to beirrelevant: ASIS programs are not going to be running as hard real -time embedded
applications!

Pascal also notes that it would be easier to understand if this was atagged hierarchy.

Sergey wonders where compilation units are handled. They are handled in declared views. There are things that can’t
easily be determined from the syntax elements.

Sergey suggests that we start with entities rather than views. Ed comments that that matches the way compilers
typically work. Tucker disagrees, private types for instance can be very different, and might in fact be represented

separately.

Pascal saysthat the language is defined in terms of views. Ed comments that what they get in their implementation
usualy isthe current view of an entity, not just an entity.

Jean-Pierre wondersiif there is apossibility to finding a particular view of an entity from a particular element. Tucker
originaly had something like that, but it was killed. We're not trying to make it possible to write adebugger in
ASIS. Jean-Pierre wonders about the “current” element; there is no such thing. Y ou can’t do name resolution for an
arbitrary identifier at a specific location; that is too hard.

There is aroutine to determine whether two views represent the same entity.

Isthere away to get al of the views of an entity? No, there may be alarge number of those (including renaming,
which have different parameters, etc.).

Tucker saysthat he will try to make atagged version of the interface, and then we' Il need to look at potential uses.
Tucker will try to create some examples using their static analyzer for both versions of the interface. Pascal suggests
trying to use limited with clauses in the tagged version to try to flatten it out.

Ed says that this would make it possible to make more toolsin ASIS, because it would provide additional
information.

Perhaps we need a singleton container for storage management of View'Class. (But a definite singleton container
isn't very interesting!).

S199-0025-1/01 ASIS 99 allows too much variability between implementations

There isadiscussion of what current implementations do. In particular, which of these allowed variabilities are
actually used? If they are not used in practice, we should consider getting rid of them in order to make ASIS
applications more portable.

What implementations are there? We know about the AdaCore and IBM implementations. Greg notes that AONIX
has an implementation, too. Jean-Pierre says that hetried to use it and gave up asit isa partial implementation and is
fairly restricted in what it supports — not enough for his applications. Most of the Corresponding_xxx routines
return Nil_Element unconditionally. As such, we'll look mainly at the AdaCore and IBM implementations (anyone
can make a partial implementation without any special permission from the standard).

Why do we want to change this? There is not much point of having things optional in the standard; we don’t need a
standard if we're going to let implementers do whatever they think is easiest! We want the standard to be useful to
users, and we want claims of conformance to mean something.

Most of these “options’ cannot be worked around. That is, if the implementation doesn’t provide the information,
thereis no other practical way for an ASIS application to get it. So what value is there to allowing these options? It
isn't the case that an ASIS program can test the flags and do something different; at best it can abort. We conclude
that an implementation that does not support most of these things is not complete — and thus should not be allowed
to claim to be a complete ASIS implementation.

Final Version Page 11 of 27

Minutes of Meeting #32

The normalized cases surely make it impossible to recover source; things like default expressions could be very
wrong. Jean-Pierre makes the point that both normalized and unnormalized forms are useful, and that is selectable on
the calls to the various operations. Thereis no reason for it to be aglobal capability only providing a single form.

So all of the functions with Normalized in their namesin 7.xx should return False — we don’t want to allow this
variability. Is_Formal_Parameter Named_Notation_Supported should return True, and
Default_In_Supported should return True.

Tucker wonders about comments. Should they be required? Should line numbers and columns be required? It seems
so; no one can think of a good reason that they shouldn’t be required, and surely text processing applications need
them (especially comments). These should be supported and the associated functionsin 7.xx should always return
True.

Weturn to Attributes_Are_Supported. What attributes are being discussed here? In ASIS, attributes are relatively
undefined compilation unit properties. They are not portable in any case; since they are implementation defined. A
list of supported attributes would be more useful than this function, but we're not sure anyone cares. Leavethisasis.

Implicit_Components_Supported seems to be unnecessary; but someone objects that you need to use this to find
the total size/layout of arecord. Someone else objects that you should use Data_Decomposition for this. But that’s
optional. Usually Record_Components (16.30), Implicit_Inherited_Declarations (16.4), and
Implicit_Components (16.31) are needed to get all of the components. (Not the best design.) This permission
covers implementation-defined components (“implicit” is abad name). 16.31 returns Nil if
Implicit_Components_Supported is False. Pascal says that this might be determined fairly late in compilers.
Requiring this might cause a burden. Leave this aone.

Predefined_Operations_Supported goes with Corresponding_Type_Operators (16.1).

Jean-Pierre argues that tools that are analyzing uses of operators currently hit Nil, and that causes all kinds of trouble.
Randy argues that this belongs to the semantic interfaces; Corresponding_Type_Operators should be obsolescent
and thus we don’t care about this function. The lists of primitive operations returned by the semantic interface will
necessarily include these along with al inherited operations, so worrying about the syntactic side of thingsis not
necessary. One way or the other, the predefined operations need to be available.

GNAT does not support this. We're going to require everything that GNAT and IBM support; thisis the only major
difference. So the question is whether than GNAT iswilling to support this; if so it should be added to the standard.
We can't decide on 7.15, leave it for now.

Inherited_Declarations_Supported (7.16) and Inherited_Subprograms_Supported (7.17) will return True; they
are supported in both major implementations.

Generic_Macro_Expansion (7.18) also should be True, a non-nil result is required from Corresponding_Body.
The ASIS users present say that it is too important to not require expansion.

This doesn’t require macro expansion for generated code, just for ASIS purposes.

The Sl author should also change the places that used to allow returning Nil; with some of the permissions above
removed, a number of functionswon't return Nil anymore.

Approveintent of SI: 10-0-1.

S199-0026-1/01 Baseline version of ASIS standard
In item (4), change “description was’ to “descriptions were”.
In item (6), change “keywords’ to “reserved words”.

Initem (9), change “are” to “is’.

Final Version Page 12 of 27

Minutes of Meeting #32

Greg objectsto item (7). Randy explains that the tools generate cross-references by clause name; thus they have to be
unique. Thiswas inherited from the Ada 95 tools (Scribe), and is very fundamental to the design of the tools; it
wouldn’t make sense to change it. He does agree that the error messages could be better (that is, there ought to be
some, rather than just using the wrong clause number for duplicate uses). Pascal notes that he thinks the unique
names are an improvement, otherwise you have subclauses like 10.15 and 10.16 that have the same name. That
makes it harder to use the Table of Contents. We agree that item (7) is OK.

We don't need areview now, as we'll have to do a careful review of all of the text in the Standard at the end of the
process.

Approve Sl with changes: 10-1-0. Bibb voted against, as he would like aformal review of the changes before
approving them.

S199-0027-1/01 Obsolescent features should have their own annex
Obsolescent features are not moved from their packages; only the text will move.

This particular item is listed as obsolescent in the old standard; we want to moveit to this new Annex. There' sno
other obvious place to do that. For other items, their own S| will mark them as moved here.

Drop the first sentence of F.2.2, and move the second sentence to last. “functionality” should be “function”.

Erhard worries about the redundancy of “the use is not recommended” in each entity. Pascal thinksthat is useful
when someone find one of these obsolescent entities directly via search or the table of contents. Erhard agrees.

Approve Sl with changes: 8-0-2.

S199-0028-1/01 What does appropriate kinds mean?

The Status for the raised exception should be Value_Error, and that should be added to the statement of “Raises...”:
“Raises ASIS_Inappropriate_Element with a Status of Value_Error for...”

Approve Sl with changes: 9-0-2.

Greg will actually do this change.

S199-0029-1/01 Inconsistent inconsistent list

Randy explainsthat 12.1 specifies that there are three pairs of units returned and later that there are six pairs of units
returned for the inconsistent list. One of these must be wrong.

Wheat is a“supporter”? After much confusion, we find the term is defined in 3.12.4. The new definitions section
would have helped here.

GNAT’simplementation cannot get inconsistent units, because it requires compilable units. It probably can happen
for Rational. Tucker saysthat their implementation would not allow units to be inconsistent. Randy says that it
probably could happen for their compilers and their hypothetical ASIS implementation.

Pascal reads the commentsin IBM’s ASIS source. Thereisaminimal or maximal form for these lists (the maximal
form is the closure of the compilation units). The examples show the minimal and maximal forms, but don’'t seem to
explain when either is required.

We agree some rewording is necessary. Pascal gets the short stick, er, action item to fix this wording. Bill might have
ASIS83info, he'll provide that to Pascal.

Final Version Page 13 of 27

Minutes of Meeting #32

Jean-Pierre’s request to find the Size of an object

Randy notes that Jean-Pierre had sent arequest to the ARG list asking about a mechanism to find the size of an
object. Jean-Pierre says that he thought the answer of “use the Data_Decomposition package’ was definitive.
Randy and Pascal were not so sure; that package is optional .

Weturn to look at the Data_Decomposition package.

Steve Baird wonders how 22.20 (Discriminant_Components) would work on task and protected types that have
discriminants. Data_Decomposition is only about reading and writing; that doesn’t make sense for limited types. In
any case, thisisirrelevant to the question at hand.

Several people are confused by the purpose of this package. Data_Composition isan ASIS 83 thing that redlly is
covered by the streams operations in the Ada standard. No one recalls anyone actually using it.

The Size function (defined in 22.31) seems to be requesting the size of a stream for the object, not the actual size of
the object. (Remember that 'Stream_Size is not the same as 'Size.)

There is an action item on Steve to check on whether this works for protected and task types. But he would rather let
Data_Decomposition decompose. Sorry, but now that he brought it up, it needs to be analyzed for problems.

If Jean-Pierre wants to be able to find the size of an object, he should propose an interface for that, either as part of
the semantic interface or separately. Data_Decomposition seems inappropriate for the task.

Detailed Review of Ada 2005 regular Als

Al05-0002-1/02 Unconstrained arrays and C interfacing
Steve says that he made the changes requested in Albuquerque.

Pascal notes that the summary iswrong; this now only appliesto C and related conventions. The Al also adds
correspondence for function results.

We look at the new wording paragraph added after B.3(71). What does “returned as by” mean? “returned in the same
way as’ isthe meaning. We try various rewordings: “asisreturned by”; “returned in the same as by a C function”;
“returned as would be aresult of a C function”. Nobody is very happy with these.

Jean-Pierre suggests, “ The rules of correspondence given above for parameters of mode in aso apply to the results of
functions.” “results’ isn’t well-defined. Could use “return object” instead.

“The rules of correspondence given above for parameters of mode in also apply to the return object of afunction.”

Pascal suggests making 71.1 into a bullet, then we don’'t need extra text. Move the new paragraph after it (also asa
bullet).

Reorder wording paragraphsin Al so 62 comes before 71.1.
No “or” in the bullets for 62. Reorder so the first bullet goes last.

Tucker wondersif there is anything that implies that interfacing pragmas are supported for objects with convention
C. Wefind that in B.1, not in B.3. Should there be any correspondence rules for objects of convention C? Such
objects don’t seem to be used enough to worry about portability; C interfaces are almost always sets of functions.

Drop the leading commas in the discussion section.

Approve Al with changes: 11-0-0.

Final Version Page 14 of 27

Minutes of Meeting #32

Al05-0008-1/04 General access values that might designate constrained objects

We approved this last time, but we had a mistake. Randy tries to explain the convoluted way the problem was
discovered, and how this was fixed.

Tucker tries to figure out why this was needed at al; we look at the Porto minutes and note that 3.7.2(4) does not
cover the discriminants, only discriminant-dependent components. This seems to be everyone' s reaction when they
first seethisAl.

Approve Al: 6-0-4.

Al05-0009-1/03 Confirming rep. clauses and independence

Pascal would like to drop “ other than Ada’, because usually the convention Adais confirming. Thusit is covered by
the confirming representation clause exemption.

Jean-Pierre asksiif, in the absence of any clauses, you have independent addressability. Yes, of course.

Steve asks about a case where a type puts two record components in a single byte, then a derived type confirms that.
The new type should also not be independently addressable. So just saying “non-confirming” is not quite enough.

Pascal suggests that the wording should say that a confirming representation item never changes independent
addressability, and a non-confirming representation might lose independent addressability in an unspecified manner.

Tucker notes that the part about the composite object got dropped; we still need that text.

“Normally, any two nonoverlapping objects are independently addressable. However, if a non-confirming
representation item is used to specify packing, record layout, Component_Size, or aconvention for agiven
composite object, then it is unspecified whether or not two nonoverlapping parts of that composite object are
independently addressable.”

Tucker worries that we have a possibly broken definition of “confirming” (based on Steve' s example). Steve
suggests that possibly we should allow both representation clauses to co-exist. Randy suggests that confirming a
non-confirming representation clause is non-confirming.

Tucker now suggests that we should define “non-confirming representation clause appliesto...”.
Tucker tries to do wording, and a bunch of unrelated discussions erupt.

Steve notes that 13.2(9) has a case where a non-confirming representation clause makes a difference. Delete
“Component_Sizeis specified” from 13.2(9). Isis suggested that Bibb add thisto A105-0012, but since that Al was
tabled later in the meeting, it should be added to this Al.

Tucker' swording is ready. Change the last line of 13.1(15/1) to: “An inherited aspect of representation is overridden
by a subsequent representation item that specifies { a different value for} the same aspect of the type or subtype.”

Steveis sold. In Steve's example, both aspects apply (because a confirming clause does not override an earlier one),
and the first is still non-confirming. (Better have an AARM note that explains this!) Steve notes that we don’'t care
that there exists a confirming clause if thereis a non-confirming clause.

Pragma Independent should be usable inside a record definition to apply to components. And then it only needs one
parameter. The name resolution rules should reflect that and be similar to Atomic. We don’'t want to apply
Independent to arecord type, it would be confusing. We could have Independent_Components apply to arecord
type. In fact, the minutes of the Albugquerque meeting indicate that we decided that last time. (Specificaly, that
Independent applies to components, and Independent. Components applies to any composite type.) What is the name
of the argument name then? Record or_array local _name is suggested. [Editor’s note; but thisis not ideal if the
pragma applies to any composite type.] Should this apply to anonymous array objects? But we surely don’t want to
handle this for objects

Final Version Page 15 of 27

Minutes of Meeting #32

“Itisillegal to apply apragma Independent to a component that is not independently addressable from all other
components of the enclosing type. Itisillegal to apply pragma Independent._ Components to atype unless all
components are independently addressable from one another.”

“If apragma Independent or Independent_ Components applies to a generic formal type, then the actual type shall
have independent components.” We'd like to get rid of this notion of independent components. Tucker thinks this
should work in the default case, as well as when the pragmais given. Bibb suggests just saying if the components are
independently addressable. That would have legality rules depend on unspecified behavior. That seems bad.

Tucker wonders why thisis unspecified. We could just say it is not independently addressable if thereisanon-
confirming representation clause. Pascal says that defining aterm that is non-intuitive is not helpful.

We should just require matching of the pragma for formal types.

Should aliased components be required to be independently addressable? Y es, add something to 9.10(1) to cover
that.

Drop the static semantics and the term "independent components* from C.6.

Pascal asksif address clauses could make top-level objects non-independent. Tucker says that is not allowed by
9.10(2). [Editor’ s note: Tuck’s argument is unclear here: the address value in an address clause is only known at run-
time, so how could an implementation prevent address clauses from compromising independence? Restricting the
addresses allowed because they might compromise independence in arare instance would idiotic.]

Approveintent; 7-0-3.

Note that the discussion of A105-0012-1 suggests that arule that defines that Atomic objects are independent of all
other objects (including components) be added to 9.10(1).

Al05-0012-1/02 Independence and Representation Clauses for atomic objects
Bibb tried to explain what he did.
Volatile does not require independent addressability; it should not be included in 13.2(6.1/2).

Tucker doesn't think we need independence in C.6(10-11). He claims that indivisible implies independent. Jean-
Pierre saysindivisible isin time, independent isin space.

Tucker suggests that we should add to 9.10(1) some text that defines that Atomic objects are independent of all other
objects (including components). That would be preferable to changing C.6(10-11). Probably should do thisin AI05-
0009-1.

13.2(9) is confused, it seemsto be circular with 13.2(6.1/2). The ideais to reject the combination of Pack and
Atomic_Components on a packed array of Boolean. But that istoo special of a case to write arulefor.

Tucker suggests that we change 13.2(6.1/2) to an implementation permission.

Randy and Tucker get into another long winded and heated argument on the meaning of Pack where they get no
agreement.

The problem remains; implementations reject/ignore this combination of pragmas, and that means that they don’t
conform to Annex C given the current wording of the recommended level of support for Pack. That needs to be fixed
somehow.

We decide that we just cannot get agreement now, so we will just table this Al. Thereisareal problem, but we can’t
agree on a solution, so we'll leave it open for now.

Final Version Page 16 of 27

Minutes of Meeting #32

Al05-0017-1/02 Freezing and incomplete types
Pascal has trouble understanding what he wrote.

Tucker wonders why stubs need to be mentioned here. Pascal says that in the example, theintent isthat T1 isfrozen
after the stub of P1.

We discuss (again) why we need freezing for simple incomplete types. That is package STT (in the e-mail of August
3rd). This example could be written in the example of Pascal’ s original question. Tucker says no, that is not possible,
because you cannot have visibility on the private part. Tucker again wants to remove stubs from thisrule. Pascal till
wants stubs to be mentioned here, because otherwise the replacement of a proper body with a stub would change the
freezing properties.

Tucker wants the full type to freeze the incomplete type; there is only a problem if there is a body between the
incomplete type and the body containing the full type declaration.

Ed points out the end of the declarative part of the body will cause freezing, so thereisn’t aneed for a specia rule
about freezing at the end of abody. That's true for the completion of an incomplete view (freezing of which will
necessarily freeze the incomplete view), but it is not true for the incomplete view itself if there is no completion.
Randy wondersiif freezing is necessary if the completion is missing; others say that a missing completionisillegal
anyway by other rules. So the first insertion is unnecessary, drop it completely.

We turn to the second insertion. Tucker claims that the second part (which is describing “normal” incomplete types)
isunnecessary. He saysthat if you are after the full type, the incomplete type (view) isn’t important; that means that
only “in the immediate scope” matters. After reflection, no one can find a problem with that, so drop “or if” part of
the second insertion.

Tucker would like to add to the discussion section: “ The reason why it is important to freeze incomplete typesisto
prevent premature usesin calls. For example: (give Pascal’s STT example).”

Replace the last paragraph of the discussion section with “Note that the start of the package body P1 does not cause
freezing of T1, but the end of the declarative part of the package body will freeze everything including T1.”

Approve Al with changes: 7-0-3.

Al05-0018-1/02 Formal package matching rules

Steve claims that the RM says that the two values are not equal, and he changed the matching rules to make that
work. Erhard and Ed wonder why this doesn’t occur in many other cases? For instance, in static matching of range
congtraints. Steve claims that the problem can only occur when the types are different.

Erhard complains that 3.14 and 3.14000000000000001 would match using thisrule. That's ugly.

Jean-Pierre complains that the legality of a program would depend on your target. Pascal saysthat is already the
case, for instance if you use afloat compare as a choice in a case statement.

Tucker wonders why his proposal (from last time) was rejected (that is, the value is always exact until used). Steve
says that it would be an earthquake in some implementations (his).

Randy agrees with Tucker. Tucker says that a named constant of atype would be rounded (because this is effectively
an assignment); but other cases would not be rounded until use.

Pascal saysthat they round right away, so it would be an earthquake to fix. Tucker thinksthisis a single special case,
and should be fixed.

Erhard says that he doesn’t want alarge paragraph in the manual to fix this Baird pathology. Pascal saysthat heis
willing to sweep this under the rug.

Tucker suggests that we could just say “prior to rounding or truncation”. Pascal would prefer to vote it No Action as
just a pathology.

Final Version Page 17 of 27

Minutes of Meeting #32

Tucker suggests putting these minutes into the ! appendix of this Al.

Reclassify this as pathology, and vote it No Action: 8-1-1. Bibb opposes since he is not convinced; while this caseis

apathology, he worries that there are other related cases which are not.

Al05-0019-1/02 Primitive subprograms are frozen with a tagged type

Pascal explains that we now separate freezing subprograms and freezing the subprogram’ s profile. Thelatter is

frozen only for calls.

Tucker worries that some link names depend on the profile. Pascal and Randy think thisissueis fixable with work. It
might be necessary to delay generation of the link names until the profileis frozen. Surely, they won't be used until

the program is linked, and the profile must be frozen by then.

Ed notes that the example in !discussion is messed up. Change second parameter type to T2'Class. Tagged and with

need to be swapped between the two full declarations of T1 and T2.

Pascal also added arule to freeze the subprograms mentioned in attribute definition clauses for atype.
AARM Note 13.14(15.1/2) should say “ The second sentence istherule...”.

Remove the author’ s note.

Approve Al with changes: 7-0-3.

Al05-0024-1/03 Run-time accessibility checks

This was the reason that anonymous access parameters are not allowed for entries. Disallowing class-wide
parameters for entries seems like too much, however.

Tucker goes through the changes sequentialy.

Put the changes to 3.10.2(14.-3) first (they should be in order).

3.10.2(14.4/2) also has to be changed to say “in the first case” instead of “in thislast case”.
The TBD should be deleted, we prefer the given wording rather than the alternative.

Steve wondersif:

task body TT is
begin

accept E(X : T Cass) do

decl are
type Acc_TC is access T O ass;
P : Acc_TGC

begin
P:= new T dass' (X);

end;

end E;

would pass the check. Y es, the check isfairly complex (we surely don’t want it to fail al the time!).

4.8(10.1/2) should have the insertions and del etions marked.

Final Version Page 18 of 27

Minutes of Meeting #32

What about implementation cost? It's possible, but not necessarily cheap. Thisis only going to happen in accept
statements, so it's possible to avoid overhead in other cases. Tucker’s anchor solution could be piggybacked on
existing finalization or other existing mechanisms.

Approve Al with changes: 4-0-6.

Al05-0028-1/04 Problems with preelaboration

Tucker saysthat “entities’ iswrong in 10.2.1(11.1/2), because that makes the full type have P_I, which is not what
we want. Tucker will take an action item to check and rewrite this.

For Q 7, thewording is abit confusing. Replace it by:

“The creation of an object (including a component) {that isinitialized by default}, if its type does not have
preelaborable initialization.”

Approveintent of Al: 10-0-0.

Later in the meeting, Tucker describes what iswrong with 10.2.1(11.1/2). He claims that the definition is circular, in
particular for protected types.

Anyway, after Tucker talks for along time (this was the last thing we did at the meeting, and the editor was short on
of energy for note taking), he gives his wonderful new wording for 10.2.1(11.7/2):

“If the pragma appearsin the first list of basic_declarative_items of apackage_specification, then the
direct_name shall denote the first subtype of a[private type, private extension, or protected type that is not an
interface type and iswithout entry_declarations] { composite type}, and the type shall be declared immediately
within the same package as the pragma. If the pragmais applied to a private type or a private extension, the full view
of the type shall have preelaborableinitialization. If the pragmais applied to a protected type, { the protected type
shall not have entries, and} each component of the protected type shall have preelaborable initialization. { For any
other composite type, the type shall have preelaborableinitiaization.} In addition to the places where Legality Rules
normally apply, these rules apply also in the private part of an instance of a generic unit.”

Ed saysthat the last sentence 10.2.1(11.2/2) should say “has’.

Approve Al with changes: 10-0-0.

Al05-0034-1/01 Categorization of limited views

Bibb wondersiif there would be any future problem with this. No, there is never any elaboration for alimited view;
that invariant is not going to change (it’s a significant part of the point of limited with).

Approveintent: 9-0-1.

Randy needs to provide wording for this.

Al05-0035-1/02 Inconsistencies with pure units

Looking at question 1. Change “checks’ to “rules’ in the question.

The ancestor type must already have the appropriate properties, and you can’t repest it.

Moving on to question 2. The wording is not well liked. But thisis very similar to the wording used for Preelaborate.
Pascal thinks that we still need to “hook this up to” preelaborate. No, Pure units are also preelaborable and so that is
aready covered.

On to question 3: No changes needed.

Final Version Page 19 of 27

Minutes of Meeting #32

Looking at question 4. The wording has a bracket that is backwards; the one following “then its” should be a closing
bracket rather than an opening one.

Tucker worries that 15.3 needs some wording to apply to formal types. Randy notes that formal access types can’t
cause trouble, but Tucker isworried about formal private types. Does “partial view” include formalsin an instance?
Add to the end of the new paragraph following 15.5/2 “...presuming any composite formal types have non-visible
components whose default initialization evaluates an allocator of an access-to-variable type.”;

Approve Al with changes: 8-0-2.

Al05-0037-1/01 Out of range <> associations in array aggregates

Randy explains the problem, which is essentially that <> is not an expression, and we need this rule to apply to
both. He checked the entire clause for additional occurrences of this problem, but didn’t find any.

Approve Al: 10-0-0.

Al05-0040-1/01 Limited with clauses on descendants

In the question, “ocver” should be “cover”. Also in the question, “this rules doesn’t apply” should be “thisrule
doesn’t apply”.

Tucker would prefer the summary “A limited with clause may not name an ancestor.”

Change the wording to: “in the context_clause for the explicit declaration of the named library package { or any of
its descendants} ;"

Approve Al with changes: 10-0-0.

Al05-0042-1/00 Overriding versus implemented-by

Pascal will take this one.

Al05-0043-1/00 The Exception_Message for failed language-defined checks

Tucker notes that the version number for this one should be /01 (thisis fully written up). Then he movesto approve
it.

Approve Al with change: 8-0-2.

Al05-0045-1/01 Termination of unactivated tasks

Steve and Randy explain this Al. The existing wording does not work for extended return statements, and also
reguires predicting the future.

Tucker proposes revising the wording to:

“At the start of this step, any tasks dependent on that master that have not initiated activation become terminated and
are never activated.”

Erhard worries that this new wording requires dead bodies to stay around longer. Randy wondersiif thereis any case
where that matters. Erhard tries very hard and then comes up with an allocator that gets aborted; the task’s master
would be an access type at amore global level. Randy complains that storage management of that caseis not well-
defined anyway (the rules imply that the storage cannot be recovered until the master is finalized anyway).

Steve shows an example of why the Al wording is wrong:
Final Version Page 20 of 27

Minutes of Meeting #32

procedure P is

type Ref is access T _has_Task;

Ptr : Ref;
task Child,
task body Child is
begi n
Ptr := new T_has_Task;
end Chil d;
begin
nul | ;
end P;

If P starts waiting at precisely the instant that Ptr is allocated (but before it does any activations), the tasks being
alocated are killed. For no reason: Child is still running. So we do have to write this in terms of creation/activation.

Tucker suggests replacing the wording with “If a master includes the creation of atask, and it begins finalization
prior to either initiating the activation of the new task or returning the task to acaller as part of areturn object, the
new task is never activated and becomes terminated.”

Thisisatrangitive rule in the sense that the outer master that is handed the return object is aso one that “includes the
creation of atask”. Thusa“normal” return of atask is properly handled if something prevents that from being
activated.

Erhard has trouble reading that from the wording. Tucker suggests adding aremark to clarify that: “If a master
includes (directly or indirectly) the creation of atask, and the master begins...”

Thiswould replace 9.2(6). All other stuff in the Al goes away.

[Editor's Note: Thiswording iswrong, or at the very least the use of “includes’ is unclear. The allocator in the
example above surely isincluded (indirectly) in the master of P, and the scenario outlined above would result in the
allocated task being killed while Child is still running. We'll need a different solution.]

Steve announces this is incompatible with coextensions (they’ re not a“part”). Add “as part { or coextension} of a
return object...”.

Do we want to see this Al again? Pascal thinks so.

Approveintent of Al: 12-0-0.

Al05-0046-1/01 Null exclusions must match for profiles to be fully conformant
Thisisonly for full conformance, not subtype conformance.

Erhard complainsthat in is not required to match in this case. He thinks that we need a better argument for this
change than the one given in the discussion section of the Al.

Removing the tagged here would make the full conformance fail. Similarly, thiswould beillegal if the subprogram
was not primitive. Erhard thinks these are better arguments. Add this information to the discussion.

Drop “either” from the insertion: “both or neither...”.

John wonders why this doesn’t apply to subtype conformance. We alow any syntax that gets the exact same
semantic result for subtype conformance.

Approve Al with changes: 10-0-0.

Final Version Page 21 of 27

Minutes of Meeting #32

Al05-0050-1/01 Return permissions are not enough for build-in-place

Tucker saysthat his model isthat build-in-place returns are like an out parameter; thus the constraint checks will be
performed before the call. The permission of 6.5(24/2) isintended to allow that model. And thus should be fixed to
handle case (1). Drop “If the result subtype of afunction is unconstrained, and...” from that permission.

(2) means the final result is the one that the permission appliesto, not any earlier one. We don’t want the permission
to raise exceptions that would not otherwise be raised. So, change the wording of the permission to “the final value
of the return object” instead of “result” in 6.5(24).

The permissions should apply transitively. Pascal thinks that an AARM note to point out that the wording applies
transitively would be enough. Steve agrees.

Approve intent of Al: 10-0-0.

Steve will write this up, adjusting the discussion for thisintent.

Al05-0051-1/01 Accessibility of dispatching function calls (aka another Baird question)

Steve tries to explain the problem. There areissuesif you make a dispatching call into a more nested scope for a
function that returns something with accessibility (T'Class, discriminated record, anonymous access).

Tucker had suggested that you could passin the level of the statically called function in order to properly make the
appropriate check.

Steve' s origina problem iswhat storage pool to allocate from. That could also be handled by passing in the pool.
This only would need overhead for functions with one of these kinds of returns that are (or could be) dispatching.
The Al needs aquestion.

Steve a'so has a second question which should have been a separate Al. Split the Al.

He thinks that the result value (not the function result) needs this check, because there might be an access
discriminant. Thisisnot limited to limited types; that means that for every function that has a class-wide return, you
have the overhead of this runtime check.

Tucker saysin the example, you statically know that it has an access discriminant. But you could have had the local
function return a class-wide object, and we don’t want to look at function bodies.

Tucker thinks that this changes the model of Ada programs for a user. Pascal says that thisis mysterious to the user;
a Program_Error would come from somewhere with no obvious reason. Tucker would like to make something
illegal; but exactly what isn't obvious.

Tucker starts thinking about rules. Randy says that Tucker needs to take this off-line because the rest of uscan’t
help.

Tucker and Steve will work on both of these Als.

Al05-0052-1/01 Coextensions and distributed overhead

Steve notes that adding alimited coextension to a non-limited type essentially allows tasks to be added to non-
limited types. Thisis adistributed overhead on non-limited types. Steve says that a master and activation chain
would have to be passed to functions returning any class-wide type.

Pascal saysthisis very bad performance hit for existing functions; that is unacceptable to him. He would like to
make limited coextensions illegal for non-limited types. The allocator would beillegal if the enclosing typeis not
limited (access discriminants of limited types would be OK).

Final Version Page 22 of 27

Minutes of Meeting #32

If it isnot class-wide, there isn’t much of a problem. So it could be allowed for untagged. Randy complains that
might cause problems in shared generic bodies, as a non-limited private type could have tasks. For instance,
assuming that Tsk is atype that contains a task:

generic
type T is private;
package G ...

type Ugly (D : access Tsk) is record ...
package Pis G (Ugly);

If the body of G does something that requires the destruction of a coextension, it would have to be aware that there
are tasks. Others are dubious that there are any such cases. But thisistrivial: just give the discriminant a default
expression that is an allocator. Then an ordinary object declaration has all of these issues:

generic
type T is private;
package Gis
procedure PP;
end G

package body Gis
procedure PP is
) : T,
begin
nul | ;
end PP; -- Mght have to wait for a task here. Ugh!

type Ugly (D : access Tsk := new Tsk) is record ...

package Pis G (Ugly);

[Editor's note: A similar effect also can occur with allocators of alocal access type of T, components of T, and
perhaps other uses of T. Ban coextensions! Ban them all!! Oops, got a bit carried away... ©]

Pascal will take this Al and make an effort to deal with this., possibly combining it with the Al split from A105-
0051-1.

Al05-0053-1/01 Aliased views of unaliased objects

Should we ban aliased return objects? Surely no one uses them. There are obviously a number of problems with
them.

The recommendation is to remove aliased from the syntax. Pascal notes that 3.10 defines which objects are aliased,
and those don’'t include return objects anyway. So this syntax doesn’t actually mean anything. So thereis actually no
problem except the confusion provided by having an unused keyword.

Someone notes that this is the second time that we change this particular syntax. So thisisjust a minor nit: we wrote
aliased when we actually meant constant. ©

Approveintent of Al: 10-0-0.

Steve will need to rewrite the discussion of the Al to reflect that there are no aliased return objects, but explain why
they would be dangerousiif they existed.

Final Version Page 23 of 27

Minutes of Meeting #32

Al05-0054-1/01 Variable views of constant objects
Steve comments that the Rosen trick is erroneous by 13.9.1(13), which Jean-Pierre finds surprising.

Pascal does not like that constant does not mean constant. Up until now, declared constants were constant between
the initialization and finalization.

Tucker would prefer to make this legal. Ada 95 has constant views of variable limited objects.
Pascal wants constant to be believable for the user.
Tucker saysthat it is completely obvious to the user of the type that this will happen.

Randy complains that a runtime check is not acceptable. Erhard agrees. A private type could not be declared as
constant, because a Program_Error might be propagated. The client would have no way to know that this might
happen, and wouldn’t care how awell-written abstraction was created. It also would prevent the writer of the
abstraction from ever adding a self-referential pointer, because someone might have declared a constant somewhere.
That seems like a magjor abstraction violation.

Should this be no action? Pascal objects, if it is useful, we should at least fix the erroneous rule.

Jean-Pierre says that it is not erroneous in Ada 95, the wording says “constant object” rather than “ constant view”,
and in Ada 95, it would have to be a constant view of avariable object. So thereis no problem.

Randy had suggested that we just add “nonlimited” to 13.9.1(13). “nonlimited constant object”.
Tucker would like to restrict the change to self-referencing types. But that’ s hard to define.

Pascal suggests (as Randy originally did in e-mail) that we simply say that alimited constant is a variable view.
Randy still worries that might change something else.

Coding conventions might require usersto put constant on objects, they are not going to break privacy to check if
thisisOK.

John wondersif there isaway to statically make thisillegal. Others say that has problems; any such rule would have
to be privacy breaking (for instance, making declaring constants of types that contain self-referencesillegal), or
incompatible (making some self-referencesillegal). Thereis onerulethat isn’t either: ban constants of limited types,
reverting to Ada 95. But we don’'t want to go there. And static checks could not detect all cases, such as a self-
reference created during an Initialize routine.
Pascal points out that there are variable views of constant objects (i.e. during initialization).
Tucker wants to list the options:

(1) Change the erroneouswording to alow this;

(@) for limited;

(b) for possible self-reference or controlled. (The latter so that Initialize and Finalize aren’t
€rroneous.);

(c) dereferencing avariable view created from a constant view.
(2) Admit existence of variable views of controlled and limited constant objects (add a user note);
(3) Raise Program_Error
(@) At declare of constant of type with a self-reference.
(4) Makeit statically illegal (but we think that isimpossible without making virtually everything illegal).

(1) and (2) arereally the same thing, but have different effects on the wording.
Final Version Page 24 of 27

Minutes of Meeting #32

Steve shows an example of another way to get a variable of a constant view. It uses extended returns and an
Unchecked Accessto get avariable reference of aconstant view. But his example is occurring during the
initialization phase, when thisis still avariable view. Initialize aso could do this (and without such complications).

Steve wonders about aggregates. Randy says that these are always built in place for limited types.

Straw poll: Nothing wrong (cases (1) and (2)): 5; catch at runtime (case (3)): 3; Hate both: 2. That doesn’t help move
us forward.

Bibb moves to keep alive and discuss. Pascal and Tucker will write up the two alternatives, with wording and
rationale. And we'll discuss them again. Y uck.

Al05-0055-1/01 Glitch in EDF protocol
The !discussion header is missing, should go before “ The current rule...”.

Alan explains the problem in detail. (See the paper in http://www.ada-auth.org/ai-files/grab_bag/EDFpaper.pdf for
this explanation.)

Tucker worries that the wording is confusing. Alan aso notes a buglet in the wording. Tucker suggests “; and
furthermore, ...”. He'll check that during the break.

Typo: “papar” in example.

After bresk, replace the wording with “; and furthermore T has an earlier deadline than all other tasks on ready
queues with priorities in the given EDF_Across _Priorities range that are strictly less than P.”

Approve Al with changes: 10-0-2.

Alan asks the editor to send him an e-mail with the Al text onceit is finished.

Al05-0056-1/01 Wrong result for Index function
Randy explains the fix.

Tucker thinks that we're fixing the wrong bug: he thinks that new function also should return O for anull string.
Then the existing equivalence rule is correct.

Put in front of “If From...”: “If Source isthe null string, Index returns O; otherwise,”. For both versions of Index.
This seems to change the semanticsin the case of anull pattern (which used to raise Pattern_Error). We think most
implementations check the pattern first, the original wording surely is not clear about the order of those checks. Best
to leave well-enough alone for that. (Randy wonders what the ACATS does, in particular, he wondersiif it checks
whether an exception is raised by Index (*",""), and which exception is raised by Index ("A", "", 2))

Approve Al with changes: 8-0-2.

Al05-0057-1/00 The class attribute of a constrained subtype

Assigned to Steve Baird.

Final Version Page 25 of 27

Minutes of Meeting #32

Detailed Review of Ada 2005 amendment Als

Al05-0030-1/01 Requeue on synchronized interfaces

Alan explains that the IRTAW wants this facility, but they do not care much about language completion — that is,
they don’t care about what happens in corner cases such asif it isarea procedure.

We move into a discussion of whether we should have primitive entries. That would solve the problem. Tucker
thinks we should not consider upward incompatible changes (that is, we shouldn’t consider making timed entry calls
illegal for primitive interface procedures).

A pragmais suggested. Randy and Pascal think that violates good taste in pragmas. Tucker says that this would be a
suggestion; requeue would raise Program_Error for a procedure.

Steve Baird saysthat such apragma.is not checkable semantically. Consider an interface types with no pragmas.
Then you have aformal interface type derived from that type, which is abstract. The pragmawould be at the point
where you extend. Tucker points out you can’t extend in a generic body.

Pascal suggests using pragma Convention (Entry) for this. “entry” is areserved word.

Pascal would rather that this actually works, rather than raises Program_Error. Protected procedures are relatively
easy, internal protected procedures are complicated trouble, and normal procedure requires leaving a protected
action. Alan thinks that semantics would screw up implementations.

Timed entries already do this; Pascal says that we're already in adeep pit. Maybe, but requeue is a bottomless pit
(with sharp sticks at the bottom, according to Ed).

Pascal worries that once in a blue moon you'll get a Program_Error; he wants areal check of some sort. Erhard
points out that for the implementer of a class, thereis no way to know that this procedure is used in arequeue.

Steve suggests Program_Error getsraised all the time for requeue without the pragma. Aslong asthereis minimal
coverage, that would eliminate any safety issue.

Tucker asks that we decide whether we want to do this at all. Pascal notes that his reaction to Alan’s paper was that
perhaps we ought to wait a few yearsto seeif this comes up in practice.

Ed says that seemsto be a natural extension, but it was alot of work. To date, he has no examples other than Alan’s.
So this doesn’t seem important right now.

What about the implementation cost? Ed saysthat it seemslike alot of work. Others note that thereis very little
likelihood that thisis going to fall out cheaply (as these things look like procedures, and finding the entry
information is very hard).

What is the workaround? Essentially, don’t use interfaces in this case. That doesn’t seem like a good thing, so we
seem to be between arock and a hard place (and hovering over a deep pit with sharp sticks at the bottom).

Pascal suggests that requeue on a procedure is abounded error, it either raises Program_Error or otherwise it works
properly. Properly means that a protected procedure would work like an entry with barrier True; aregular procedure
would just be acall. Alan should make the bounds of the error as broad as possible.

Separate the pragma/syntax to specify entriesinto a separate Al; that would increase safety but the use of apragmais
contentious. And it can be added in the future presuming that we're only looking at compatible semantics.

Approveintent of Al: 10-0-2.

Al05-0049-1/00 Extend file name processing in Ada.Directories

Tucker says that the user could fix thisif they wanted; they don’t need to wait for a standard. Even so, he saysthat he
isin favor of afix. Randy worries about compatibility if we change the behavior of the existing routines.

Final Version Page 26 of 27

Minutes of Meeting #32

Pascal asks the meta-question of what we want to do when we find missing capability in the language-defined
packages. Should we forget it, or add new capabilities as a child, or add it directly into a package. Jean-Pierre says
that making something a child just to avoid an incompatibility is polluting the name space of packages, and is not
helpful.

Pascal summarizes the discussion that we are not going to avoid trying to fix problems in packages. Bigger changes
might be a problem, but that is a case-by-case issue. John wonders if part of this meta-discussion should be at WG 9
level. Pascal thinksit would be better to push Als forward with particular issues.

So assign this. Randy will take this.

Randy wonders if we should try to handle case sensitivity issues. Bibb suggests file name compares. Randy suggests
that for creating names, you need to know not to use names that differ by just case.

Tucker suggests that maximum file name lengths and portions also be defined (as constants? As functions? As magic
incantations??).

Final Version Page 27 of 27

