
Minutes of Meeting #19

Draft Version Page 1 of 22

Minutes of the 19th ARG Meeting

20-22 June 2003

Toulouse, France

Attendees: Steve Baird, John Barnes, Randy Brukardt, Alan Burns, Gary Dismukes (all but Sunday afternoon),
Kiyoshi Ishihata, Pascal Leroy, Steve Michell (Friday and Saturday only), Erhard Ploedereder, Jean-Pierre Rosen,
Tucker Taft, Joyce Tokar (Friday only), Tullio Vardanega (Friday and Saturday through afternoon break only).
Observers: Ed Schonberg (Friday and Saturday only), Arnaud Lecanu (Friday only).

Meeting Summary

The meeting convened on 20 June 2003 at 14:00 hours and adjourned at 15:15 hours on 22 June 2003. The meeting
was held in a conference room at the Mercure Atria Hotel, in Toulouse, France. The meeting was hosted by the Ada
Europe conference on Friday, and by IBM Rational Software (Pascal Leroy) on Saturday and Sunday. The meeting
covered most of the amendment AIs on the agenda, but no normal AIs from the agenda.

AI Summary

The following AI was removed from the hold state (it was previously approved):

AI-298/04 Non-Preemptive Dispatching

The following AIs were approved with editorial changes:

AI-297/05 Timing events (10-0-3)
AI-321/03 Definition of dispatching policies (13-0-0)
AI-326/01 Tagged incomplete types (10-0-1)
AI-328/01 Add preinstantiations of Complex_IO (9-0-0)

The intention for the following AIs was approved but they require a rewrite:

AI-217-6/02 Limited with clauses (10-0-2)
AI-218-3/01 Accidental overloading when overriding (9-1-1)
AI-230/05 Generalized use of anonymous access types (10-0-0)
AI-231/03 Access to constant and null-excluding access subtypes (8-0-1)
AI-251/07 Abstract interfaces to provide multiple inheritance (8-0-1)
AI-252/03 Object.Operation notation (5-1-3)
AI-285/04 Support for 16-bit and 32-bit characters (9-0-1)
AI-296/02 Vector and matrix operations (7-0-3)

The following AIs were discussed and require rewriting for further discussion or vote:

AI-237/05 Finalization of task attributes
AI-266-2/03 Task termination procedure
AI-292/00 Sockets operations
AI-327/01 Dynamic ceiling priorities

The following alternative AIs were discussed and put on hold as another alternative is pursued:

AI-217-5/02 Type stubs with limited context clauses
AI-217-7/02 Incomplete type completed in a child
AI-218-2/04 Accidental overloading when overriding

Minutes of Meeting #19

Draft Version Page 2 of 22

Detailed Minutes

Meeting Minutes

We consider the minutes of the 18th ARG meeting. The minutes were approved by acclamation.

Publicity of the Amendment

We need more articles for the Ada User Journal; they are prepared to publish one for each issue (every quarter). John
Barnes volunteers to do an article on the vector and matrix packages for the next issue (October).

Pascal is working on an update of his overview for Ada Letters.

Next Meeting

As decided at meeting 18, the next meeting will be hosted by Steve Michell in Sydney, Nova Scotia, October 3-5,
2003.

We then discuss the following meeting. SIGAda is too close to the October meeting (December), so we need a host
for a February meeting. Joyce Tokar volunteers to host a meeting in the Phoenix area. She will need to find facilities,
and suggests that, as February is the busy season, we select dates now. Tucker says he is not available February 15-
21. We select dates of February 27-29, 2004, and Joyce is given instructions to suggest alternative dates if necessary
to find appropriate facilities.

The meeting after that will probably be held after Ada Europe (June 18-20, 2004, Palma de Mallorca, Spain)

Motions

The ARG thanks our hosts, Ada Europe and IBM Rational Software, for hosting the meeting. Approved by
acclamation.

The ARG thanks our emergency minute taker, Tucker Taft for volunteering for the task of recording minutes when
Randy Brukardt’s laptop failed 2 1/2 hours into the meeting. [And especially for putting up with Randy reading over
his shoulder and suggesting items to record for the rest of the meeting. - Editor]. Approved by acclamation.

Old Action Items

The old action items were reviewed. Following is a list of items completed (other items remain open):

 Steve Baird:

• AI-294

 John Barnes:

• AI-204

• AI-218-2

• AI-296

 Randy Brukardt:

• AI-217-5

• AI-279

• AI-280

• AI-320

• Create an extended example of the use of AI-217-05, etc.

• Create a detailed design of the implementation of AI-217-05, AI-217-06, AI-217-07 in Janus/Ada.

 Editorial changes only:

Minutes of Meeting #19

Draft Version Page 3 of 22

• AI-167

• AI-178

• AI-216

• AI-224

• AI-228

• AI-256

• AI-259

• AI-265

• AI-270

• AI-283

• AI-287

• AI-306

• AI-310

• AI-316

 Alan Burns:

• AI-266-2

• AI-297

• AI-307

• AI-321

• Write an article for Ada User Journal on real-time features of the Amendment.

 Gary Dismukes:

• AI-158

 Pascal Leroy:

• AI-217-6

• AI-285

• Create a detailed design of the implementation of AI-217-6 in Apex.

 Tucker Taft:

• AI-217-7

• AI-230

• AI-231

• AI-252

• AI-318 (was assigned to Bob Duff)

• Create a detailed design of the implementation of AI-217-6 and AI-217-7 in AdaMagic.

• Present AI-217 examples to Ada UK, report on comments (was assigned to John Barnes).

New Action Items

The combined unfinished old action items and new action items from the meeting are shown below.

 Steve Baird:

• AI-51

• AI-109

Minutes of Meeting #19

Draft Version Page 4 of 22

• AI-251

• AI-291

 John Barnes:

• AI-254

• AI-296

 Randy Brukardt:

• AI-218-3

• AI-301

• Update Janus/Ada implementation report for current version of AI-217-6.

 Editorial changes only:

• AI-297

• AI-298

• AI-321

• AI-326

• AI-328

 Alan Burns:

• AI-266-2

• AI-327

 Bob Duff:

• AI-219

• AI-239

• AI-269

• AI-303

• Be the test creator of last resort.

 Kiyoshi Ishihata:

• Consult with the Japanese SC22 about the acceptability of AI-285.

 Mike Kamrad:

• Various items to be standardized [jointly with Mike Yoder]

• External_Tag

• Storage_IO of tagged types

• Array indexed by holey enumeration

• Static elaboration

• GNAT attributes and pragmas

 Pascal Leroy:

• AI-217-6

• AI-264

• AI-285

• AI-311

• Write an article on the Amendment for the Ada Letters.

Minutes of Meeting #19

Draft Version Page 5 of 22

• Write a report on access subtypes (with Tucker Taft).

• Update Apex implementation report for current version of AI-217-6.

 Steve Michell:

• AI-148

• AI-250

 Erhard Ploedereder:

• AI-237

Ed Schonberg:

• AI-292

• Create a GNAT implementation report for current version of AI-217-6.

Tucker Taft:

• AI-133

• AI-162

• AI-188

• AI-214

• AI-230

• AI-231

• AI-252

• AI-275

• AI-282

• AI-288 (split into two AIs: pre/postconditions and invariants).

• AI-290

• AI-293

• AI-295

• AI-304

• AI-312

• AI-317

• Update AdaMagic implementation report for current version of AI-217-6.

• Write a report on access subtypes (with Pascal Leroy).

 Mike Yoder:

• AI-315

• Various items to be standardized [jointly with Mike Kamrad]

• External_Tag

• Storage_IO of tagged types

• Array indexed by holey enumeration

• Static elaboration

• GNAT attributes and pragmas

 Items on hold:

• AI-284 (waiting for more keywords to be defined)

Minutes of Meeting #19

Draft Version Page 6 of 22

Detailed Review

The minutes for the detailed review of AIs are divided into existing amendment AIs and non-amendment AIs. The
AIs are presented in numeric order, which is not necessarily the order in which they were discussed. Votes are
recorded as “for”-“against”-“abstentions”. For instance, a vote of 6-1-2 would have six votes for, one vote against,
and two abstentions.

Detailed Review of Amendment AIs

AI-217-5/02: Type stubs with limited context clauses
AI-217-6/02: Limited with clauses
AI-217-7/02: Incomplete type completed in a child

Tucker gave a report from the AdaUK presentation:

• Type stub was considered less desirable than the other options (it is more work to use than the others).

• Incomplete type completed in child more familiar; it was the favorite of the audience.

• Limited with appeared to be more work, in particular, it creates a new kind of compilation dependence (of
course, that is true of all of these proposals, it just isn’t so obvious to users).

Randy asks if the limitation that instantiations cannot be accessed via a limited with is going to be a problem. In the
past (for instance, child units), we had to add generic versions of features due to user demand.

Pascal is not convinced this is a real limitation; he tried but was unable to come up with any example where it would
matter. Remember that these are intended to be used to support mutually recursive types; how can two instantiations
have mutual recursion?

Steve Baird suggests a user that could derive from the type defined by an instantiation and use that to be the
incomplete type accessed by a limited with.

What do you get when you do a limited with of an instantiation or a renaming? You get an error if you directly name
an instantiation or renaming, you do not not see it if it is nested (which probably generates an error at the point of the
intended use).

What about renamings that are used to select one of two implementations? Those seem unlikely to require a limited
with.

Incomplete tagged types will be supported by all proposals; it is now a separate AI (AI-326), which we’ll discuss
later.

Pascal comments that type stubs and incomplete types completed in a child defer some error checking to link time;
limited with performs checks at compile time. Generally, it is better to detect errors earlier.

Library-based compilers will have more trouble with limited with due to new kinds of dependence.

We take a series of straw votes on the three proposals.

• Prefer limited-with vs. something else: 6-1-5.

• Prefer type-stubs vs. something else: 0-7-6.

• Prefer incomplete type completed in child vs. something else: 0-6-7.

Based on this vote, we decide to proceed with limited with only; the other two proposals will be put into the deep
freeze of discarded alternatives.

Minutes of Meeting #19

Draft Version Page 7 of 22

We turn to discussing the details of the limited with proposal.

Pascal asks why the first sentence of the 10.1.1(26) insertion is needed (this originally was worded by Bob Duff). We
want
 limited with A.B.C;
to mean
 limited with A, A.B, A.B.C;
and that’s what this rule does. So we need this rule.

What is the effect of limited with in scope of a normal with? Consider:

with Q;
package P is
 use Q;
 ...
end P;

limited with Q;
package P.Child is

We probably should disallow limited with on bodies; it’s useless and causes ugly corner cases. Jean-Pierre
comments that this sends a clear message that this is for breaking circularity and not for other uses.

If a child has a limited with , it overrides the normal with inherited from its parent package.

What happens when using a rename of the package found in a second package that had a “normal” with of the
package? Consider:

package Q is
 type T is ...
 procedure Proc (Param : T);
 X : T;
end Q;

with Q;
package P is
 package R renames Q;
end P;

with P;
limited with Q;
package PP is
 Obj1 : Q.T; -- Illegal (Q.T is incomplete)
 Obj2 : P.R.T; -- Legal??? (No.)
end PP;

The rename sees a limited view of the package, so Obj2 is illegal.

What happens when using a subtype or object found in a second package that had a “normal” with of the package?
Consider:

with Q;
package R1 is
 subtype Foo is Q.T;
 type Rec is private;
 Z : Q.T;
 function "=" (A, B : Q.T) return Boolean renames "=";
private
 type Rec is
 record
 F : Q.T;

Minutes of Meeting #19

Draft Version Page 8 of 22

 end record;
end R1;

with R1;
limited with Q;
package S1 is
 X : R1.Rec; -- Legal? (Yes.)
 Y : Q.T; -- Illegal (Q.T is incomplete)
 Z : R1.Foo; -- Legal? (Yes.)
 Maybe : Boolean := R."=" (R1.Z, X.F);
 -- Legal? (Yes, if F is visible.)
end S1;

The package sees the second package’s (R1’s) view of the subtype or object. Ed notes that Q.T and R1.Foo are the
same type; it appears that we have two views of the same type. This would very hard to implement in ACT’s
compiler. Much discussion ensues.

Pascal notes that his idea was that the type would be incomplete in all views. But that means breaking privateness;
why would a user expect R1.Rec to be incomplete? It doesn’t visibly depend on Q.

It is suggested that the view is a property of the expanded name, and not of the type. An expanded name giving the
limited view (such as Q.T) could carry a “flag” even though both names (Q.T and P2.S) point at the same entity. Ed
thinks that might work.

Could we live with the ripple effect? It seems to be impossible to “hide” it in diamond cases like that above. We'd
rather not; ripple effects are very bad for users as they cause no end of trouble during maintenance. Besides, if we
had no rules on the use of limited with, we could have a real circular dependence and still be legal if all of the units
involved used limited with. That obviously wouldn’t work. So we need some restrictions on limited with, and we
might as well eliminate ripple problems at the same time.

John expresses concern that the added complexity of limited-with makes him more interested in the incomplete-
type-completed-in-a-child. This alternative does not share all the same complexity because there is a separate source
construct for the incomplete type declaration, and the full type always sees it. However, others prefer the type stub
approach if we give up on the limited with, so we would be back in the stalemate.

Erhard wonders if we are trying too hard, and should just allow circularity. That way lies madness; the linear
elaboration model would have to be abandoned. Erhard withdraws his suggestion.

These problems get worse if we can have procedure calls. So, a limited with clause should not be allowed on a body
or a subunit.

How does this interact with private with (AI-262)? Textually, limited private with makes sense. private limited
with would also make sense, but preserving keyword order favors the first one.

Erhard wonders if we need private at all in context clauses. He is reminded that AI-262 was extensively discussed
and is already approved (and thus it is out of order to suggest changing it), but he insists on making the point that
private with does not need to be syntactically distinguished, we could simply say that private children are only
visible in the private part. A mercifully short discussion ensues. Most felt that from a documentation point of view, it
is useful to distinguish the dependencies that are only for the private part. Private with complements the private
child concept. This is covered in the AI’s discussion section, and was discussed extensively by e-mail recorded in the
appendix.

We decide that limited private with would be allowed, with semantics similar to that defined in AI-262.

When is the type incomplete? When can you dereference an access-to-incomplete? This is complicated enough that
we need an example:

package Q3 is
 type T is tagged
 record

Minutes of Meeting #19

Draft Version Page 9 of 22

 Comp : Natural;
 ...
 end record;
 procedure Proc (Param : T);
 X : T;
end Q3;

limited with Q3;
package P3 is
 type Acc_Inc is access Q3.T; -- Always an access-to-incomplete,
 -- for ever and ever.
 X : Acc_Inc;
end P3;

[limited] with Q3;
with P3;
package R3 is
 M : Q3.T := P3.X.all; -- OK if not limited with.
 procedure Proc (X : Q3.T);
end R3;

with P3, R3;
procedure S3 is
 N : Natural := P3.X.all.Comp; -- Illegal.
begin
 R3.Proc (P3.X.all); -- Illegal.
end S3;

The suggested rules are “A dereference of an access-to-incomplete is permitted anywhere, but is incomplete unless in
the scope of a normal with clause for the library package (or a library renaming thereof) in which the full type is
declared. An incomplete type always matches the corresponding complete type.”

Without a rule like this, we have a ripple effect; changing R3 from with to limited with would cause S3’s
dereferences to become legal. Ripple effects are nasty for maintenance and for incremental compilations.

Jean-Pierre wonders if a full with should be required on the body of a unit with a limited with. There doesn’t seem
to be any benefit to requiring that; what if there isn’t a body? The suggestion is dropped.

Randy wonders if you can limited with a unit that you are not allowed to with (because it is private)? No, the same
rules apply here that apply to normal with. It could be a limited private with. Whether a unit is a private child can
be determined syntactically, so there is no problem. Randy notes that this is different than most of the other
proposals, where it is hard or impossible to disallow this (we don’t have the information).

Jean-Pierre wonders if we need an Implementation Permission to refuse a limited with if the unit hasn’t been added
to the environment. We certainly don’t want to require that it always be legal; the source must be available (for
source-based compilers) or the unit pre-compiled (for library-based compilers). Tucker suggests that it simply be
implementation-defined. Erhard suggests “It is implementation-defined how a compilation unit mentioned in a
limited with clause is entered into the environment.”, which meets with general approval.

Steve Baird asks if a unit that is only mentioned in a limited with clause is needed in the partition. Tucker suggests
yes. Erhard does not agree initially, but ultimately is convinced. Pascal thinks that a post-compilation rule would be
needed to reject the partition if there is no full view. Tucker says that is not necessary, it is needed, it gets elaborated
somewhere (which is not a problem, as a limited view has no effect when elaborated). But we would then have to
define the meaning of elaborating a limited view. It would be better to simply add to 10.2: “If the limited view of a
unit is needed, then the full view of the unit is needed.” Jean-Pierre thinks this is good: if during development, we
only need the limited view for a while, the effect does not suddenly change when the full view becomes referenced.

Tucker recommends replacing the new term “explicitly mentioned” with “named”, in order to reduce confusion with
the existing technical term “mentioned”.

Minutes of Meeting #19

Draft Version Page 10 of 22

A use clause is not permitted on limited view of a package. Use clauses are not normally inherited, but they can be
inherited from a parent unit. What if parent unit has a “use” clause of full view of package? The “use” clause for a
package loses its effect within the scope of a limited view of the package.

with A.B.C;
package P4 is
 use A.B;
end P4;

limited with A.B;
package P4.C is
 -- A.B use visible here? (No.)
end P4.C;

For methodological reasons, we also disallow naming in a limited with clause a unit (or renaming thereof) that is
mentioned in an enclosing normal with clause. This is independent of whether the with clause is private.

limited with A.B; -- Illegal.
limited with A.B.C; -- Illegal.
limited with A.B.C.D; -- Legal.
package P4.C2 is ...

Gary adds renaming to the example:

with A.B.C;
package R5 renames A.B.C;

with R5;
package P5 is
 use R5;
end P5;

limited with A.B; -- Illegal.
package P5.C is ...

In other words, use clauses are illegal for limited views and are not inherited in the places that see a limited view.

Approve intent of AI: 10-0-2

AI-218-2/04: Accidental overloading when overriding
AI-218-3/01: Accidental overloading when overriding

Randy explains that alternative 3 grew out of a discussion between him, John, and Pascal about a draft of alternative
2. Alternative 3 differs from alternative 2 by providing “overriding” and “not overriding” as overriding_indicators,
eliminating the “maybe overriding” concept. It also eliminates the configuration pragma (it could be defined
separately if we wish). This appears to simplify the proposal.

If we defined a configuration pragma, it would require an overriding_indicator on all primitives of derived types and
primitive operators. This could be restricted to tagged types as an option.

This approach gets general agreement, and we decide to proceed with alternative 3 only.

We turn to considering details of alternative 3.

Should an overriding_indicator be allowed on non-primitives? No. Should an overriding_indicator be allowed on
non-tagged type primitives? Yes (otherwise we could have contract problems with private types and generics).

What happens if a subprogram is primitive on two types? There is no problem, the overriding_indicator better be
“not overriding”, since a subprogram cannot possibly be overriding if primitive on more than one type(Editor’s node:
This statement was discovered to be false after the meeting, so some resolution will be needed.)

Minutes of Meeting #19

Draft Version Page 11 of 22

What about non-operator primitives of a root type? These can have an overriding_indicator, but of course the
indicator had better be “not overriding”.

How should these be checked in generics? In the generic unit? In the instance? In Both? Neither?

Two options were seriously considered:

1. Assume the best in generic declaration. This means:

• overriding can’t fail in generic declaration (only can fail in instance),

• not overriding can fail in generic declaration,if we have a formal derived type and it is known to
have a particular primitive (and instance),

• Recheck in instance (including private part),

• Check body based on properties of formal in body

2. Check in generic declaration based on properties of formal. This means:

• overriding can fail in generic declaration (but it can’t fail in instance),

• not overriding can fail in generic declaration (and in instance),

• Recheck in visible part and private part of generic instance

We take a straw vote comparing the two options: option (1) get 2 votes, option (2) gets 6 votes, 3 abstain.

If you give a not overriding specification, must it apply to any primitives that would be implicitly declared later
within the immediate scope? Yes. We don't want contradictory clauses. If you give an overriding_indicator on the
partial view the implementation has to recheck it when new operations come into existence. This implies that you
cannot give an overriding after not overriding.

Where may an overriding clause be? Immediately within the immediate scope of the declaration, but how late can it
be? Randy suggests that for checking purposes, it is better to restrict it to the specification. However, overriding can
occur in the body. Perhaps we should allow overriding_indicators on the body. A separate overriding_clause must be
no later than the body, if there is one. Perhaps we can eliminate the separate overriding_clause completely if we
allow indicators on the body. But that might cause problems with instantiations.

Vote on intent: 9-1-1. Jean-Pierre votes against the proposal, saying that it is overkill.

AI-230/05: Generalized use of anonymous access types

Tucker explains the changes. Object declarations were dropped; object renaming was added as a replacement.
Generic formal in objects also were dropped for consistency. Pascal complains that this causes a loss of
orthogonality: access doesn’t work for generic formal parameters. We take a straw poll to see if generic in objects
should be retained: 0-4-6. (Interestingly, Pascal didn’t vote for this either, so why’d he bring it up?)

Typos: in 3.8(18/1): compo{n}ent; in 3.10.1(12) is the same as {that of} the containing object

Wording for the special Is_Null attribute of an object of any access type needs to be added; see the February 2002
minutes.

Tucker raises a straw man of a membership operation “obj in null”. Pascal comments that he likes that better, as it is
more readable that obj’Is_Null. This causes a group groan.

Jean-Pierre asks about the equality of a record containing a component of an anonymous access type. There is no
equality. Ouch!

Tucker argues that it would make more sense to make "/=" and "=" work than to invent yet more new syntax. After
all, types in Standard already have universally visible operators. And that would provide a fix to Jean-Pierre’s
problem.

Minutes of Meeting #19

Draft Version Page 12 of 22

Could an operation be declared at the point of the anonymous type, hoisted to the enclosing scope? Yes, but that
would sometimes end up ambiguous (presuming that convertible anonymous types could be compared, multiple
anonymous types in the same scope would cause trouble).

So we are back to a universal equality in Standard, but at least one operand must be of an anonymous access type
(name resolution), and the types of the operands must be convertible to one another (legality rule). null = null is now
always illegal, since there is no context for resolving the type of null, which requires a single expected access type.
The same goes for allocator = allocator, allocator = null, etc. This is a tiny incompatibility (null = null, etc. are legal
if precisely one access type is visible), but the constructs are useless, so it isn’t worth trying to fix them. This is very
much like the fixed multiply/divide operators.

Tucker says (off-topic) that he thinks he has a solution for the fixed multiply/divide operator problems. He’ll create
an AI.

What is the storage pool of an anonymous access type? Tucker believes that the standard already covers that. The
group feels that wording should be added to describe the s torage pool, or at least a note to explain how wording in
the existing standard already covers storage pool issues.

Correct the example, the end of the package body got cut off.

Tucker suggests that we need to address issue of functions returning anonymous access types; that is covered by a
different AI (AI-325).

Approve intent of AI: 10-0-0

AI-231/03: Access to constant and null-excluding access subtypes

Should access T be equivalent to access all T not null (which is compatible), or access all T (which is consistent)?

Having an implicit not null is weird. The incompatibility is only that Constraint_Error is not raised at the call (it will
be raised inside the subprogram); this thus is a performance incompatibility. Pascal expresses concern about this
incompatibility. Note that for tagged controlling access parameters, there is an implicit dereference to get the tag, so
there is no change (these are effectively null excluding subtypes, whether or not they are declared that way). For
other types, the performance fix is simply to add not null. Steve Baird comments that we still need to add a rule
indicating there is an implicit dereference for a tagged controlling access parameter so the designated type cannot be
incomplete and so the language defines the check.

Tucker dropped all, since all is the same as nothing. Pascal and Randy object; they see this as similar to a named
access type, and it would be odd to have to say all in a named access type, and not be able to in an anonymous access
type. We can handle this similarly to in for parameters; if neither all nor constant is given, it is considered implicitly
equivalent to all.

For a null-excluding subtype, the default initialization will produce a Constraint_Error. Someone asks if this situation
could be avoided by disallowing default initialization of not null subtypes (you would have to always give an initial
value). But this would lead to privacy and contract model problems. So we decide that raising Constraint_Error in
this case doesn’t seem to be a problem.

Is not null allowed on a parameter subtype? No, except as part of an access_definition.

In an access type definition, the subtype indication when the designated type is an access type is ambiguous.

type T is access D not null;

If D is an access type, to what type does the not null apply? As defined in the AI, it applies to the newly defined
type, rather than D which is what would be expected.

Minutes of Meeting #19

Draft Version Page 13 of 22

Tucker suggests changing the grammar to:

access_to_object_definition ::=
 access [general_access_modifier] subtype_mark
 [scalar_constraint|composite_constraint]
 | access [general_access_modifier] subtype_mark not_null_constraint

Steve Baird notes that for constrained access subtypes there is an invariant that if a pointer is constrained the
constraint check is performed on assignment, there is no way it can change behind your back. Discriminants of
aliased objects cannot be changed, even by a whole-object assignment, since all aliased objects are constrained by
their initial value. Tucker replies that this is not a problem, because the not null constraint applies to the value of the
pointer, not the designated object.

Erhard is concerned that it will be confusing to which type a not null constraint applies in an access type definition.
It could be either the designated type (if it is an access type) or the newly defined access type. Even through the
language clearly defines it, it won’t be clear from reading.

Pascal suggests moving the not null in front. Specifically:

type T is [not_null_constraint] access [all|constant] subtype_indication
subtype_indication ::=
 [not_null_constraint] subtype_mark
 [scalar_constraint|composite_constraint]

This would look like:

procedure P (Obj : not null access D);
procedure Q (Obj : not null access constant D);
subtype S is not null D;
type T is not null access all D;

Straw vote: Move not null in front of access/subtype-indication: 7-1-1. (Kiyoshi prefers access not-null D.)

Straw vote: Allow constraining the designated type in an access definition? (This would look like not null access
not null): 7-1-1.

This would give us a new record for a sequence of reserved words:

... is not null access constant not null ...

Approve intent of AI: 8-0-1.

AI-251/07: Abstract interfaces to provide multiple inheritance

Steve explains changes.

Jean-Pierre asks why we need a separate syntax for these. That is, why do we need to call these interfaces instead of
just abstract tagged null record? There are a number of reasons:

• Conceptually different;

• Maintainability - we don’t want interface-ness to be dependent on the absence of non-abstract/non-
null primitives. (if that was true, a programmer could add a subprogram and silently change all of
the semantics);

• Implemented in a different way;

• Different legality rules;

• Should be a first-class feature. We don’t want to use a pragma to mark these; we don’t have a
pragma Class.

Minutes of Meeting #19

Draft Version Page 14 of 22

Tucker asks why we disallow private primitives if they are null procedures? Steve Baird gives a long answer, which
is not clearly understood. Tucker agrees to take this discussion off-line.

Jean-Pierre suggests that we should allow is null in a generic formal subprogram default. This gets general
agreement. We should also change Finalize/Adjust/Initialize to be is null. They’re essentially defined that way
anyway. Conclusion: Separate out is null into separate AI but assume explicitly in AI-251 that the is null AI will be
approved.

Jean-Pierre asks whether out parameters should be permitted in a null procedure. Yes, though compilers might give
a warning (at least for scalar out parameters and possibly by-copy composites).

Jean-Pierre continues by asking whether is null should be allowed on protected procedures. It could be a useful way
to force reevaluation of barriers that depend on globals. That idea doesn’t get much support. On the other hand, if we
have protected interfaces, then we would allow is null (we would allow is abstract as well).

Erhard has comments on the wording. We go through his comments one-by-one:

3.4(3):... has [a]{one} parent type ...

3.4(25): The note needs clarification; it doesn’t make sense. Steve Baird asks for guidance. Don’t say “non-derived”
rather talk specifically about interfaces. Don’t use “this” in the sentence. Each note must be a self-contained story,
since notes appear at end of clauses.

3.4.1(10) ... of [of] ...

3.9.4 (new section) First paragraph. The text “...thereby allowing multiple views of objects of the type.” isn’t the
point of this feature. Drop this text.

The entire AI has too much text. Make it smaller, verify that all exa mples are correct syntax, etc. (in particular the
discussion section, which only seems to get added to).

4.5.2(2): Must we introduce a new term here for “potentially share descendants”? Other alternatives are: weakly
compatible, potentially convertible. Tucker doesn’t think we need a term at all. Just use “convertible” and define the
rules in 4.6. (That has to be done anyway.)

4.5.2(3): What is “tested type”? Steve Baird notes this belongs to membership operations. But how can we tell that?
The entire wording section needs to be clearer on how it relates to the existing wording. Wording must identify
whether it follows, precedes, replaces existing text and which paragraph(s).

8.3, after para 26:

The wording “both shall be overridden” is not liked; it sounds like you have to write two overridings. This is
intended to handle the “diamond” inheritance pattern.

Again, the note must be self-contained.

Tucker suggests replace this by “If there are multiple implicitly declared homographs that are not overridden, they
must be fully conformant.”

Tucker wonders, can we allow a non-limited type to inherit from a limited interface? Why do we have this
restriction? We need an example of a problem. Steve Baird replies that the compiler needs to know whether an object
is returned by reference. One possible solution: not allow functions to return Limited_Interface’Class. We’d also
have to have to disallow the same thing for Limited_Abstract’Class and indefinite formal limited private to avoid
contract problems. AI-325 might resolve this? Or make it worse?

Approve intent of AI: 8-0-1.

Minutes of Meeting #19

Draft Version Page 15 of 22

AI-252/03: Object.Operation notation

Tucker explains the wording. Someone asks what happens if a component and an operation have the same name. A
component always hides subprograms (direct visibil ity vs. use visibility). Subprograms overload each other (of
course).

Erhard is concerned about class-wide operations. He finds it weird that an operation Foo can come from many
places. Tuck explains that the choice between class-wide and dispatching is often an implementation detail, and one
might put a class-wide wrapper around a dispatching operation, or change a class-wide operation to a dispatching
operation to enable it to be overridden. We don’t want to force users to change their calls in these circumstances.

Erhard expresses concern about case where class wide type is for a type declared in another package. It would be
weird to declare such an operation. In any case, there is no ordering. The operations in all ancestor type’s packages
are considered, as in use-visibility. So the worst case would be an ambiguous call error.

Erhard suggests only considering class-wide operations where specific type is declared. Tucker says this would make
the use clause users and the Obj.Op users see a different set of class-wide operations. It would be best if users could
change calls from one form to the other without changing the routine called. (This would be a sort of Beaujolais
effect.)

Move the last sentence of the new wording to dynamic semantics, as calls are a dynamic construct.

What about F.Op where F is a function returning an access type? You consider all the interpretations, including
implicit dereference.

What about order of evaluation? 6.4 allows prefix and parameter evaluations to be in an arbitrary order, this does not
change that.

Obj.Op is a name. Thus, you can rename it:

type T is tagged ...

procedure P (This : T; Blah : Q);

X :T;
Fun : Q;

X.P(Fun);

procedure Foo (Blah : Q) renames X.P;

Foo (Fun);

Jean-Pierre doesn’t like this. It hides the purpose of the notation. Tucker points out that we can already do this with
protected subprograms and all kinds of entries. And this could be useful in a generic formal, as it is for entries.

Pascal doesn’t like the rule that this name has the Intrinsic convention.

Tuck explains that it is necessary to avoid requiring the implementation to generate a wrapper on 'Access or
renaming-as-body. For instance:

type PT is access procedure (Blah : Q);

Z : PT := X.P'Access; -- Illegal because the convention of X.P is Intrinsic.

Without this rule, we'd have to be able to generate a pointer to a call with partially bound parameters. That probably
would require some sort of wrapper.

Why is this AI needed? It reduces a barrier to entry for programmers coming from other OOP languages. It also
eliminates the difficulty of determining precisely which package an operation is declared in, which is especially
painful for dispatching calls.

Minutes of Meeting #19

Draft Version Page 16 of 22

Jean-Pierre is concerned that this makes it harder to check that all subprograms are identified by a fully expanded
name. In Ada 95, a search for use is sufficient to insure that, and that is very easy to find.

Randy points out that the inheritance of OOP breaks this anyway -- the routine is often not (explicitly) declared in
the package to which the exp anded name refers. So this doesn’t make it much harder to find the declaration (you
have to search the same set of packages either way). Erhard says that this was even true in Ada 83 with derived type
inheritance. Pascal suggests using an ASIS tool to check this (and other stylistic rules), not grep.

Jean-Pierre is not convinced. He fears that high-integrity users might be alienated. Alan points out that high-integrity
users don’t use tagged anyway — they can grep for tagged if they want (and thus avoid this new feature completely).

What about interfaces? Clearly, this needs to look for class-wide operations in interface packages. Luckily, the
definition of ancestor includes those.

Jean-Pierre comments that if there are two controlling operands, this doesn’t read too well. Sure, but you can always
use a normal call in that case. Other OOP languages don’t have the option of another format, and generally don’t
allow multiple controlling operands.

Approve intent of AI: 5-1-3. Jean-Pierre votes against, giving the reasons mentioned during the discussion.

AI-266-2/03: Task termination procedure

Alan explains the changes. Some confusion occurs: Alan sent a new version labeled “for those who missed it.”,
which was not filed as it appeared redundant. The editor suggests that new rewrites be clearly labeled as new.

Erhard asks what the default handler is for. It is for providing a partition wide-handler.

Tucker proposes the default only affect a task’s children. He suggests the master task should be involved. Steve
Michell says there is no such thing as master task; it makes more sense to use “master” (as in master block). Erhard
doesn’t think that master is the right grouping for allocated tasks. The creator may want to know what happens. Steve
Michell says that can be handled by using explicit handlers.

Steve Michell worries about race conditions. Not a problem, because you only read these when you terminate. Jean-
Pierre worries about the master walk to find the terminator. That doesn’t seem to be a problem. Steve Michell thinks
copying of handlers would be better. No, because that doesn’t change the handler for tasks or masters that already
exist – and that would cause a race condition.

If we adopt this semantics, then we should have separate routines for default handlers, because they are very
different from a task-specific handler. But drop the default value for the task in the specific handler routines; it isn’t
useful.

Pascal and Tullio both note that Ada has a task hierarchy, we really ought to support it for these handlers.

Joyce wonders if it would be impossible to support handlers for library level tasks – they elaborate before any code
can be executed. Tullio says that the static elaboration model (AI-265) could be used to handle that. Randy says that
you could have a package that contained the setting of the default handler, and use pragma Elaborate_All on it to
force it to elaborate before the package that creates the tasks.

Tucker summarizes the discussion so far: return to separate default procedures, eliminate the default parameters,
default handlers are set for the current task and its children.

Erhard asks why the Old_Handler parameter is needed here. Do you really want to be able to replace the old handler?
You might want to chain the handlers – canned libraries need their handlers executed, no matter what the rest of the
application does.

What does old handler return? Does it include the default if there is no specific handler? No, and doing so would
cause a problem. (If the default is changed after it was returned from setting a specific handler, the old handler would
be called, not the current default.) But we do need a way to call the default handler if there was no specific handler.
Tucker suggests we need “call default handler” routine, that would be called if there is no previous handler.

Minutes of Meeting #19

Draft Version Page 17 of 22

That is, chaining would look like:

if Old_Handler /= null then
 Old_Handler (...);
else
 Call_Default_Handler (...);
end if;

Tucker, thinking out loud, suggests that maybe we should have just one handler, with an enumeration status. That is
safer, because then you can be sure that you didn’t miss a case.

Tucker would prefer that the old handler return a deferred constant that represents the default handler if there is none.
That way, chaining is just calling Old_Handler. That has some agreement.

Instructions for Alan: It is important that chaining work. And the task hierarchy should be used.

AI-285/04: Support for 16-bit and 32-bit characters

Pascal describes the current version of the AI.

A.4(1), A.6(1), A.7(13) are missing a comma before “and”.

Kiyoshi will consult with the Japanese SC22 about the acceptability of this AI. He will provide input by e-mail prior
to the next ARG meeting.

Pascal notes only “space” (32) character is considered a “space”. A number of operations skip a space. E.g Get in
Text_IO, Trim in the string packages, etc. Should this be changed to recognize ideographic space? But this is not
upward compatible. Kiyoshi’s view is that space (32) is the only space. Should non-breaking space at position 160 be
treated as a space? Probably not, both because of upward compatibility and because it is not supposed to be a
separator.

Pascal wonders what C is doing for 32-bit characters? Should we add something to Interfaces.C? Pascal will
investigate.

Jean-Pierre is concerned about the tables for character classification and upper/lower case equivalence. Pascal has
already created those from the official character set definitions; see the appendix of the AI.

It is noted that we don’t have much choice on this issue; this is an SC22 mandate. Are there any other SC22
mandates? There is a standard for writing SC22 standards. That standard tries to make the terminology for
programming languages consistent. We can’t practically use that standard until we do a full revision; otherwise the
terminology would be hopelessly confused. We of course are following the character set mandate.

Approve intent of AI: 9-0-1.

AI-292/00: Sockets Operations

Randy reported that he has been unable to find people willing to write this up (beyond himself, which the ARG
specifically asked him not to do). There is some sentiment (which Randy does not share) that sockets shouldn’t be
included in the standard.

Tucker asked to consider using GNAT.Sockets. Randy noted that there were a number of concerns with those
packages, not the least of which is that no one has stepped forward to write an RM description of it.

After much discussion, Ed agreed to see whether resources could be found to document GNAT.Sockets to RM
standards.

Minutes of Meeting #19

Draft Version Page 18 of 22

AI-296/02: Vector and matrix operations

John describes the changes and work for this package. Vectors and matrices are pretty obvious, but linear algebra
makes it more interesting. He visited NAG (National Algorithms Group) to try to get ideas. Everything of theirs has
lots of parameters, giving a lot of control but also making it fairly hard to use. They also make the LU decomposition
visible so user can do it if needed.

Possible additions. Finding roots is a possible addition. To find more, John looked at his HP Pocket calculator. If the
calculator can do it, it seems that Ada should be able to. The calculator has:

• Trig on real and complex.

• Does not have eigenvalues.

• Statistical stuff.

• Integration for function in 1 variable.

Ed comments that vectors and matrices are fundamental, but statistics seems like it is not appropriate to a language
standard.

John notes that he included a vector product (aka “cross product”), but perhaps that was a mistake. It only makes
sense for 3-D vectors. It is suggested that a subtype Three_D_Vector be defined to make this clearer.

Steve Baird thinks that Solve should be called "/". John replies that that may confuse the user because order of
operations is not what you expect. Solve solves a set of equations Y = solve(A, X) so that X approx = A * Y.
Moreover, it could cause people to inverse the entire matrix when that’s not necessary.

John notes that the package includes operations mixing real and complex operations for complex vectors and
matrices.

John asks if there should be a preinstantiated generic, all language-defined generics have one (also see AI-328
below). Yes, and it should be described similarly to G.1.2(9/1).

Pascal notes that there are no operations involving “pure” imaginary operations. That is intentional.

Add LU decomposition as separate operation? Yes, this makes a big difference in performance in some applications
(the LU decomposition does not need to be recalculated each time.) There should be a separate type (private, array?)
for LU decompositions.

John: I placed the eigenvalues and eigenvectors in child packages, so they would be easy to remove. There is an
issue: a square symmetric real matrix has real eigenvalues. Otherwise, the matrix can have complex eigenvalues.
Thus, the package has 4 routines:

• Symmetric real matrix for real values;

• Nonsymmetric real matrix with complex eigenvalue;

• Hermitian matrix;

• General complex matrix.

These routines all have implementation-defined accuracy requirements.

Who is the audience for these packages? A typical engineer.

How do we check whether a matrix is symmetric? We use floating point equality, and raise Argument_Error if not
exactly symmetric.

We decide to remove the cross product.

Integration is not worth it, because there are so many algorithms, all tuned to particular kinds of data. That is too
complex for our purposes. (The NAG Integration package runs 27 pages.)

Minutes of Meeting #19

Draft Version Page 19 of 22

Should we include routines for finding roots of polynomials? John will try to do something for this. After all, the
NAG Polynomial package only has 12 pages.

Approve intent of AI: 7-0-3.

AI-297/05: Timing Events

The !proposal doesn’t match the !wording; that is very confusing. It doesn’t add anything anyway, just replace it
with “See wording”.

Pascal wonders what a “potentially suspending operation” is. There is no such thing. Use “potentially blocking
operation”.

Steve Michell thinks that the parameters “In_Time” and “At_Time” should have the same name. No, these
parameters have different meanings (relative vs. absolute time).

Jean-Pierre asks why we are doing a ceiling check; ceiling priorities may not apply to this unit. Alan says that this is
a copy of the text from interrupt handlers. No, that text only applies when the ceiling policy is in effect. Moreover,
this wording assumes that timing happens at the highest priority; that is over-specification. Tucker points out that by
specifying this to have the highest priority, we make it safe to call in all cases. Otherwise, it would be possible that
the clock handler couldn’t call this procedure without causing a bounded error. Alternatively, we’d have to have a
constant with the clock priority, so that could be used in pragma Ceiling_Priority.

Jean-Pierre worries that if you’ve missed a lot of deadlines, you could get a stack overflow because the rearming
causes an immediate call. (That is, call handler, which rearms, which calls handler immediately, which rearms, etc.)
There doesn’t seem to be a reasonable solution to this, and if you’ve missed a lot of deadlines, you’re in big trouble
anyway.

To summarize the changes: Replace proposal with (see wording.); “potentially suspending operation” –> “potentially
blocking operation”; add “if ceiling_locking policy applies…” to the ceiling check.

Approve AI with changes: 10-0-3.

AI-298/04: Non-Preemptive Dispatching

This AI is removed from “hold” state, since AI-321 (on which is depends) has been approved.

AI-307/03: Execution-time Clocks

Alan explains the changes - see the first paragraph of the discussion for a summary.

John sees typos marked in his notes. He withdraws the first after discussion. The second is the second paragraph of
Initialize and Finalize - “Ada.Finalize.Controlled” should be changed to “Ada.Finalization.Controlled”.

Randy suggests eliminating the first paragraph of the discussion, because we don’t talk about differences in AIs (that
can be found via the version control system if needed).

Tucker notes typos in the first sentence of Implementation Requirements: “user” -> “used”; “must” -> “shall”.

In the last paragraph of !discussion – change “ARM” to “Arm”.

Pascal opines that the discussion is long and boring. Some should go to !problem, some should stay where it is, and
the rest cleaned.

Steve Michell comments that the phrase “the timer associated with the task” implies that there is only one timer, but
there is nothing preventing multiple timers for a task. Yes, there can be multiple timers, but there can be only one
clock, so this is OK.

Minutes of Meeting #19

Draft Version Page 20 of 22

Erhard can’t find where Timer_Resource_Error is raised. That’s in the 6th paragraph.

Pascal thought that the previous discussion concluded that Timer_Resource_Error wasn’t valuable. No, the
discussion was inconclusive. Alan comments that the prototype developers thought this was important, so he left it
in.

Tucker: “When Timer is created…” sounds like that it has something to do with object creation. Say “For a given
Timer, at a time no later than return from the first call of one of its Arm procedures, the …”. This later is modified to
“ When a Timer object is created, or upon the first call to one of its Arm procedures, ...”

[At this point on Friday afternoon, the editor’s computer failed. Tucker Taft volunteered to be the emergency minute-
taker. The editor was able to recover his notes after returning home.]

Comments about exceptions being raised should be removed from the package specification.

Remove “In this Annex,” from the first (text) paragraph of Static Semantics. The last sentence of that paragraph
should be changed to “It is implementation defined which task, if any, is charged the execution time...”

Add “values of” to the second sentence of the second paragraph of Static Semantics: “The set of {values of} the type
CPU_Time corresponds...”.

In the description of the Arm that takes a CPU_Time parameter, change “counts” to “monitors”.

Does the Timer_Expired description cover all of the possibilities? We draw a state diagram on a whiteboard. The
wording needs adjustment. Rewrite the Timer_Expired paragraph to “The Timer.Timer_Expired protected entry
suspends the calling task until the timer expires if the timer is in the armed state; if the timer has already expired,
then the calling task proceeds. If the timer is in the disarmed state, the Timer_Error exception is raised.”

Throughout: remove [Timer.], as it is just clutter

Approve AI with changes: 12-0-1.

AI-321/03: Definition of dispatching policies

Alan explains the changes to the wording. It was restructured as discussed at the last meeting. But ignore the
!proposal section; it wasn’t updated.

Last three paragraphs of the new D.2.2 should move. Note 14 and the preceding paragraph should be at the end of
D.2.1; Note 15 should be at the end of D.2.3.

The cross reference (see 9.2), which appears in D.2 and D.2.1 should be (see 9) -- the reference is to 9(10).

Tucker comments that the sentence “A task runs (that is, it becomes a running task) only when it is ready (see 9)” in
D.2.1 feels pre-emptive. John suggests changing “only when it is ready” to “only if it is ready”. Erhard suggests “A
task can become a running task only if it is ready (see 9) and the execution…”

Steve Baird asks about the first paragraph of the Documentation Requirements in D.2.3. Shouldn’t “the highest
priority” be a “a higher priority”. Joyce suggests fixing with “the highest priority of those available”. Alan suggests
that the wording should be “nonempty ready queue”. That gets general agreement.

Jean-Pierre asks about the last paragraph of D.2.1 Dynamic Semantics. He describes an OS that gives slices based on
priorities (bigger slices for higher priorities). He doesn’t think that this paragraph would allow that (where lower
priority tasks may run). After some discussion we decide that there is no problem here.

Erhard wonders why we select from the head, but never explain what the head is. “Head” is what you select; you
could define “head” any way you want for a specific policy.

John notes a typo: “possible” should be “possibly” at the end of D.2.1 Dynamic Semantics. He also suggests fixing
D.2.2 Implementation Permissions by removing the word “other”. Randy notes that we already fixed that text in AI-
256; we should use that fix here.

Minutes of Meeting #19

Draft Version Page 21 of 22

Approve AI with changes: 13-0-0.

AI-326/01: Tagged incomplete types

Can a dereference having an incomplete type be passed to a subprogram with a formal that is of an incomplete-
tagged type? Tucker thinks that you should be able to do what you can do with access values and access parameters.
Randy and Steve Baird object; you must not allow accesses to a type that is not yet frozen, as the position of the
components has not yet been determined. That’s clearly a problem for discriminants and for tags (in implementations
that allow the tag to be positioned). Ada 83 had this problem, and we certainly don’t want to reintroduce it.

Tucker wonders if this problem already exists for children that can see the incomplete type and try to call a
dispatching operation. Perhaps, but clearly an implicit dereference is occurring to extract the tag when you use a
controlling access parameter, and such an implicit dereference is illegal. So we can apply Dewar’s rule here: the
language certainly does not say something absurd (that such calls should work).

Tucker decides to withdraw the dereference rule. Thus, we decide to drop the “or actual parameter” from the
summary, problem description, and proposal.

Can a primitive of an incomplete tagged type be declared before the full type? Yes, you can do that. That is already
true if you use access parameters on a “normal” incomplete type. But such an operation is not a dispatching
operation.

Approve AI with changes: 10-0-1.

AI-327/01: Dynamic ceiling priorities

The only primitive needed is to be able to set the ceiling priority from inside the protected object. A change takes
effect at end of the protected action. The idea applies to all protected types, attributes should be used to avoid having
to define a notion of predefined protected-object identifiers.

The pragma should be a restriction: No_Dynamic_Ceilings.

Jean-Pierre Rosen suggests an attribute available from outside of the protected object. Changing the priority from
outside brings up a number of problems (covered in the discussion section); it is a can of worms.

What value does 'Get_Ceiling return after a call to 'Set_Ceiling prior to returning from the current protected action?
We don’t want to have to keep multiple versions of this value (the “real” one and the “about to be used” one).

Suggestion: Make this into an attribute that represents a variable component of the protected object, that is only
accessible inside the protected body. (The wording would be similar to that for 'Caller.)

Call the attribute 'Priority to match the name of the pragma Priority, since it is independent of the ceiling locking
policy.

Straw vote to keep AI alive: 12-0-2.

AI-328/01: Add preinstantiations of Complex_IO

Fix spelling in penultimate sentence: corr{e}sponding.

Approve AI with change: 9-0-0.

Minutes of Meeting #19

Draft Version Page 22 of 22

Detailed Review of Regular AIs

AI-237/05: Finalization of task attributes

Erhard explains his objections to the current wording. The basic problem is that finalization immediately after task
termination is only mentioned in an imple mentation permission, rather than being part of the “main” semantics.

We discuss the issues extensively. (We also discussed this in Bloomington.) We eventually settle on the following
wording:

“After a task terminates, all of its task attributes are finalized. At the time when the master of an instantiation of
Ada.Task_Attributes is finalized, any remaining non-finalized attributes associated with the instantiation are
finalized.

Implementation Advice:

Finalization of task attributes and reclamation of associated memory should be performed as soon as possible after
task termination.”

