Minutes of the 16™ ARG Mesting
21-23 June 2002
ViennaAustria

Attendees: Steve Baird, John Barnes, Randy Brukardt, Alan Burns (Friday and Saturday morning), Kiyoshi Ishihata,
Pascal Leroy, Stephen Michell (Friday and Saturday), Erhard Ploedereder, Jean-Pierre Rosen, Tucker Taft

Observers: Tullio Vardanega (Friday and Saturday)

Meeting Summary

The meeting convened on 21 June 2002 at 14:30 hours and adjourned at 15:30 hours on 23 June 2002. The meeting
was held in a conference room at the Parkhotel Schénbrunn on Friday and Saturday, and in aroom at the Institut ftr
Rechnergestiitzte Automation of the Technische Universitét on Sunday, both in Vienna, Austria.

The meeting covered the entire agenda for amendment Als, and afew normal Als. The majority of the meeting time

was spent on amendment Als, with afew hours on the third day spent on normal Als. Vienna had an unusual heat
wave during the meeting, and the meeting rooms were very warm.

Once again, while there was no official vote, | (Randy) think that | speak for othersin thanking Pascal and the Ada
Europe organizersfor the facilities and refreshments.

Meeting Minutes

There were no comments on the minutes of the 15th ARG meeting. The minutes were approved by acclamation.

Next Meeting
The next ARG meeting is set for October 11-13, 2002, hosted by Tucker Taft in the Boston area.

A discussion of the following meeting ensues. SigAda (in December) istoo soon after the October meeting. A

meeting date of February 7-9, 2003 is tentatively selected. A host is needed. Several peoplein cold weather cities
volunteer. A warm weather location is heeded. Joyce Tokar in Phoenix, AZ, isthe obvious victim, umm, candidate.
Pascal will contact Joyce to make arrangementsif possible.

Old Action Iltems

The old action items were reviewed. Following isalist of items completed (other items remain open):
Steve Baird:
Al-216
Al-251
Al-280

Al-291 (Study the recommended level of support in chapter 13 to find any problems with aliased
and by-reference types. If any are found, create an Al to correct them.)

Randy Brukardt:
Al-224
Al-248
Al-259

Final Version Page 1 of 25

Al-279
Al-283
Editorial changesonly:

Al-85

Al-147
Al-246
Al-254
Al-260
Al-262

Gary Dismukes:
Al-196

Pascal Leroy:
Al-228

Al-284
Tucker Taft:
Al-217-04
Al-266
Al-286
Al-288

Funding: Tried to track down funding for WG9 and ARG, handed one possibility over to Jim
Moore to pursue.

Joyce Tokar:
Al-249

New Action Items

The combined unfinished old action items and new action items from the meeting are shown below:
Steve Baird:
Al-251
Al-295
John Barnes:
Al-296

Randy Brukardt:
Al-224
Al-292
Al-299

Final Version Page 2 of 25

Al-301
Al to fix the contract model violation of C.3.1(8) (new Al-303)
Object_Size attribute
Editorial changesonly:
Al-216
Al-217-04
Al-262
Al-276
Al-284
Alan Burns:
Al-249
Al-265
Al-266-02
Al-297
Al-298

Gary Dismukes:
Al-158

Bob Duff:
Al-239
Al-287 (split into aggregate part and constructor function part)
Be the test creator of last resort

Mike Kamrad:
Various itemsto be standardized [jointly with Mike Y oder]
Discard_Name & ‘image
External_Tag
Storage |0 of tagged types
Array indexed by holey enumeration
Static elaboration
GNAT attributes and pragmas
CPU time (separate from real-time) [jointly with Joyce]
Pascal Leroy:
Al-264
Al-285
Contact Joyce Tokar to seeif the February meeting can be held in Phoenix, AZ.

Steve Michell:
Final Version Page 3 of 25

Al-148
Al-250

Erhard Ploedereder:
Al-237

Tucker Taft:
Al-133
Al-162
Al-167
Al-188
Al-214
Al-230
Al-231
Al-252
Al-270
Al-282
Al-286
Al-288 (split into two Als: pre/postconditions and invariants).
Al-290
Al-293
Physical units (length/dimensional analysis), whereby square meters are generated by result of
multiplying meters; subtypes with special attributes would be used to provide the specifications of

these dimensions, reducing the introductions of lots of extra operators.

Make a proposal for partial parameter listsin generic formal packages.
Joyce Tokar:

CPU time (separate from real-time) [jointly with Mike Kamrad]
Mike Y oder:
Various items to be standardized [jointly with Mike Kamrad]
Discard_Name & ‘image
Externa_Tag
Storage |0 of tagged types
Array indexed by holey enumeration

Static elaboration

Final Version Page 4 of 25

GNAT attributes and pragmas

Detailed Review

The minutes for the detailed review of Als are divided into existing amendment Als and non-amendment Als. The
Alsare presented in numeric order, which is not necessarily the order in which they were discussed. Votes are

recorded as “for”-"against”-“ abstentions”. For instance, avote of 6-1-2 would have six votes for, one vote against,
and two abstentions.

Detailed Review of Amendment Als

Al-216 - Unchecked Unions -- Variant Records With No Run-Time Discriminant
Steve Baird gives a short description of the minor changesto the Al.

“Said to be” isnot proper RM language. Changeitto “called” in the first paragraph where it occurs (two
occurrences) and to “defined to have” in the second paragraph whereit occurs.

Tucker querieswhy “Size” is under “static semantics’. Steve Baird repliesthat Sizeis related to representation items.
Tucker agreesto leaveit alone.

Remove the quotes around “inferable discriminants’ and italicize the first occurrence. Make the list a set of bullets.

Approve Al with changes: 6-0-3.

Al-217-04 Handling mutually recursive types via type stubs with package specifiers
Tucker explains the wording.

Erhard notes that he doesn’t like 3.10.1(3.1) “...require that the completion exist.” Exist is not awell-defined term. Is

there a check, and where will it occur? Tucker replies that thereis acheck. Thisisan introductory sentence and the
rulesarein paragraphs 5 through 10. The second sentence of this paragraph should be in square bracketsin the
AARM. After discussion, Erhard decided that the wording isOK asitis.

Discussion turnsto the completion rule. Erhard was concerned about visibility, but is convinced that isnot isan
issue.

Someone wonders if there is a problem with private with? No oneisimmediately sure. Steve Baird suggests that
breaking privatenessis not a problem here, asthisisjust a semantic dependence. So no change to the ruleis needed.

Discussion continues on to the dereference rule. Someone comments that thisis very confusing. Tucker admits that it
is confusing to him, too.

Erhard wonders how E can ever match D’ Class (where D and E are the names used in the wording of the Al). We
look at an example:

package Qis
type T is tagged separate in P;
type A is access T C ass;

o: A
end Q

package P is

type Tis ...
oC: T;

Final Version Page 5 of 25

oC := O all;
end P;

In this example, the expected type of O.all is Q.T’ Class which isD'Class; the type of OC isP.T whichisE.

Tucker notesthat there is an assumption that the completion of the class-wide type is the same as the class-wide type
of the completion (this should probably be stated explicitly).

Steve Baird asks about another check. If you have an incomplete type that is tagged, there is a check that the

completion istagged. When does this check happen? Tucker replies at the point that you check the completion.
Thereis some question whether the proposal says that. Steve notes that that means that this check doesnot happen if
you never use the bad completion. Randy claims that the wording does say that.

Tucker suggestsadding “1n the case of atype stub, these checks are performed no later than when a use requires the
completion to be available” at the end of 3.10.1(4). Steve Baird is happy that a compiler has the option of flagging it
earlier.

Steve Baird comments that he doesn't like the idea that the type has multiple first subtypes. Tucker objects, saying
that theincomplete typeisreally adifferent type, not a subtype of the completion.

Tucker is asked about the implementation that his compiler team did of thisfeature. He saysthat it isincomplete
(pun?), asit doesn't handle the fancier type matching rules.

Steve Baird writes a question:

type Tis ...; -- Inconplete

type A is access T,

o: A

type T (D : Integer) is ...; -- Conpletion

A all.D — Legal ?

Do we want thisto be legal? If so, then we're looking at the completion. Tucker points out the last rule of (5-10): in
this context, they are the same type.

Pascal querieswhether this allows completion with a private type. Tucker answersthat it does; that functionality is
provided by changing full_type declaration to type_declaration in the wording.

Erhard wonders what happensif two type stubs meet? Pascal responds that the ideaisthat it isalexical check.
Tucker pointsto the last sentence of 3.10.1(11). Steve Baird wondersiif “considered” is good RM wording. Tucker
shows that this wording is used elsewhere in the manual (for instance, in the accessibility rules). Randy comments
that we certainly want to copy the crystal clear accessibility rules, which draws general laughter.

Steve Baird notes that in the last tagged rule (where 'Class is allowed, the last bullet of the second set of bulletsin the

replacement for 3.10.1(5-10)), “above” is unclear. The old wording used “here”, which hardly seems better. Randy
points out that thiswas asinglelist of bullets before (thus * here” made sense); now there are two lists of bullets.

Several suggestions for fixing the wording are floated. Erhard suggests replacing “above” by “for incomplete types”.
Tucker suggests changing this“above” to “here”. The group finally decidesto change “above” to “tagged incomplete
types’. Wereturn to “considered”, and decided to change it after all. Change “ considered” in the last paragraph of
3.10.1(10) to “isdefined to be”.

Someone claims that the third bullet of the last bulleted list of 3.10.1(10) is redundant.
Thereisalong discussion on these rules. Erhard suggests that there is a problem, as these can be used in access to

subprograms (see regular incomplete rules). The second bullet of the same list must state that E has to be either
tagged or complete.

Final Version Page 6 of 25

Tucker suggests changing “use” to “construct” in the new sentence (added earlier) in 3.10.1(4). (Because the
sentenceisn’t asclear asit could be.)

Tucker goes on to suggest changing the nested list of three bulletsin the last list of three bulletsin 3.10.1(5-10).
Change thefirst bullet to:

E isthe same as the completion of D; or

E istagged and the same as D; or
He further suggests that we should change “same” to “covers” here.
In 3.10.1(11), change “are considered” to “are defined to be”.

Approve Al with changes: 8-0-1

Al-224 - Pragma Unsuppress

Randy explains the inheritance arguments (see the appendix of the Al for details).

Erhard argues that the inheritance is bad, because you can’t move code around.

Pascal & Erhard argue that whatever theruleis, it should be the same for configuration pragmas as for regular ones.

Steve Baird asks us to consider subunits: A has a non-configuration Suppress pragma; A.B has a configuration
Unsuppress pragma. Now consider A.B.C — are checks suppressed? | mplementation-defined is ugly here.

Wetake a series of straw polls:
In favor of inheritance everywhere inside passes easily: 7-0-1.
In favor of configuration pragmas being equivalent to the same pragma occurring asfirst line of each unit: 7-0-1.

Tucker comments that implementations that don’t inherit Suppress probably don’t need to inherit Unsuppress either.
(Because you can’'t tell — if the check was not suppressed in the first place, Unsuppress would have no effect).

Someone asks about generics: are you allowed to suppressinside the instance? Tucker claims that an instance body

isacopy, so it doesinherit from the containing unit. Steve Baird disagrees with thisanalysis. No conclusion is
reached on this point.

Steve Baird notes that thereis asimilar problem for pragma Inline. What if aroutineisinlined in an areawhere
Suppress applies, but Suppress does not apply on the original ? Tucker says that this problem isworse if Unsuppress
appliesinside the inlined routine.

So if Unsuppress applies to the subprogram body, it hasto win even if the body isinlined in aregion where checks
are suppressed. In the absence of an Unsuppressin the body, it isimplementation-defined whether a Suppress at the
point of call applies.

It appears that generics should follow similar rules.

Tucker would like an explicit permission that it is OK to suppressin inlined code.

Approveintent of Al: 6-0-2

Al-248 - Directory Operations

Jean Pierre explains his proposal. He would prefer we table this proposal, and let him make aworking group to do
this and other possible related services.

Final Version Page 7 of 25

John mentions that perfect is the enemy of good enough. Adalacks APIs because often we don’t have a perfect
interface.

Tucker agrees with that, and would like to make this available sooner rather than later.

Randy and Jean-Pierre engage in atechnical discussion of the merits of Jean-Pierre's proposal and the Al1-248
proposal.

John comments that he would hate to lose momentum on this one API.

Steve Michell suggests that if Jean-Pierre makes anew proposal, he should make it as similar as possible.
Tucker asks how to make progress on this?

The options areto vote it out (approve and forward to WG9), vote to approve and hold, or hold it.

Pascal asks why the proposal has both Rename and Copy_File? Because Rename works on directories.

Approve Al aswritten and send it to WG9: 8-0-1.

Al-249 - Ravenscar Profile for High-Integrity Systems

Alan Burns give areport on the IRTAW review of Al-249. The open issues are the 5 points enumerated bel ow.
Thereis general agreement that these are the only issues. We will discuss them individually.

Point 1: The minutes of the Bloomington ARG meeting requests that the Al be split into two. But there seemsto be
three parts:

a) Definition of new restriction identifiers.

b) Definition of pragmaProfile.

c) Definition of Ravenscar profile identifier.
Should (a) be one Al and (b)+(c) the other?
Discussion: One of the new Alsisthe new restriction identifiers; the other is pragma Profile and the definition of the
Ravenscar profileidentifier. Theintent isthat a given profile simply specifies a set of existing pragmas and has no

new semantics of itsown.

The new restrictions should be put into Annex D; some restrictions currently defined in Annex H should be moved to
annex D.

Point 2: Should the Ravenscar profile enforce FIFO_Within_Priorities and Ceiling_L ocking, or have these as
defaults or allow them to be fixed by the profile_argument_definition (i.e. parameters to the profile)? IRTAW11
voted strongly for enforcement.

Discussion: The group agrees with the IRTAW position.

Point 3: Drop Max_Asynchronous_Select_Nesting => 0 asit is covered by the new identifier No_Select_Statements.

Discussion: The group agrees with this.

Point 4: Section 1.4 of the Al requires that potentially blocking operations be detected. Should this be represented by
anew restriction? What identifier should be used? Detect_Blocking?

Discussion: Randy (and others) comment that this doesn’t seem like arestriction, more like a sort of policy. Tucker
suggests pragma Bounded Error_Policy (Detect_Blocking). Pascal thinksthat this soundstoo complex.

Final Version Page 8 of 25

Alan commentsthat “Immediate_Reclaimation” isnot really arestriction either. The group groans, then decidesto
make the new one a restriction. Someone proposes the name No_Undetected_Blocking. This sounds ugly. Erhard
suggests No_Nested Protected Actions; Alan argues that nesting isn’'t an issue. Steve Michell suggests
No_Undetected Blocking_In_Protected_Operation. Thisistoo long. Jean-Pierre suggest No_Blocking as the name.
This givesthe wrong impression, as theissue is the detection of blocking, not blocking itself. Tucker saysit’sthe
wrong kind of thing, we should stick with “Detect_Blocking”. Exhaustion sets in and the discussion fades away

without afirm conclusion.
Steve Michell suggests making it a stand-alone pragma*“ Detect_Blocking”.
Wetake astraw poll, counting those in favor of arestriction. Thisis defeated 3-7-1.

Jean-Pierre asks ageneral question: What if thereis aconflict in pragmas? (Given a pragma Profile and an explicit
Restrictions pragma, for example). Pragma Profileis equivalent to a basket of pragmas; whatever rule would apply to
a conflict between pragmas would apply here. In particular, if Detect_Blocking is given together with the restriction
No_Exception, the program is erroneous if blocking happens.

Point 5. There seems to be some confusion over No_Task_Termination. IRTAW11 understood that this restriction
was dropped by the ARG (sinceit could not be enforced). The workshop therefore felt that normal Ada semantics
should apply. Minutes of the Bloomington ARG meeting imply support for No_Task_Termination; its use being to
allow an implementation to say what happens if termination actually takes place.

Discussion: No, thisitem was retained by the ARG. This essentially is a case where each group convinced the other
of itsoriginal position. The group determinesto retain the restriction identifier.

Approveintent of Al: 10-0-0

Alan Burns will update the Al (including the RM wording, identifying the clauses where the wording changes will
appear inthe RM).

Al-251 - Abstract Interfaces to provide Multiple Inheritance

Steve Baird says he views abstract interfaces as providing a mapping from slot number to slot number. Tucker asksif

thisisauser view. This gets general laughter. Steve responds that the reason for his view isthat derivation doesn’t
change anything.

John notes that the discussion section of the Al needs to be updated to match the wording.

Steve continues that the key change in the model is that an abstract interface typeis an abstract tagged type. (It used
to be similar but not the same.)

An abstract interface typeis either defined by an abstract type declaration, or derived from an abstract interface type
and is abstract.

Pascal would like interface in the derived type declaration when defining an interface.

The suggestion is to replace abstr act by interface in the derived type declaration, then adding alegality rule. For
example:

type T is interface ...

type T2 is newinterface T [and N]; -- Bad (see bel ow).
type T3 is new T [and T2] with null record;

type T4 is abstract new T [and T3] with null record,;

We cannot use the syntax of T2, because that would cause a parsing conflict if interface is not reserved (as currently
proposed).

Final Version Page 9 of 25

So the ARG's legendary creativity for syntax istapped. Many suggestions are made for deriving from an interface:
type T2 is interface new T [and N];
type T2 is interface based on T [and N];
type T2 is interface of T [and N];
type T2 is interface with T [and N];
Welook at regular tagged extensionsto seeif any ideas appear:

type NT is [abstract] new T with [interface_sequence and]
[record...end record | private | null record]

i nterface_sequence ::= subtype_mark |
i nterface_sequence and subtype_mark

This syntax can only create atagged type (either regular or abstract). Interfaces cannot be created with this syntax.
The proposed syntax for interfacesis:
type T4 is [limted] interface [with interface_sequence];
So, if we inherit from a single interface, we get:
type T2 is interface with T,
So we don't even need derived interface types, and thus we don't need syntax for them.

Does eliminating derived interface types cause a contract model problem? No, if we derive from an interface type

with the regular extension syntax, then we get an abstract tagged type. Erhard still doesn’t believe that thereisn't a
problem. He asks about the following:

generic

type Tl is abstract tagged private;
package P is

type T is abstract new T1l with null record;
end P;

type Ais interface ...
package PP is new P (A);

A doesn't match T1, so thereisn't aproblem. Several people think we need an interface generic formal type. Steve

Baird says no, there are problems with this corner of the language anyway. Y ou don’t know the set of operations
involved, so how do weimplement it? We don’t want more of this.

Some people do want more of this. Someone says that we should fix the problemsin the existing language, not

ignore them. It is suggested that using formal interfaces for layering would make sense, where a generic takes an
interface, mixesin new operations, then exports anew interface. Tucker shows an example:

generic
type Formal _Interface is interface;
with procedure Display (X : Formal _Interface’ Class);
package Gis
type My_T is abstract new Controlled with
Formal _Interface and private;

This example seems valuable and likely. Steve Baird finally givesin.

Final Version Page 10 of 25

Steve Baird brings up the rule that a completion cannot add interfaces. This seems unfriendly. But without thisrule,

the contract model and privateness are hosed. |sthere any alternative? Steve says no. In the absence of a better
solution we have to stick to this restriction.

What about the rules that say one routine may fulfill more than interface? Thereisarule that the routine in the two
interfaces must be fully conformant. The alternatives are very ugly and heavy.

Someone objects to the changes in section 8. Please do not change the rules for programs that don’t use interfaces.
These were very difficult to get right, and we don't want to make any accidental changes.

Someone finds the wording “simultaneously inherits’ to be obscure. Can we get rid of this wording? Steve Baird
saysthat this means as part of a single declaration.

A suggestion is made to remove “abstract” from terminology, these arejust “interfaces”.

Tucker would like to see null procedures winning over abstract proceduresif thereisaconflict. The group does not
have a strong opinion on thisissue.

Erhard asks why do we define null procedures? Tucker explainsthe rationale again (it's explained in the Al).
Steve Baird asks about the rule that “ A limited interface cannot be implemented by anon-limited type.” Thisruleis
necessary because replicated (template) generics would not statically know whether areturn typeisreturn by
reference. Here is a case where that is no longer known at compile-time:

type Lint is limted interface;

function F (X : Lint) return Lint’Class is abstract;

function F2 (X : Lint) return Lint is abstract;

procedure P (X : Lint);

type NLT is interface with Lint;

function F (X: NLT) return NLT C ass;

function F2(X : NLT) return NLT;

procedure P(X : NLT);

type Acc is Lint’'C ass;
Ptr : Acc;

X : Lint’Class := F (Ptr.all);
P (F2 (P.all));

When you call Finadispatching call, you do not know statically if the result is return-by-reference. Thisisnew; in
order to prevent it, we require everything to be limited.

Tucker musesif we could just disallow areturn type of the interface type for primitive functions. That would be a
contract model problem; a check would be needed at instantiation time. So, we must respecify limitedness each time,
so it isexplicit. Steve and Tuck will investigate thisissue.

Steve Baird will take another stab at this Al.

Al-262 - Access to private units in the private part

Randy describes the change to the rules. Essentially, he enumerated the places where it can appear, because we need
to allow nested units and children.

We discuss the wording. Someone asks about private parts of tasks and protected objects. We could just say private
part. So reword to:

Final Version Page 11 of 25

“...shall appear only within a private descendant of the unit on which the with_clause appears, or within aprivate
part, or body, or pragmain context_clause.” Delete the use clause sentence.

The group prefers bullets:

“A name denoting a declaration mentioned only in awith_clause [which]{that} includesthe reserved word private
shall appear only within:

aprivate part;
abody;
aprivate descendant of the unit on which the with_clause appears;
apragmawithin acontext_clause.”
Tucker is concerned that we don’t limit this to the scope of the with_clause. He suggests:

“Within the scope of awith_clause that includes the reserved word private, a name denoting alibrary item
mentioned only in that with_clause shall appear only within:

aprivate part;

abody;

aprivate descendant of the unit on which the with_clause appears;

apragmawithin acontext_clause.”
Steve Baird objects. What if there are two private withs for the same unit? This rule seems to not apply.
Reword the rule again:

“A name denoting alibrary item that is visible only due to being mentioned inwith_clauses that include the reserved
word private shall appear only within:

aprivate part;
abody;
aprivate descendant of the unit on which one of these with_clauses appear;

apragmawithin a context clause.”

An exampleisgiven:

private with PWp;
package Parent is

end Parent;

private with PWp;
private package Parent.Child is

X PW.T;
private
Y : PW.T,;

end Parent. Child;
We need to allow both X and Y here. It appears this wording does that.

Final Version Page 12 of 25

Should weretain the rule that allows private withs only on packages? The argument in favor of allowing it anywhere
isthat it is orthogonal. It doesn't complicate the wording. And it can be useful for automatically generated code. We
take a straw poll to allow them everywhere: 7-0-1.

Erhard notes that the summary needs to be fixed to reflect the wording.

Approve Al with changes: 8-0-0.

Al-265 - Partition elaboration policy for High-Integrity Systems

Alan reports on IRTAW discussion on this policy. The conclusion was that it works if the Ravenscar restrictions are
imposed, but the group isworried if it works in the whole language. So IRTAW believesit would be OK if this
policy isonly allowed if Ravenscar isin effect.

Tucker objects, saying that that breaks the equivalence of Profilesto independent pragmas. He asks what restrictions
are needed to make thiswork in the full language.

Alan suggests that No_Task_Allocators and No_Task _Hierarchy would be sufficient.

Tucker wonders about the need for restricting allocated tasks. He doesn't believe that they would be a problem; tasks
from allocators can be held along with all of the other tasks.

Jean-Pierre objects that then the task activation list would have to be global. After discussion, it isdetermined that is
OK, asit logicaly is at the begin of the environment task. So it isalready global.

Steve Michell points out that atask nested in afunction could be called from a package specification. With the tasks
being held, how would the function work? Ugh. The group decides that this policy does need to depend on
No_Task_Hierarchy; then this example would beillegal.

Jean-Pierre notes that task creation is potentially blocking, and that must be allowed. Alan immediately responds that

that had been noted previously, and will be included in the next version of the Al wording (task creation should not
be erroneous).

Exceptions and finalization rules are unchanged by this policy.

Pascal summaries the changes: This pragmaisillegal unless pragma Restriction (No_Task_Hierarchy) if given in the
parition. Thisisa post-compilation check.

Jean-Pierre comments that he doesn't like the name of the pragmaand policy. This brings a groan from the group.
"We've discussed this for hours and hours and hours...” The group agreesto avoid discussing it again.

Approveintent of Al: 8-0-2

Alan Burnswill update the Al.

Al-266-01 and Al-266-02 - Task Termination procedure

Alan explains the new proposal. The feeling of the IRTAW meeting was that the main additional functionality was
grouping of tasks. But that doesn’t buy alot if you have the full language available. In arestricted environment, you
need asimple, restricted proposal.

Tucker thinks that being able to do agroup of theseis necessary.

Randy wondersif thisis useful at all. There are other waysto do this within the language (at |east three have been
proposed), doesn’t solve many additional problems.

A straw polling on keeping the proposal alive passes easily (9-1-1).

Final Version Page 13 of 25

Steve Baird wonders if there is any difficulty telling the different termination conditions apart? The group thinks not,

but a discussion of what happens when you are abort while in ahandler ensues. It seems that handlers should be
abort-deferred.

The new proposal has both regular and protected handlers. Do we want both, or just the protected one? Erhard notes

that the problem with the regular handler isthat you will need to access global state. So you still need some
protection, probably using a protected object. A straw poll on having both kinds of handler fails (0-8-3), so we keep
only the protected handlers.

Someone asks why the default parameter is“ Current_Task”? It is better to make the default ID be Null_Task_ID,
having that mean that it appliesto all child tasks of the current task. (This gives us some grouping capabilities.)

The new proposal uses replacement semantics, allowing only one such handler. It is noted that such alimit isaways
aproblem. What if you have two reusable components, both setting termination handlers for the environment task?
Y ou do not want the elaboration order to determine what happens (and which component works as designed). Pascal
suggeststhat it could be made alinked list. Alternatively, we could have a check to prevent replacement. But the
current proposal would have the components fail to work for no apparent reason.

Another possibility to handle this would be to support an Exchange_Handlers facility, which would let the user chain
them.

Someone wonders why all of the concern about handlers for tasks that are not known to the component handling the
termination. Isit useful to find out about atask that you don’t know about? Many people think so.

Jean-Pierre suggests changing the difficulty from Medium to High. He jokingly suggests changing the priority from
High to Low. Some people seriously agree with that.

Tucker notes that thisis another mechanism for hooking events (as was timing events, and of course interrupt
handlers). He wonders if we need to make a more general mechanism to handle all of these rather than designing a
dlightly different one each time.

Alan will revise alternative 02; alternative 01 is left alone for now.

Al-284 - Non-reserved keywords
Tucker saysthat thisis an enabling technology.
Jean-Pierre finds this more surprising than new reserved words.

Pascal saysthat in practice, thereis no difference between non-reserved and reserved keywords. Y ou don't tell
students about the difference, you just give them the whole list.

Thisisn't anew ideawith Ada; other languages have these. Moreover, words like Integer and Standard are very
much like unreserved keywords, because using them for something elseisugly.

Tucker suggests that the presentation in the standard should have all of the keywordsin onetable. A separaterule
can explain that the new ones aren’t reserved.

Someone asks why did this get dropped from Ada 9X?

Randy recalls that we had two new reserved words, and four new unreserved keywords in Ada 9X. But there wasn't
much benefit for portability; if you have any new reserved words, you have the upward compatibility issue. So we
got rid of unreserved keywords. For the amendment, we’'re trying for no new reserved words (so we don't have the
compatibility issue).

Approve Al with changes: 8-1-0

The opposed vote (Erhard) was because he believes that it would screw up implementation technology. Asked for
more details, he explains that sifter technology can do reserved word lookup in six instructions. He claims that it

Final Version Page 14 of 25

wouldn't work for unreserved keywords. Randy and Tucker wonder why it wouldn't work; both of their compilers do
lexical lookups of unreserved identifiers (Randy gives attribute names as an example).

Al-285 - Latin-9 and Ada.Characters.Handling

Pascal has not yet written this Al. He would like to know whether there is a need for 32-bit charactersin Ada? He

believes that adding Wide_Wide_xxx isalot of work. And some implementers report that there isn't much demand
for 16-bit charactersin Ada.

Tucker suggeststo “reserve’ the namesWide_Wide xxx for this, and to allow implementations to support it (much
like Long_Long_Integer). This approach gets general agreement.

Al-286 - Assert pragma

Tucker explains the changes. The assertion policy was added (as discussed at the last meeting), and the Al was split
into two.

Jean-Pierre thinks that the Ignore policy seemswrong. It should not say the pragmaisignored, but that it has no
effect. The expression must be legal in any case, it just isn’t evaluated.

Someone wonders why is there procedure Raise_Assertion_Error? It doesn’t seem to buy anything, unlessthereisa
way to provide areplacement body for this routine. Steve Baird points out that a replacement body is problematic:

What if the provided routine doesn’t raise an exception? The optimizer would want to assume it does raise an
exception. The consensusisto drop the routine Raise_Assertion_Error.

Jean-Pierre does not understand the value of the Evaluate_and_Assert_True policy? Pascal explainsthat if there are

side effects, you need to evaluate the assertions so the behavior of the program doesn't change. Steve Baird notes that
for expressions that can be proven to have no side effects, the entire thing can be removed.

Steve Michell notes that expressions really should not have side effects, if you are doing static analysis. Tucker
comments that this would easily be handled by declaring your own policy.

Erhard does not like the Assertion_Policy. In particular, he does not like Evaluate_and _Assume_True and
Assume_True, asthese are unsafe. The group notes that we discussed this extensively last time, and this was the only

way to reach agreement. Erhard continues by noting that Assume_True effectively changes Assert into Assume. The
group agrees with that. These policies are unsafe, but not more than pragma Suppress.

Tucker notes that an implementation can treat the policies Check and Evaluate_and_Assume_True as the same (if the
check failsin the latter case, the program is erroneous, in which case, anything can be done -- including raising
Assertion_Error). Similarly, the policiesIgnore and Assume_True can be implemented the same way (no code being
generated). Only an implementation that wants to need do anything special with the Assume_True variants.

Steve Michell proposesto add “Unchecked” into these two policies. Unchecked Assume_True. The group believes
that Assume_True isenough.

Alan suggests that the pragma should be Assume, then the policy could be Assert. Thisisn't acceptable, because
we'retrying to standardize existing practice.

Steve Michell would like to see an attempt to avoid side effects. That isfelt to be impossible, because we need to
allow “benign side effects”. And those cannot be defined.

Steve Michell asks Steve Baird about the existing practice with respect to side effects. Steve answers that they
(Rational) have seen code where Assert was used solely for side-effects (with acomment to that effect).

Erhard proposes that this exception be moved to Ada.Exceptions. There was not much support in the group for that.

Final Version Page 15 of 25

He wondersiif there is an implicit dependence on Ada.Exceptions and Ada. Assertions from an Assert pragma. It
would be needed because Assert (implicitly) calls Ada.Exceptions and uses the exception in Ada.Assertions. But
then pragma Assert cannot be used in a Pure or Preelaborated package (as Ada.Exceptionsis not Pure or
Preelaborated). So we have to say that it doesnot create a dependence on Ada.Exceptions. A dependence on
AdaAssertionsisfine, and should be created.

The package Ada.Assertionsis Pure.

Summary of changes: Eliminate procedure Raise_Assertion_Error; make the package pure; allow the exception to be
arename of a non-language defined exception; create no dependence on Ada.Exceptions; and create a dependence on
Ada.Assertions.

Approve intent of Al: 6-1-3

Why the negative vote? Two reasons. the policy issue, and the renaming allowance (for which the rationaleis
“Dewar said so”).

Steve Michell comments that we need to codify common practice, but he'll hold his nose voting for it.

Tucker will revise the Al.

Al-288 - Pre/post conditions & Invariants
Tuck describes variousissues with the Al.

Any explicit precondition must include the class-wide precondition. One way isto automatically do so (this
proposal), or could require programmer to do it (by “and”ing together to provide checks).

Someone wondersif thisis available in C++ or Java? No, Java has recently added “assert”, but doesn’'t go further.
Thisis mostly from Eiffel. Tucker believesthisis a place where we should be ahead.

Steve Michell has three problems with this proposal.

Thefirst occurs when you are trying to state preconditions/postconditions. Usually you cannot see everything you
need to see; so you have to make functions — but these are real functions, not static ones.

The second problem is that you don’t have visibility that you need at the point of the pragma.

Thethird problem isthat these aren’t task safe. Tucker disagrees. Steve says that you may depend on global state

information that is not task safe. Static evaluation assumes all values are evaluated at once; that doesn’t happen with
dynamic evaluation here.

Jean-Pierre comments that while you are eval uating precondition/postconditions, you need to disable other
pre/postconditions. He gives an example of postconditions: Is_Full > not Is_ Empty; Is Empty = not Is_Full.
Tucker argues these are not postconditions. Steve Michell agrees, saying that postconditions of afunction isusually
“True”. A correct examplewould be Is_Full > ‘Result = notIs_Empty; Is Empty = ‘Result = not Is_Full.

Still Jean-Pierre's original point isstill valid. And that isthe rulein Eiffel. To do this properly, it would have to apply
to anything that is called. But that is nearly unimplementable (you would need additional checksin every
subprogram). Nobody would pay that overhead.

Tucker muses that we might only want to suppress these for function postconditions. If a function postconditionis
not inside the function, then it would not be generated. But this rule would apply statically. Otherwise, you would
need task-level state to disable checking of postconditions. That doesn't sound good.

Jean-Pierre wonders why ‘Incoming makes a copy? Tucker notes that it is only allowed on elementary type.

Erhard asks what happens with the postcondition if there is an exception? Tucker says that exceptional returns do not
cause invariant or post checks.

Final Version Page 16 of 25

Erhard notes that a precondition can always be written as an Assert in the body, same for postcondition (but it is
harder). So, should these be tied to the specification? The answer is mainly because there is only one exception.

Essentially, you are hiding the bug; for fault tolerance, everything is an Assertion_Error, and you have to figure it out
from the message. If it isbeing used is strictly for debugging support, it doesn’'t matter as much.

Alan thinks that static analysisis more important. But this proposal seems to have started at the dynamic end and
hopes to work for static analysis. That isn't likely to work. He seconds Steve' s concern about visibility. He al'so notes
that static analysis needs things that are not in the program. Tucker says that perhaps you could have apragmato
mark things that exist only for the pre/postconditions and invariants.

John believes that global annotations are the most valuable part of SPARK (and we' re not addressing these here).

Erhard comments that postconditions essentially provide a single exit point. We could use Assert if we had away to
insure asingle exit point. Perhaps we should have a“Finally” or something like that to provide a single exit point.

Someone wonders why thisis on the specification? Tucker saysthat thisis additional specification on the

specification. Pascal thinks that thiswould clutter the specifications and harm readability. Randy concurs, and adds
that it also requires alot of extra mechanism (special visibility, new attributes).

Erhard replies that he would like to allow ‘Incoming to occur anywhere. Randy points out that then you would have

to copy the parameters every time (which is expensive), or scan the body for uses before generating any code. Tucker
agrees that this would be a problem.

If we put these in the body, Postcondition would go right before the begin in the declarative part.
In Summary:

We have an unsolved problem with infinite recursion.

We have an unsolved problem with state for static analysis.

John would prefer different names so they don’t look like static analysis. Perhaps: “Pre_Check” and “Post_Check”
(or “Pre_Assertion” and “Post_Assertions’). He would like to avoid a conflict with “classical static analysis”.

Pascal comments that we have two sets of problems, and we can’t solve the static analysisissues here. That seems
more like a specialized needs annex.

Tucker saysthat hisgoal isto enable tools here so that it is portable to move between static and dynamic analysis.
Pre and postconditions are a contract, which iswhy it is valuable to have it on the specification.

John makes aglobal remark. If we are trying to make it look like Adais ahead (in this or any other area), we

shouldn’t use pragmas, rather we want syntax. Tucker repliesthat if we went with syntax, you would need to putin a
lot more information.

We move on the Invariant proposal. Tucker describes the proposal. It describes that a specific property is “usually”
true for objects of the type. There are places that they have to be allowed to be False.

Steve Michell again thinks that visibility is an issue; what about child units? Tucker replies that invariants would
probably be imposed only on visible parts of visible children.

Jean-Pierre notes that you could have an elaboration order problem, if the function called thingsin child packages.
Tucker and Pascal both say that would be weird. But it would be OK, asit is no worse than any normal elaboration
problem.

Erhard asksif the typeinvariant pragma coversimplicit calls (like Adjust and Finalize). Tucker replies that yes, that
does not seem to be a problem. It would apply to any user-defined routine called explicitly or implicitly.

Steve Michell suggests that the name of the pragma should be “Invariant_Check” to show the dynamic nature of the
check. Thereis not much support from the group for this.

Final Version Page 17 of 25

Type_Invariant really only makes sense if you cannot modify the individual components. It is suggested that this
pragmashould be defined only for private types. Jean-Pierre says that we should check in parametersif it is allowed
on non-private types. The group does not like that.

Jean-Pierre notes that thisincludes Unchecked_Conversion. Yes, that isintentional.

Steve Baird wondersiif thisincludes derived subprograms. Areinvariantsinherited for derived subprograms? Tucker,
after some thinking and discussion decides that for untagged types, it isinherited, and you can't override it. Steve
says, “| was going to complain whatever choice you made.”

Randy asks, seconded by Pascal if we should split this Al again, asthere is much more positive feeling for invariants.

Someone wondersif it should be required to override atype invariant for atagged type. If not, theinvariant is
applied only to the ancestor part. So it seemslike it should be cumulative, rather than overriding. Thisislikea
postcondition anyway, so it has to be strengthened. For Type_Invariant, calls are statically bound to the parent type's
routines anyway. (Classwide_Type_Invariant is dynamically bound.)

Pascal wonders why we need Package | nvariant? Tucker replies that a package could be an abstract state machine.
To use Type_Invariant, you'd have to declare adummy type, and passit to all of the operations; that seems like we'd
be forcing adesign on users.

Finally the group responds to Randy and Pascal's call to split the Al again (into pre/postcondition and invariant
parts). Pascal would like to get HRG input on static analysisissues. Tucker asks for examples of the information
needed for static analysis.

Summary for invariants:

For untagged types, you can define, but not redefine an invariant. This means you may have to create awrapper for
routines that you inherit from your parent. Otherwise, the implementation would have to recompile the whole body,
(because it possibly makes calls to other inherited routines), and that isimpractical.

For tagged types, invariants are cumulative. New invariants need to be checked.

Tucker will split the Al, and revise both parts.

Al-290 - Declaring functions pure

Tucker explains the proposal. Thisis essentially an assertion that the function is pure. The rule for pure packagesis
that you can omit the call and use the previous value. This proposal usesthe samerule.

Pascal would prefer acheck. Tucker replies that you cannot tell (practically) whether or not there is any problem.
Erhard doesn’t understand the rule. If the function changes a variable, can we assume the result is the same? Tucker
repliesthat that isthe idea. Erhard says that he would prefer that the arguments are required to be the same, without
the side effect permission.
Tucker writes an example to illustrate the issue:

if Is_Prime (G then ...

if Is_ Interesting (Q then ... -- Body of Is_Interesting changes G

if Is_Prime (G then ...
Theresult of thefirst call tols_Prime can be reused, because we are not looking at the side effects of Is_Interesting.

Erhard likes thisrule even less after seeing the example.

John points out that thisis a change to the existing wording of the standard.

Final Version Page 18 of 25

No oneisin favor of thischange. This permission is dropped; we're using the 10.2.1(18) wording.
John jokingly suggests that this should be called pragma Pureish.
Steve Baird notes that implementations don’t need to do anything with this pragma unless they want to.

Steve Baird suggests that the pragma should be Assume_Pure. Randy quickly notes that we're codifying existing
practice, so changing the nameisn't an option.

Do we want this Al? A voteto keep it alive passes 7-1-2.
The negative vote was cast because he doesn't like the non-semantics preserving semantics.

Tucker will provide wording and changesto the Al.

Al-292 - Sockets Operations

We have a brief discussion on the best way to proceed to get this API into the standard. The consensusisthat we
probably ought to start with AdaSockets (it is the most portable of the existing interfaces and is reasonably abstract).

Randy takes an action item to make an effort to start agroup to create a sockets API. It isrecommended that he not
write the proposal.

Al-293 - Built-in hash function
Jean-Pierre would be interested in this proposal. It would make things more portable.

Erhard doesn't believe that this would be useful. For instance, for names, default implementations assume randomly
distributed keys, which never happen.

Pascal pointsout that it isvery easy to create ageneral hash function with a stream. Steve Baird saysthat it is easy to
write ageneric unit to do this.

Pascal objectsto this capability being defined as an attribute. Thiswould require us to duplicate the stream attributes
mess (rules for composition, etc.). He also does not think that we would ever agree on a hash that was good enough.

Tucker thinks that we should add a generic hash package that could be implemented with streams. Thereisvaluein
providing a portable package for this.

Steve Baird would like to insure that we don’t define it to depend on * Address of the object; it must depend on the
contents.

The generic should take a generic private type, with aresult type that isaformal discrete type.

Tucker will write the Al.

Al-296 - Vector and matrix operations

John recommends that these operations be put into the Numerics annex. There is general agreement with this
proposal.

Pascal suggesting separating the accuracy rules from rest. He al so suggests cleaning up and simplifying the language
of the proposal submitted by the UK.

John will take the Al.

Final Version Page 19 of 25

We vote to put the operations in annex G: 8-0-0.

Al-297 - Timing events

Alan reportsthat IRTAW gave the highest priority to the following issues. Ravenscar, time budgeting, timing events,
and user scheduling. (Proposals will be coming on time budgeting and user scheduling.)

Turning to the timeevents proposal. The problem with the existing language (that is, using delays) is that you need

to write tasks whose only job is to adjust the priorities of other tasks. Thereis an example of thisgiven in the
IRTAW11 paper, which can be found in the appendix of the Al.

The proposal isto provide time handlers, which work similarly to interrupt handlers.

Tucker querieswhy there is atiming event object. Alan respondsthat it is needed so you can identify the event for

canceling, etc. Thereis also an implementation benefit, as the implementation might want to put it on chains, etc.
rather than using implicit memory allocation.

Jean-Pierre wonders why it isn't possible to simply attach a procedure to a hardware clock (interrupt). Alan responds
that doesn't work because we need to use the run-time system’s clock. Different clocks would not solve the problem.
Jean-Pierre is not convinced. He doesn't believe that the need is that important, because he thinks most people will
use a hardware clock. Pascal does not agree, saying that an implementation cannot allow attaching to the run-time's
clock, because it has a bunch of requirements that cannot be violated.

Pascal querieswhy this packageis so different from the existing interrupts package? Alan responds that thisis not a
periodic item, it only fires once. Interrupts differ by being permanently attached.

Tucker believesthat if thisis a one-shot, the event object should be passed to the handler so that it can be reenabled

if needed. That meansthat Parameterless Handler is passed the timing event object. (If thisis adopted, better change
the name of the handler type!) Thereis some support for thisidea

Randy takes Tucker's suggestion further, suggesting that the event object should be declared to be tagged. Thenitis
possible to add extension components, such as the period, in the object. He notes that extensions would be optional;
it would still be possible to use the object without an extension. The object probably will need to be controlled (or an
equivalent) anyway, so that it can properly be detached if it isfinalized while still attached to a handler.

Steve Michell suggests that you could parameterize by adding discriminants to the protected type of the handler. So
adding extension components doesn't buy much.

Tucker comments that he would like to see additional queries. Asit is, we have a private type that essentially holds
one bit of information. Jean-Pierre suggests that we could add a query for the time span value.

Tucker believes that Cancel _Handler should return the existing handler; otherwise we have arace condition with
Is Handler_Set. (It would take two operations to cancel a handler, and the state could change between them.)

Alan summaries the changes. We need to add the handler to Cancel_Handler. Add a Current_Handler function. Add
the event object parameter to Parameterless Handler (and change name of the handler type).

Do we need an Exchange _Handler routine? We take a straw poll, and we decide that we don't asthe ideais defeated
1-6-4.

Steve Baird saysthat he doesn’t like a“must be library level rule”. He suggests that if you made the parameters a
general accesstype, then we get the library level check for free (as part of the accessibility check).

Randy points out that we already have such arule for interrupts (C.3.1(8)). But Steve counters that that is a contract

violation. After discussion, the group concludesthat heis correct. Ouch. A long discussion ensues about this existing
language problem.

Final Version Page 20 of 25

Tucker suggests making the “must be library-level rule” arun-timerule. It usually could be checked at compile-time,

but may have to be done at run-time in some implementations in generics. This solution was used for accessibility,
whichisasimilar problem.

The group reaches a consensus that we need to fix interrupt handlers the same way as time handlers.
Three choices have been identified:

Use access parameters, letting the accessibility rules do the work.

Detect it (at runtime potentially).

Leave it erroneous.
The first choice cannot be used for existing interrupt handlers.

Thus the group decides that it must be detected, possibly at run-time. Thisis Ada, after all, leaving it erroneous is not
appealing.

The editor isdirected to open an Al to fix C.3.1(8). Use asolution similar to accessibility rulesfor this check.

Alan Burnswill revisethe Al.

Al-298 - Non-preemptive scheduling

Alan explainsthe proposal. It defines new policies for non-preemptive scheduling. It also definesa“token”, an
execution resource (asin D.2.1). Y ou cannot lose the token, only give it away. Tucker wonders why the proposal
doesn't just say “processor”. Alan replies that you can’'t overturn the basic semantics, which isalways required to be
preemptive.

Jean-Pierre notes that interrupts are still allowed. This means that there still must be alock on a protected objects
used asinterrupt handlers. Alan agreesthat is correct.

Tucker thinks that this proposals looks like an addition to a house where you can see what is the original house and

what isthe addition years |later. He would rather rewrite D.2.1 completely to make this possible. Alan believes that
much more extensive changes would be needed.

Steve Baird wondersif the definition of “sequential” needed to be changed. Alan says that it does not. It might be too
conservative, but that is OK.

Jean-Pierre is concerned that the definition of Non_Preemptive_L ocking isinconsistent. After discussion, heis
convinced that it is correct as written.

The question is raised whether pragma Priority should be disallowed in protected objectsin this mode, or just

ignored. Disallowing it is safer (users will get what they expect or an error). But disallowing it is not as portable,
because code would be made illegal just by the presence of the pragma.

Steve Michell claimsthat thisis afairly significant change to the semantics. He believesthat it will change the

scheduling of next task. Tucker disputesthat. Tasks are queued at the old priority, and otherwise you are non-
preemptive.

Tucker asks Alan if the purpose isto eliminate the ceiling checks. Alan saysit is. But you would still have to check
for callsin Interrupt_Priority objects; the ceiling model still applies there.

Erhard would like to get rid of the post-compilation rule. He thinks that it should be implied. His argument isthat it
isannoying for the user: the binder will give a message saying that “you must have so-and-so pragma” in your
program. If the implementation knows that, why didn't it giveit? Alan replies that he is being consistent with the
current language. Moreover, it is possible to use Non_Preemptive FIFO_Within_Priorities without
Non_Preemptive_L ocking; the post-compilation check only occurs when Non_Preemptive L ocking is used.

Final Version Page 21 of 25

Tucker muses that this maybe should be Suppress (Ceiling_Check); it doesn’t have anything to do with locking. In
fact, D.3(14) letsyou get rid of these priorities altogether. Therefore, we don't need a separate locking policy, just
have thisimplied by Non_Preemptive FIFO_Within_Priorities.

Alan agrees with this analysis, and will redo the Al that way.

Tucker would like a vote on changing the wording to get rid of thistoken thing. The group doesn't want to vote
without knowing the magnitude of the change. Tucker agreesto let Alan show him some of the places that would
need to be changed.

Alan will revise the Al.

Al-299 - Defaults for generic formal parameters
Pascal arguesthat having such default just makes the code more obscure.
Tucker counters that we have defaults for other things, why should these be limited to just objects and subprograms?

Tucker notes that useis abad choice, because you could leave out a semicolon and it would still be legal syntax. We
tried hard to avoid that in Ada.

We could invent a new keyword (“default” is suggested). Another suggestion (using existing keywords) isuntil
others.

The generic renaming proposal can be implemented with a generic skin package. It also appears very complex and
messy to implement. We take a straw vote on dropping the generic renames part of the proposal, which passes easily:
6-0-2. This effectively means “No action” on part 3 of the proposal.

Pascal wondersif we should we support <> defaults on this? John replies that <> defaults are a mess, we don’t want
to expand this further.

Tucker notesthat it is odd that in out would allow a default here, and not in subprograms. Randy comments that we
could fix subprograms, too. Thereis no support for that from the group. However, Pascal notes that in out formal
objects are really renames, the syntax is misleading.

We take a straw vote on keeping the Al alive. It passes, 4-2-2.

Tuck presents an idea he has for partial parameter lists for generic formal packages. See details below.

Randy will update the Al. He asks about the syntax, and is told to come up with something. (Thanks for the help;
what happened to that famous ARG syntax creativity?)

Al-300 - The standard storage pool

This proposal isthought to be too complicated. Pascal objectsto this because it doesn't fit their implementation well.
The default policy in the Rational compiler is complicated because thereisn’t aglobal storage pool. To get a pool,
you have to declare an access type at a precise location, and the characteristics of the type will determine those of the

pool (in particular, itslifetime). Soit's not like there is a one-size-fits-all storage poal.

Tucker suggests that we simply declare a global object for aglobal storage pool. Defineiit to be just aglobal pool.
But what type would that object have?

Steve Baird claims that

type Acc is access .,
The_Pool : Storage_Pool’ Cl ass renames Acc’ St orage_Pool ;

Final Version Page 22 of 25

is an adequate idiom. It feels more like a workaround to some.

The ARG votesthis proposal no action: 7-0-1.

Al-301 - Missing operations in Ada.Strings.Unbounded

Randy explainsthat the readability of programs using unbounded stringsis a problem, because you have to convert
to type String to do anything interesting.

Jean-Pierre comments that unbounded strings are really for storage; don’t use them for manipulation. That doesn't
seem to be the intent expressed in the standard.

Tucker would like to see a procedure version of To_Unbounded_String. He also would like to add a defaulted
starting parameter to all the Index functions. Pascal immediately claimsthat that is not compatible.

Tucker hates making this look like an add-on. The new parameter would have to be at the end. In that case, only
renames (and overriding via derivation) would be incompatible. These are unlikely.

Thereis not much interest in the slice version of the operations that were proposed.

The group feelsthat 1/0 is generally valuable. Complex hasthis, and itisachild of Text_|O. But you need access to

the representation of unbounded string. So it appears that it has to be a child of Unbounded. Steve Baird objects, you
could have an implementation package as a child of Unbounded.

Thus, we settle on the name Ada. Text_10.Unbounded_|O to make it like Complex_lO. It could be arename from an
implementation package. There also would be awide version (Ada.Wide_Text_lO.Unbounded_|O), of course.

The From parameter will need to be added to all index functions (for Fixed, Bounded, and Unbounded).

Randy will update the Al.

Al-302 - Data structure components for Ada
Randy explains that this Al is a placeholder for whatever proposals will comein this area.

Tucker says that we should reply to Jeff (the proposer), encouraging him to get involved with the other groups
working on this area.

Jean-Pierre asks what the workshop (held at the same time as the ARG meeting) decided.

Tucker replied that he had attended part of their meeting. They decided not to use the Booch components. They were

working on maps and vectors (growable arrays). They were working using the signature idea (see the discussion in
the next item), so multiple implementations are possible.

Partial parameter lists for generic formal packages

Tucker describes another problem in using generics. That isthe all-or-nothing approach for parameters to formal

packages. He says that the data structures people are going to runinto this, as they are planning heavy use of
signature packages.

An example of the problem they will face:

generic
type Key is private;
type Elemis private;
type Map is private;

Final Version Page 23 of 25

with procedure Put (M: in out Map;
K : in Key;
E: in Eem is <>
with function Get (M: in Map;
K: in Key) return Elemis <>
package Map_Si ghature is end;

generic
type Key is private;
with function Hash ...
type Elemis private;
package Hash_Map is
type Map is ...
procedure Put
function Cet

package Hash Map_Sig is new Map_Si gnature (Key, Elem Map);
end Hash_Map;

A use of the signature would be:

generic
type Key is private;
wi th package A Vector_Sig new Vector_Sig (<>);
wi th package A Map_Sig new Map_Sig (<>) — No;
-- have to use (Elem Key, Map);
package ...

But you really want:

generic
type Key is private;
wi th package A Vector_Sig new Vector_Sig (Key, <>);
wi th package A Map_Sig new Map_Sig (Key, <>)
package ...

Erhard explains that the problem is that you cannot reference formal parameters of a signature package in another
signature package.

The group sees interest in thisidea, and asks Tucker to make a proposal.

Final Version Page 24 of 25

Detailed Review of Regular Als

Al-276 - Interfaces.C.Strings.Chars_Ptr_Array has aliased components
Remove “ (but it’ s still gratuitous junk).”

Approve Al with change: 6-0-1.

Al-294 - Instantiating with abstract operations

Randy has already written this up. We will discussthislater. (Not at this meeting, asit turned out.)

Al-295 - Another violation of constrained access subtypes
Discussion of the three options for fixing this problem:

Assume the worst rule in the body;

Run-time check;

Make general access subtypesillegal.

We discuss the third option (removing constraints on general access subtypes). Thiswould allow eliminating the

requirement that aliased components (and objects) are constrained. Then this problem and otherslike it don’t occur.
Steve Baird saysthat thisis very incompatible, because the constrained item can be much smaller than the
unconstrained. Tucker replies that objects would be incompatible, but for components, you can already change the
discriminant with an aggregate assignment.

I's there some way to check whether thisincompatibility is areal issue? Tucker says that we need set up an

incompatibility checking infrastructure. Randy and Erhard argue that it would be hard to get source code submitted,
and atool will only work on one platform.

After the meeting, Tucker and Randy discussed this, and Tuck realized that this would be a contract model violation
on formal access types (which can match both pool-specific and general access types). So option 3 is out.

Steve Baird will write the Al.

Final Version Page 25 of 25

