
Ada User Journal Volume 22, Number 1, March 2001

Object-Oriented Programming Enhancements in
Ada 200Y
S Tucker Taft
SofCheck, Inc. 11 Cypress Drive, Burlington, MA 01803; USA.; Tel:+1 781 750 8068; email: stt@sofcheck.com

Abstract

This article provides an overview of four proposed
amendments to the Ada standard for possible
inclusion in the revision planned for late 2005 or
early 2006. Together, these four amendments can be
seen as “finishing” the job of integrating object-
oriented programming features into Ada.

Keywords. Ada, Object-Oriented Programming,
Amendment

1 Introduction

A new revision of the Ada programming language standard
is being prepared, with a scheduled completion date of late
2005 or early 2006. As part of this revision, the Ada
Rapporteur Group (ARG), a part of the ISO Working
Group 9 (WG9), is developing proposed amendments to the
standard. Several of these amendments relate to object-
oriented programming (OOP). This paper will describe
some of these amendments, and the background and
rationale for their development.

When Ada 95 was being designed, there was still a fair
amount of controversy whether object-oriented
programming features should be included in the language at
all, because of their generally dynamic nature, and because
of concern about whether some of their perceived negative
aspects (difficult to test and verify, "weaker" typing model,
etc.) might outweigh their claimed positive aspects.

Over the past decade, object-oriented programming has
become the dominant programming paradigm, so much so
that it is now simply assumed, and debates have moved on
to other language and methodology issues (e.g. aspect-
oriented programming, extreme programming, highly
scalable programming, etc.). Two major new object-
oriented programming languages have appeared on the
scene, Java and C#. And most colleges and high schools
are now teaching an object-oriented programming language
in their introductory programming courses.

Hence, there is no longer any significant debate whether
adding object-oriented programming to Ada 95 was a good
idea. The question that remains is whether the object-
oriented programming features of Ada 95 are as usable,
effective, and understandable as they should be.

2 Differences Between Ada 95 and Other
OOP Languages

Before attempting to answer this question, it is useful to
first identify what makes Ada 95's object-oriented
programming features different from those of most other
OOP languages, both in a positive and a negative sense.
There are several important differences:

a) Ada 95 makes a significant and explicit
distinction between class-wide types and specific
types. This distinction implicitly exists in
essentially all OOP languages, but there is rarely a
way to talk about it in the source language itself.
Instead, depending on context, a type or class
name in such a language might represent a single
type in the hierarchy (what Ada 95 calls a
"specific" type), or it might represent a type and
all types derived directly or indirectly from it
(what Ada 95 calls a "derivation class of types").

Only when dealing with class-wide types in Ada
95 is there any possibility of dynamic binding. In
most other OOP languages, dynamic binding is the
default, and static binding requires additional
effort, or is simply not available. This makes it
more likely in such languages that dynamic
binding will be used in places where static binding
would have been preferred, and would
haveproduced a faster, more verifiable, and more
maintainable system.

In Ada 95, because static binding is the default,
there will generally be significantly reduced
coupling between a derived type and its parent
type, allowing the parent operations to be treated
more like black boxes. In most other OOP
languages, you really need to see the source code
for all parent operations to know whether it is safe
to inherit any one of them rather than override it in
a derived type.

b) Ada 95 has no direct linguistic support for type
hierarchies involving multiple inheritance.
Although there are several other language features
(such as "with" and "use" clauses, generic
packages, private extensions, and access
discriminants), that allow programmers to solve
problems in Ada 95 for which other languages
might rely on their linguistic multiple inheritance
capabilities, there are still some situations where

Volume 24, Number 2, June 2003 Ada User Journal

the lack of linguistic support does restrict the ease
of solving an important problem.

c) Except for synchronizing operations (such as a
task entry call or a protected operation), all
operands to an operation in Ada 95 are treated
symmetrically in the syntax. That is, they are all
passed as parameters "inside" the parentheses,
independent of whether the operand might control
dynamic binding.

This symmetry makes object-oriented abstract
data types be a natural generalization of "normal"
abstract data types, and makes user-defined binary
operators work in a natural way with such types,
without any special treatment. The controlling
operand of a binary operator could be the right
operand or the left operand, depending on what is
appropriate. The controlling "operand" can even
be provided by context, in the case of a call on a
parameterless function like "Empty_Set" which
will result in the invocation of the "appropriate"
overriding of Empty_Set, depending on the
underlying run-time "tag" of the "receiver" of the
result of the call.

Unfortunately, this symmetric approach can result
in extra verbiage and possible confusion when
used with a multi-package type hierarchy Some
"operations" in such a hierarchy might be so-
called "class-wide" operations, which are
generally declared in the package where the root
type of the hierarchy is declared, while others will
be "dispatching" operations which are inherited
down the hierarchy, and are implicitly declared
within each package where a derived type is
declared. To call an operation, one has to either
have "use" clauses for all packages where it might
have been declared, or determine the correct
package and put a prefix on the operation name
that identifies the relevant package. Although this
does not at first glance seem onerous, when
working with relatively large type hierarchies,
always identifying the package or "use"ing all the
relevant packages can make the code less rather
than more readable.

With OOP languages that use the "asymmetric"
approach, where the (one and only) controlling
operand precedes the name of the operation, and
the other operands appear inside the parentheses,
there is rarely a need to identify the module where
an operation is declared, since it is determined by
the type of the controlling operand. In C++, the
module name is used generally only when
overriding the default dynamic binding, and
requesting static binding to an operation in a
particular class/namespace.

There are some languages, in particular Modula-3,
which allow either notation to be used, with the

asymmetric "prefix" notation being a short-hand
(syntactic "sugaring") for the symmetric notation.

d) Ada separates declaration from implementation,
and requires that all types and operations be
declared before they are referenced. In some OOP
languages, in particular Eiffel and Java,
declaration and implementation are not separated
in the definition of a class. Furthermore, in these
languages, in part because all objects are
referenced via pointers and hence are of known
"size," there is no need to declare a class before it
is referenced.

Because Ada requires declaration before
reference, extra work is required to create
collections of types that are mutually dependent.
In general, an incomplete type declaration is
required to allow for such cyclic type structures.
However, an incomplete type must be completed
within the same package in which it is declared.
This precludes such cyclic type structures from
crossing multiple packages, and tends to lead to
larger-than-ideal packages simply to accommodate
such a cycle. The child library unit feature was
added to Ada 95 in part to allow packages to
remain smaller, with hierarchies (subsystems) of
packages being used to represent large multi-type
abstractions.

C++ retains the separation between declaration
and implementation, while allowing cyclic type
structures to cross multiple "namespaces." This is
possible because namespaces may be defined in
several separate textual pieces, and an incomplete
type declaration in C++ may be in one piece of the
namespace, while a separate piece contains the full
type declaration. In Ada, packages have only two
textually separable pieces, namely the package
declaration ("spec") and the package
implementation ("body"). But putting a full type
declaration in the package body is not a solution to
the multi-package cyclic type structure problem,
because the declarations within the package body
are not visible outside the package. By contrast,
all the "pieces" of a C++ namespace can contain
"visible" declarations.

e) Ada 95 supports 3 levels of visibility for
operations and components of a type: fully public,
visible to child units, and visible only within the
defining package. Most other OOP languages
provide special visibility of operations to derived
types (subclasses). In C++ and Java this is called
"protected" visibility.

An important advantage of the Ada 95 approach to
"partial" visibility is that it is provided only to
modules whose position within the naming
hierarchy implies their special visibility. This
creates a strong boundary around the set of units
that might be affected by changes to partially

Ada User Journal Volume 22, Number 1, March 2001

visible operations or components. In most other
OOP languages, this special visibility is unrelated
to the module structure, and a derived
type/subclass which might be affected by changes
to partially visible operations or components could
be in any module, anywhere in the system.

The net effect is that encapsulation and
information hiding in Ada 95 is linked more
closely to the naming hierarchy, making
maintenance of Ada object-oriented systems easier
to perform, even when the systems grow large and
involve large hierarchies of types.

f) Ada 95 supports both object-oriented
programming and multi-threaded programming,
but does not directly integrate these two. Tasks
and protected objects can be components of an
object-oriented "type," or vice-versa, but neither
tasks or protected objects can themselves be
directly extended. By contrast, in Java, which is
one of the very few other languages that have
linguistic support for both object-oriented
programming and multi-threading, synchronizing
operations can be added in subclasses, and the
types used to represent threads can also similarly
be extended using the normal inheritance
mechanisms.

An important advantage of Ada's tasking model is
that all operations of a protected type or a task
synchronize properly with one another, while in
Java, it is possible to have both synchronizing and
non-synchronizing operations on the same type,
which is an obvious avenue for subtle race
conditions to enter a system. Furthermore, because
Ada's protected and task types do not allow
piecemeal inheritance, all operations that
synchronize with one another are defined in the
same module, preserving the original advantages
of the "monitor" concept introduced many years
ago -- analysis and verification of proper
synchronization conditions can be performed
without having to chase down all critical sections
that might be scattered about the system.

Given the above important differences between Ada 95 and
most OOP languages, it is appropriate to evaluate these
differences, and see whether they represent strengths or
weaknesses in Ada's support for object-oriented
programming. In some cases, the differences have both
positive and negative aspects. Arguably one overall
negative aspect of such differences is that they may put
Ada 95 out of the mainstream of object-oriented
programming, given that more and more programmers are
being introduced to OOP, or even programming as a whole,
through languages like Java and C#. On the other hand,
Ada 95 has an important role in the development of
complex, critical systems, and some of the differences are
specifically designed to assist in the development of safe,
robust, and verifiable systems, while still providing the

flexibility and extensibility of object-oriented
programming.

3 Areas of Strength, Areas for
Enhancement

The challenge for this upcoming revision of Ada is then to
preserve Ada's great strengths in its support for the
construction of safe, verifiable systems, while enhancing its
object-oriented features to take advantage of what has been
learned about object-oriented programming features over
the past ten years. Areas that have been identified for
possible enhancement are support for multi-package cyclic
type structures, support for multiple-inheritance type
hierarchies, support for the "asymmetric" notation for
invoking operations, and support for some kind of
extension for protected and task types.

On the other hand, Ada's clear distinction between specific
and class-wide types, its default of static binding with
dynamic binding only where necessary, and its strong
boundary around modules that have visibility on "partially"
visible operations and components, are seen as clear
advantages to Ada's approach to object-oriented
programming, with no need for significant alteration.
Furthermore, any changes that are proposed must not
compromise Ada's strengths, and if anything, should extend
Ada's unique position as the safe and verifiable, real-time
object-oriented programming language.

4 Cyclic Type Structures

One item identified as very important for enhancement has
to do with allowing cyclic type structures to cross package
boundaries. In Ada 95, it is possible to use a combination
of class-wide types, type extension, and "downward" type
conversion, to overcome the basic Ada limitation to single-
package cyclic type structures. However, this approach
introduces additional complexity and some degree of run-
time overhead and possible sources of run-time errors.
Hence, there has been a concerted effort to provide a
natural way for cyclic type structures to be safely and
securely extended across packages.

Several alternative proposals have been developed and
evaluated. Unfortunately, no one proposal has emerged as
clearly the best solution in every dimension. The original
proposal introduced a new kind of "with" clause called the
"with type" clause. This allowed a package to refer to a
type that would eventually be declared in some other
package, but without requiring that that other package be
compiled first. A version of this proposal was actually
implemented in the GNAT Ada Compiler from AdaCore
Technologies, but was ultimately dropped from
consideration by the ARG because of difficulties
discovered while working out the lower level details.

Three proposals remain under consideration: one involving
type "stubs" (analogous to program unit "stubs", identified
by the "is separate" syntax), a second involving a
generalization of incomplete type declarations to allow a
parent package to declare an incomplete type that will be

Volume 24, Number 2, June 2003 Ada User Journal

completed in a child or nested package, and a third
proposal involving a new kind of "limited" with clause,
allowing one package to gain visibility on the types and
nested packages of another package, without requiring
"full" compilation of the other package.

Here are examples of the three proposals. They all are
based on the Employee/Department problem, where there is
a type that represents employees, and a type that represents
departments, and employees are members of a department,
while a department has a manager who is an employee.
The challenge is to define the employee type in one
package, and the department type in a separate package, but
accommodate the desire to have references to both
employees and departments in both packages.

The first example is the "type stub" proposal:

 limited with Employees; -- Allow type stubs to refer to

 -- this package

 package Departments is

 type Employee is separate Employees.Employee;

 -- Type stub

 type Employee_Ref is access Employee;

 type Department is private;

 procedure Set_Manager(Dept: in out Department;

Mgr: Employee_Ref);

 function Manager(Dep: Department)

return Employee_Ref;

 ...

 private

 type Department is record

 Mgr: Employee_Ref;

 ...

 end record;

 end Departments;

 limited with Departments;

-- Allow type stubs to refer to this package

 package Employees is

 type Department is

 separate Departments.Department; -- Type stub

 type Department_Ref is access Department;

 type Employee is private;

 procedure Set_Department(Emp: in out Employee;

Dept: Department_Ref);

 function Department(Emp: Employee) return
Department_Ref;

 ...

 private

 type Employee is record

 Dept: Department_Ref;

 ...

 end record;

 end Employees;

The second example uses the generalized incomplete type
declaration:

 package Office is

 type Employees.Employee;

-- Incomplete type completed in child

type Employee_Ref is

 access Employees.Employee;

 type Departments.Department;

-- Incomplete type completed in child

type Department_Ref is

 access Departments.Department;

 end Office;

 package Office.Departments is

 type Department is private;

 procedure Set_Manager(Dept: in out Department;

Mgr: Employee_Ref);

 function Manager(Dep: Department)

return Employee_Ref;

 ...

 private

 type Department is record

 Mgr: Employee_Ref;

 ...

 end record;

 end Office.Departments;

 package Office.Employees is

 type Employee is private;

Ada User Journal Volume 22, Number 1, March 2001

 procedure Set_Department(Emp: in out Employee;

Dept: Department_Ref);

 function Department(Emp: Employee)

return Department_Ref;

 ...

 private

 type Employee is record

 Dept: Department_Ref;

 ...

 end record;

 end Office.Employees;

The third example uses the "limited with" clause:

 limited with Employees;

-- Gives visibility on types as incomplete types

 package Departments is

 type Employee_Ref is access Employees.Employee;

 type Department is private;

 procedure Set_Manager(Dept: in out Department;

Mgr: Employee_Ref);

 function Manager(Dep: Department)

return Employee_Ref;

 ...

 private

 type Department is record

 Mgr: Employee_Ref;

 ...

 end record;

 end Departments;

 limited with Departments;

-- Gives visibility on types as incomplete types

 package Employees is

 type Department_Ref is

access Departments.Department;

 type Employee is private;

 procedure Set_Department(Emp: in out Employee;

Dept: Department_Ref);

 function Department(Emp: Employee)

return Department_Ref;

 ...

 private

 type Employee is record

 Dept: Department_Ref;

 ...

 end record;

 end Employees;

All three proposals allow a type defined in one package to
be treated as an incomplete type in some other package,
without the second package "depending" semantically on
the first package. This is the critical capability, because it
allows a cyclic type structure to be established without
contradicting the partial ordering implied by "normal"
semantic dependence relationships. All of the solutions
involve a "weaker" kind of dependence, where one package
knows that another package "exists" without having full
semantic dependence on it. The "limited" with clause
proposal approaches this problem by introducing a
"limited" dependence on another package. Limited
dependences are allowed to be cyclic. They imply some
kind of pre-scan of a package to determine the names of the
types (and the subpackages) of the package, without doing
a full semantic analysis of the package.

The type stub proposal also requires a similar kind of
limited dependence, but limits it even further to specific
types identified by type stubs. Further, it does not require
any kind of pre-scan of the package, because post-
compilation checks can be performed to verify that type
stubs refer only to types that actually exist in the package.

The incomplete-type-completed-in-a-child proposal
introduces a "weak" dependence between a parent package
and one of its child packages, requiring that a child package
exist and that it declare a type that matches one identified
in a generalized form of incomplete type declaration
present in the parent's specification.

At this point there is consensus that a solution to this
problem will exist in the Ada 200Y standard, and that the
form of the solution will be based on one of these three
proposals, but the particular approach has not yet been
chosen. It is anticipated that the final choice will be made
at the ARG meeting immediately following the AdaEurope
2003 conference.

5 Multiple-Inheritance Type Hierarchies

When Ada 95 was designed, a significant amount of energy
was expended in evaluating the possibility of including
direct syntactic support for multiple inheritance. At the
time, some OOP languages included full multiple
inheritance (C++, Eiffel), while others chose single

Volume 24, Number 2, June 2003 Ada User Journal

inheritance (Modula-3, Smalltalk). Full multiple
inheritance introduces a number of language complexities
as well as a somewhat more complicated and/or less
efficient run-time model for dispatching calls. Ultimately,
we decided to stick with the simplicity of single inheritance
for Ada 95, but provide various "building blocks" that
could be used to solve problems that in other languages
might require multiple inheritance.

Since the Ada 95 design was finalized, a middle ground in
the spectrum of inheritance models has become popular
that provides multiple inheritance of interfaces (i.e.
contracts), but with actual implementation "code" and data
components inherited from only a single "primary" parent
type. This approach, as exemplified in Java, C#, and to
some extent CORBA IDL, eliminates much of the
complexity of "full" multiple inheritance, because data
components can continue to use the straightforward linear
extension approach of single inheritance, and because
conflicts due to inheriting code from multiple parent types
cannot occur.

The current proposal for adding multiple inheritance of
interfaces adds a new kind of type to Ada called an
"interface". An interface type is in most respects equivalent
to a type declared as "type T is abstract tagged null record;"
though the syntax is shortened to be simply "type T is
interface;". However, in addition to being usable in all
contexts where such an abstract type may be used, the type
may also be used as a "secondary" parent type in the
declaration of a type extension. Secondary parents
("interface parents") are identified by appearing second or
later in a list of the parent types in a record extension. The
parent type names are separated from one another by "and",
as in:

 type NT is new Primary and Secondary_1 and

 Secondary_2 and ... with ...;

Note that the Primary parent may also be an interface type,
since an interface type may be used anywhere an abstract
tagged type make be used.

Interfaces may also be used as "parents" of other interfaces,
using the following form:

 type NI is interface with Int_Parent1 and Int_Parent2

 and ...;

As implied above, no code or components are inherited
from interfaces, only the specification of operations that
must be implemented by the type that has the interface as a
parent. If an interface has other interfaces as parents, then
the union of all the operations of the parents combined with
the operations defined on the new interface must be
implemented by all (non-abstract) types derived from the
new interface.

Here is a larger example which uses interfaces:

 package MVC is

 -- Set of interfaces that define a

 -- model-view-controller structure.

 type Observer is interface;

 -- "interface" is roughly equivalent to

 -- "abstract tagged null record"

 type Observer_Ref is access all Observer'Class;

 -- An observer waits for changes to a model

 type Model is interface;

 type Model_Ref is access all Model'Access;

 -- A model represents some data structure

 -- that is being viewed and/or manipulated

 procedure Notify(Obs: access Observer;

 M: Model_Ref) is abstract;

 -- Notify observer that model it was observing

 -- has changed

 type View is interface with Observer;

 type View_Ref is access all View'Class;

 -- A view is a visual display of some model

 procedure Display_View(V: access View;

 M: Model_Ref) is abstract;

 -- Display view of associated model

 type Controller is interface with Observer;

 type Controller_Ref is access all Controller'Class;

 -- A controller supports input device(s) for

 -- manipulating/updating an underlying model

 procedure Start_Controller(Ctlr: access Controller;

 M: Model_Ref) is abstract;

 -- Initiate controller for associated model

 procedure Register_View(M: access Model;

 V: View_Ref) is abstract;

 -- Register view for given model.

 procedure Register_Controller(M: access Model;

 Ctlr: Controller_Ref) is abstract;

Ada User Journal Volume 22, Number 1, March 2001

 -- Register controller on given model.

 end MVC;

 with MVC;

 with Devices;

 package Inputs is

 type Mouse is new Devices.Device with private;

 type Mouse_Controller is new Devices.Device and

 MVC.Controller with private;

 -- Primary parent type, if any, must be listed first

 -- All other parent types must be interfaces.

 procedure Handle_Input(

 MC: in out Mouse_Controller);

 -- Optionally override operations of parent type

 -- (or may inherit those with appropriate defaults)

procedure Notify(MC: access Mouse_Controller;

 M: Model_Ref);

procedure Start_Controller(

 MC: access Mouse_Controller; M: Model_Ref);

 -- Required to define all abstract operations

-- declared for Observer and Controller

 type Two_Button_Mouse_Controller is new

 Mouse_Controller with private;

procedure Start_Controller(

 TMC: access Two_Button_Mouse_Controller;

 M: Model_Ref);

 -- May inherit or override operations inherited from

 -- parent type including those that are needed for

-- interfaces Observer and Controller

 procedure Register_And_Start(

 MC: access Mouse_Controller'Class;

 M: Model_Ref);

 -- Class-wide operation to register the mouse

 -- controller on given model, and then start the

 -- controller going.

 private

 ...

 end Inputs;

Although not illustrated in the above example, the proposal
for interface types includes a proposal for "declared-null"
procedures. A declared-null procedure is one whose
specification ends with "is null;" rather than ";" or "is
abstract;". No separate body is permitted for such a
procedure. The implicit null body has no effect when
executed.

Rather than requiring that all primitive operations of an
interface type be abstract, this proposal also allows the
primitive operations to be declared null. Such a procedure
need not be overridden in a type derived from this
interface. If not overridden, its implementation is null. If
at least one interface ancestor of a type declares a given
operation as null, the type need not provide an explicit
overriding of the operation. If a non-interface ancestor type
provides a non-null implementation of the operation, that is
inherited rather than the null procedure.

Declared-null procedures are useful in that they allow a
number of optional capabilities to be supported in an
interface, without every derived type having to explicitly
define the capability. In addition, if an abstract or interface
type with one or more declared-null primitives is used as
the ancestor in a generic formal type extension, the formal
type is presumed to have non-abstract implementations of
these operations. This can be useful when overriding the
operations, since it is often desirable to call the parent's
operation from an overriding, particular in the case of
initializing or finalizing operations.

6 Using Object.Operation Notation

When doing object-oriented programming in Ada 95, the
programmer must identify the package in which an
operation is declared, along with the various operands.
Because dispatching operations are often implicitly
declared, identifying the package where they are declared
can sometimes be confusing. In addition to dispatching
operations, class-wide operations are important in many
object-oriented systems. However in Ada, class-wide
operations, unlike their equivalent in many other OOP
languages, are not inherited along with the dispatching
operations. Instead, they are only declared in the original
package where they appear.

This distinction in inheritance between dispatching
operations and class-wide operations means that it can be a
burden to identify the package where an operation of
interest is declared, particularly when the choice between
making an operation a dispatching operation versus a class-
wide operation might be more of an implementation detail
than an essential part of the semantics of the operation from
a user's point of view. The distinction is generally

Volume 24, Number 2, June 2003 Ada User Journal

important when deriving from a type, but may be irrelevant
when using the type.

Programmers familiar with other OOP languages that use
an "object.operation(...)" syntax rather than Ada's
"package.operation(object, ...)" syntax find this added
burden an entry barrier to using Ada for OOP systems, and
tends to make the language feel less object-oriented than it
truly is. The alternative of inserting "use" clauses for every
possible package where an operation might be declared has
other negative ramifications.

Given these considerations, a proposal has been developed
to allow the use of an "object.operation(...)" syntax as a
syntactic shorthand for "package.operation(object, ...)".
Originally it was proposed that this syntactic shorthand be
available to all kinds of types, whether or not the type is
tagged. However, supporting this for both access types and
tagged types adds to the complexity of the proposal in
certain ways due to the desire to allow implicit dereference
(implicit ".all") of the "object" if it is designated by an
access value. Implicit dereference is provided in all other
places where "." is allowed in the syntax, and it would be
inconsistent not to allow it here. Furthermore, this notation
is specifically intended to simplify object-oriented
programming where there may be multiple relevant
packages. When using non-tagged types, the
object.operation syntax would not provide as much benefit.

The basic idea of this restricted proposal is that any
dispatching operation, or any class-wide operation declared
in a package where the corresponding specific type is
declared, is eligible for calling via this shorthand, so long
as the first formal parameter is a controlling parameter, or
is of the class-wide type. When the object.operation syntax
is used, the "operation" is looked up first as a component,
and then as though the packages where the type and any of
its ancestors are declared had been made use-visible. If the
object were of an access-to-tagged type, an interpretation
using an implicit dereference would also be considered. If
there are possible interpretations of "operation" among
these packages, it is checked to see if any of them are
subprograms where "object", "object.all", or "object'access"
could be passed as the first parameter, and any actual
parameters given in parentheses after "operation"
correspond to the remaining formals.

Here are some examples of use of this shorthand:

 --Given the MVC and Inputs packages given above:

 M : MVC.Model_Ref;

 V : MVC.View_Ref;

 C : MVC.Controller_Ref;

 MC : aliased Inputs.Mouse_Controller;

 begin

 V.Display_View(M);

-- equiv to MVC.Display_View(V, M);

 MC.Start_Controller(M);

-- equiv to Inputs.Start_Controller(MC'Access, M);

 MC.Handle_Input;

-- equiv to Inputs.Handle_Input(MC);

 MC.Register_And_Start(M);

 -- equiv to Inputs.Register_And_Start

-- (MC'Access, M);

-- (this is a call on a class-wide op)

7 Inheritance of Interfaces for Protected
and Task Types

During the Ada 95 design process, it was recognized that
type extension might be useful for protected types (and
possibly task types) as well as for record types. However,
at the time, both type extension and protected types were
somewhat controversial, and expending energy on a
combination of these two controversial features was not
practical.

Since the design, however, this lack of extension of
protected types has been identified as a possible target for
future enhancements. In particular, a concrete proposal
appeared in the May 2000 issue of ACM Transactions on
Programming Languages in Systems (ACM TOPLAS[1]),
and this has formed the basis for a language amendment
(AI-00250).

However, in ARG discussions, the complexity of this
proposal has been of concern, and more recently a simpler
suggestion was made that rather than supporting any kind
of implementation inheritance, interfaces for tasks and
protected types might be defined, and then concrete
implementations of these interfaces could be provided.
Class-wide types for these interfaces would be defined, and
calls on the operations (protected subprograms and entries)
defined for these interfaces could be performed given only
a class-wide reference to the task or protected object.

An important advantage of eliminating inheritance of any
code or data for tasks and protected types is that the
"monitor"-like benefits of these constructs are preserved.
All of the synchronizing operations are implemented in a
single module, simplifying analysis and avoiding any
inheritance "anomalies" that have been associated in the
literature with combining inheritance with synchronization.

The detailed syntax for protected and task interfaces has
not been proposed. Here is one possibility:

 protected interface Queue is

 -- Interface for a protected queue

 entry Enqueue(Elem : in Element_Type) is abstract;

 entry Dequeue(Elem : out Element_Type)

 is abstract;

Ada User Journal Volume 22, Number 1, March 2001

 function Length return Natural is abstract;

 end Queue;

 type Queue_Ref is access all Queue'Class;

 protected type Bounded_Queue(Max: Natural) is

 new Queue with

 -- Implementation of a bounded, protectected queue

 entry Enqueue(Elem : in Element_Type);

entry Dequeue(Elem : out Element_Type);

 function Length return Natural;

 private

 Data: Elem_Array(1..Max) ;

In_Index: Positive := 1;

 Out_Index: Positive := 1;

 Num_Elems: Natural := 0;

 end My_Queue;

 task interface Worker is

 -- Interface for a worker task

entry Queue_To_Service(Q : Queue_Ref)

 is abstract;

 end Server;

 type Worker_Ref is access all Worker'Class;

 task type Cyclic_Worker is new Worker with

 -- Implementation of a cyclic worker task

entry Queue_To_Service(Q : Queue_Ref);

 end Cyclic_Server;

 task Worker_Manager is

 -- Task that manages servers and queues.

entry Add_Worker_Task(W : Worker_Ref);

 entry Add_Queue_To_Be_Serviced(

 Q : Queue_Ref);

 end Worker_Manager;

 task body Worker_Manager is

Worker_Array : array(1..100) of Worker_Ref;

Queue_Array : array(1..10) of Queue_Ref;

Num_Workers : Natural := 0;

Next_Worker : Integer := Worker_Array'First;

Num_Queues : Natural := 0;

Next_Queue : Integer := Queue_Array'First;

 begin

loop

 select

accept Add_Worker_Task(

 W : Worker_Ref) do

 Num_Workers := Num_Workers + 1;

 Worker_Array(Num_Workers) :=

 Worker_Ref(W);

end Add_Worker_Task;

-- Assign new task a queue to service

if Num_Queues > 0 then

 -- Assign next queue to this worker

 Worker_Array(Num_Workers).

 Assign_Queue_To_Service(

 Queue_Array(Next_Queue));

-- Dynamically bound entry call

 -- Advance to next queue

 Next_Queue := Next_Queue

 mod Num_Queues + 1;

end if;

 or

accept Add_Queue_To_Be_Serviced(

 Q : Queue_Ref);

 Num_Queues := Num_Queues + 1;

 Queue_Array(Num_Queues) :=

 Queue_Ref(Q);

end Add_Queue_To_Be_Serviced;

-- Assign queue to worker if

 -- enough workers

if Num_Workers >= Num_Queues then

 -- This queue should be given one

 -- or more workers

 declare

Volume 24, Number 2, June 2003 Ada User Journal

 Offset : Natural := Num_Queues-1;

 begin

 while Offset < Num_Workers loop

-- (re) assign queue to worker

Worker_Array((Next_Worker

 + Offset - Num_Queues)

 mod Num_Workers + 1).

 Assign_Queue_To_Service(

 Queue_Array(Num_Queues));

 -- Dynamically bound call

Offset := Offset + Num_Queues;

 end loop;

 -- Advance to next worker

 Next_Worker := Next_Worker

 mod Num_Workers + 1;

 end;

end if;

 or

terminate;

 end select;

end loop;

 end Worker_Manager;

 My_Queue : aliased Bounded_Queue(Max => 10);

 My_Server : aliased Cyclic_Server;

 begin

 Worker_Manager.Add_Worker_Task(

 My_Server'Access);

 Worker_Manager.Add_Queue_To_Be_Serviced(

 My_Queue'Access);

8 Summary

The four proposed amendments to the Ada standard
discussed above are in some sense an attempt to "finish"
the job of integrating object-oriented programming into
Ada which was started during the Ada 95 revision process.
Although the existing OOP features in Ada 95 are both
powerful and flexible, eight years of use and ongoing
developments in the object-oriented programming language
community have suggested opportunities for enhancement.

Although it is likely that some of these amendments will be
approved for addition to the standard, it is quite possible
that some will not, or that the proposals will be further
refined in minor or major ways. Hence it is essential to
keep in mind that this is a snapshot of an ongoing revision
process, and by no means the final story. For those
interested in tracking the progress of these amendments, the
website of the Ada Conformance Assessment Authority
(ACAA) provides ready access to all of the amendments, as
well as minutes of ARG meetings. The URL for this
website is:

 http://www.ada-auth.org/

References

[1] Wellings, A.J.; Johnson, B.; Sanden, B.; Kienzle, J.,
Wolf, Th., and Michell, S.: "Integrating Object-
Oriented Programming and Protected Objects in Ada
95", ACM TOPLAS 22 (3), May 2000; pp. 506 - 539.

