
Literals

This is a rant about numeric and possibly other literals. We had a bad week last week for 
other reasons – TV recorder went wrong; we bought a new one and that has proved to be utter
rubbish – even worse than Brexit. Please bear with me (should that be bare? growl).

The background to this is that I don't like AI-249 on user-defined literals and their use in the 
AI on big numbers as they currently stand. I am sure we can do better.

Symbols

I think part of the trouble with this topic is that the solidus character / (47, solidus) gets 
overused. Maybe this is another problem with that old typewriter which I believe triggered the
double space situation discussed recently.

In the old days, we always used ÷ (247, division sign) for division. But the absence of ÷ from 
the typewriter made us use / instead.

Your teacher at infant school teaching you sums I am sure would have set problems like 

Find 39 ÷ 3

They would not have set the problem as 39/3. That's an improper fraction not a division 
calculation at all. Indeed, fractions used to be typeset using a horizontal line thus

39
–
3

(Gosh that's difficult in Word).

I have looked through a lot of math(s) books and the use of a horizontal line for fractions such
as 1/2 still occurs sometimes.

We typically use a solidus these days for fractions not having a handy means of doing a
horizontal line. It also means that the numerator and denominator can be written in a larger
font. It is interesting that Latin 1 has characters for ¼, ½, and ¾. If we need other fractions in
that style we have to use the solidus and maybe superscript and subscript thus 5/7. 

Interestingly, the character set used on a flexowriter for Algol 60 which was the first dccent
programming language  I  used  included a  proper  divide  character  (octal  221)  and a  nice
multiply (octal 261) as well as an up arrow (octal 201) which was used to indicate a power
(rather than **).

The  very  fact  that  Latin-1  (and  some  typewriters)  have  special  symbols  for  the
commoner fractions such as ¼ and ½ shows that they should be thought of as literals
and not divisions.

Complex numbers

These are a good example of numbers that have more than one part in their structure (we call
them components in Ada). 
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In the case of complex numbers we chose to make the internal representation visible (may
have been a mistake) thus

type Complex is 
   record
      Re, Im: Real'Base;
   end record;

where Real is the generic parameter. We can then set literal values thus

X: Complex := (2.4, 5.0);

So we can consider the aggregate form (2.4, 5.0) to be the literal representation for Complex.

Ada 2012 also provides copious operations on complex numbers and for composing them. It 
also provides the constant i so that we can write things like

X := 2.4 + i*5.0;

I cannot make up my mind whether that is nice or not. It has a blatant multiplication. Note 
that it I write

N: Integer := 5;

then I do not consider that to be a multiplication of 1 by 5 – it's just 5 units along the real axis.
But if I want to express 5i, I would prefer to think of that not as a multiplication of i by 5 but 
simply the value of the point 5 units along the imaginary axis. So, if I write

M := 5*i;

then I would prefer that not to mean multiplication but it does look rather like it.

Note also that Ada makes no provision for complex integers often called Gaussian integers. 
We cannot write

Z: Complex := (2, 5);

Well, we can but the compiler will complain. We need to declare a type called something like 
Integer_Complex.

So in the discussion above maybe I should have written

N := 5.0;   M := 5.0*i;

We could do literals for quaternions much the same way. Quaternions are important for 
expressing rotations in three dimensions (and four dimensions) and are widely used in the 
animation industry. A quaternion is somewhat like a complex number but as well as a real 
axis, there are three imaginary axes for i, j, and k.  A general quaternion might be expressed 
as

6 + 4i + 7j – 2k

If we implemented them as a visible record then we might write

Q: Quaternion := (6, 4, 7, –2)

and there is no visibility of any multiplication.
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Fractions and Rationals

At the moment Ada provides no facilities for operating on fractions. Of course we can operate
on decimal fractions but we cannot declare and store 1/3 (that is one-third) or 1/7 as such. The
Babylonians did all their calculations in unit fractions.

If I write 3/7, I do not think of that as 3 divided by 7 but more as one-seventh multiplied by 3.
Indeed, we say "three sevenths".

If we think of fractions as just denoting some value on the real continuum, then indeed they 
have only one component. 

However, if we think of them as numerator, denominator pair then this leads us into the field 
of rational numbers. 

(That is a ghastly pun on the word field.)

A field in mathematics is an abstract algebraic structure with roughly the following 
properties. 

It has two operations (typically denoted by + and ×). 
Both operations have a unit (typically 0 for + and 1 for ×). 
Every element except 0 has an inverse.

The real numbers form an infinite field. The integers do not form a field because the inverse 
of an integer is not an integer. 

However, integers mod 7 do form a finite field. The key point being that every integer has an 
inverse in that field. The inverse of 5 is 3 since 5×3 = 15 = 1 mod 7. It works because 7 is 
prime.

The mod 7 field is easy to deal with in Ada. Indeed we have modular types anyway and the 
obvious form for a literal is simply an integer such as 4.

The rational numbers also form a field. Every number of the form a/b where a and b are 
integers and b is not zero has an inverse, clearly it is b/a.

Another important example occurs in the analysis of algebraic equations. We can extend the 
rational field to give a Galois Field whose elements are the entities 

c + d√2    where c and d are rationals. 

This field is usually denoted by R(√2). 

This is a genuine field since every element other than zero has an inverse. For example, the 
inverse of 3 + 2√2 is perhaps surprisingly 3 – 2√2.

If we were dealing with this field we could call the type R2 (this is the standard mathematical 
notation) and probably implement it as a record of four components

type R2 is record
   C_Num: Integer;
   C_Den: Integer;
   D_Num: Integer;
   D_Den: Integer;
end record;
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and then we would like a notation for a literal value. We could simply write

X: R2 := (3, 1, 2, 1);

But I might prefer

X: R2 := (3/1, 2/1);

Note that the / here is not an operator but a constructor. 

Or maybe we would like to write simply

X: R2 := 3 + 2√2;

But maybe that looks too much like a calculation than a literal. In any case the value of the 
square root of two cannot be represented as a real number such as 1.414...

Anyway, the point is that I might want to create literal values from somewhat arbitrary 
structures. Maybe involving strange symbols such as √.

Big numbers

The proposed big number package provides two main things: the ability to deal with giant 
integers (Big_Integer) and the ability to deal with rational numbers whose numerator and 
denominator are the giant integers (Big_Rational).

Maybe the rational package should be generic so that it can be instantiated with Integer, 
Long_Integer, or Big_Integer.

Now we need literals for all relevant types. We do it for the predefined types such as Integer, 
Float, Character, and String. So we should have literals for Big_Integer and Big_Rational. It 
is convenient to have literal forms for both. 

Now AI-249 provides the ability to create a literal by association with a function that takes a 
string. This is done using aspects. The idea is to remove the clutter associated with the 
explicit call of the function every time. The AI gives the example

type Big_Integer is private
   with Integer_Literal => Big_Integer_Value;

function Big_Integer_Value(S: String)
   return Big_Integer;

...

Y: Big_Integer := –3:

-- equivalent to 
--  Y:Big_Integer := – Big_Integer_Value("3");

Note that the minus sign is not part of the literal in this case.

AI-249 says nothing about the expected form of the string – that is perhaps sensible since we 
do not wish to have constraints on what we can do.
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But for some reason the AI defines aspects Integer_Literal and Real_Literal. But the text of 
AI-249 shows no distinction between them. I believe that maybe there was a thought that 
some type might need two forms. But that can easily be factored into the processing of the 
string. And it is rather rigid to preempt the situation by tagging them with Real and Integer. 

The predefined Ada types do indeed use numeric literals like that, but we should aim to be 
much more flexible. So perhaps just one aspect Literal is all we need.

I know that 2.4 defines the terms real_literal and integer_literal and gives their syntax. Its 
been like that since 1983. Time has moved on. That's 36 years ago.

Turning now to AI-208 on big numbers. I am quite happy with most of it although I see that 
my request for Square Root has been ignored! Groan.

But the literals are curious. The type Big_Integer has aspect Integer_Literal. Fine, that is the 
sort of thing one would expect. The definition of the structure expected piggybacks on Get for
Integer_IO which is perhaps a bit naughty but does the job. So although the type Big_Integer 
is private we can conveniently set values into it such as

BI: Big_Integer := 123456;

and don't have to write

BI: Big_Integer := From_String("123456");

But when it comes to the type Big_Rational which is again private, we find it has aspect 
Real_Literal. And the outcome is that we can write

BR: Big_Rational := 3.8;

rather than the cumbersome

BR: Big_Rational := From_String("3.8");

The definition of the structure expected piggybacks on Get for Float_IO. That's very strange. 
Rationals have nothing to do with floating point.

Note that writing

BR: Big_Rational := 3.8;

results in giving BR the rational value 19/5.  Note that Numerator and Denominator have to 
be adjusted to remove common prime factors so that the gcd is 1.

The serious trouble is that we cannot generally assign a rational value if the Denominator has 
prime factors other than 2 or 5. If the denominator is less than 16 then we could use a base 
other than 10 and for example set 1/13 in BR by

BR := 13#0.1#; -- Yuk!

The situation is to some extent salvaged by a cunning trick. There is a divide function 
between two parameters of type Big_Integer to give a Big_Rational so we can write

BR := 1/13;

after all. But note that this is really 

BR := From_String("1") / From_String("13");
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The really awkward thing is that in order to check for zero we have to write things such as 

if BR = 0.0 then

which looks as if BR is being compared with floating point zero and is as bad as BRexit. 

The whole situation disgusts me.

Thoughts

So what to do. Well maybe change AI-249 to provide only one literal and please call it just 
Literal and change the !subject of the AI to "User-defined literals". I think that if AI-249 
defines aspects for Real_Literal and Integer_Literal then it ought to say exactly what they are.

I feel perhaps that AI-249 is trying to be a bit too clever. Maybe it removes too much clutter. 
And bearing in mind that we might want to declare literals with several subcomponents we 
could use some brackets. It seems that square brackets are in fashion. They would indicate 
that it came via a Literal aspect.

Remember also that a key goal of Ada has always been that programs should be easy to 
maintain by someone other than the author. Perhaps we need some mark to indicate that the 
literal has come via an aspect. We might write

BI: Big_Integer := [–123456];

that would also have the merit of saying that the minus is part of the constructor of the literal 
and not an operator.

For the rationals we could have

BR : Big_Rational := [1, 13];

We could of course use solidus rather than a comma to separate numerator and denominator 
thus [1/13]

BR : Big_Rational := [1/13];

Hopefully that would clarify that the solidus is simply part of the literal and is not an 
operation.

The processing of the rational literal should be able to omit the denominator if it is 1. That is 
do not just piggyback on Get. So we could write

Zero: Big_Rational := [0];

and the test that a rational is zero becomes (ARG = [0]) rather than (ARG = 0.0).

This approach of using square brackets would permit other literal forms to be constructed for 
things like the Galois field and other algebraic structures discussed earlier. Thus we might 
have

X: R2 := [3 + 2√2];

and that would clarify that the + is not an operation but a constructor.
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What to do

Here are some possible actions

1. Do nothing, leave it as it is. There is a risk that old John will resign from the ARG and not 
review anything else ever, ever! A bit unlikely since one supposes that he has to update his 
book. But he is very grumpy.

2. Remove the real_aspect for Big_Rational. Declare a constant Zero, so that instead of the 
obnoxious 

(Arg =0.0) 

we can write (Arg = Zero).

(PS Is Arg a good identifier. Confuses with ARG?)

All other rational values can then by created by the dubious trick of dividing big numbers thus

Seven: Big_Rational := 7/1;

which makes it quite clear what is going on.

Incidentally in my own use of my big number package of 20 years, I have rarely if ever found
the need to use a big literal in the program text. I have sometimes declared a variable or 
constant called One or maybe Two but not much else. All big numbers have either been 
calculated or entered from the keyboard. 

3. Do something more exciting as outlined above. But at least get rid of the Real_Literal and 
Integer_Literal aspects. Make it just Literal. Or if you must keep them, define exactly what 
the literal form is and provide a third aspect Literal for the ambitious user. Or maybe give the 
user the ability to add aspects so that Rational_Literal can be added.

4. Do not confuse rational numbers with a means of providing highly accurate real 
arithmetic. Define Big_Float or Big_Real. Preferably Big_Real.

To provide rationals is so easy that it hardly merits being in the language. But if it is, 
provide it as a separate item and do it properly.

Whatever is done, correct the phrase arbitrary-precision rationals from A.5.5. Rationals
are always precise.
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