ER for ADA 2018-01-03 1(9)

Enhancement

Request
for ADA

1. A more strict specification of &-operator

2. Wide_Wide_String literal (page 6)

3. Wide_Wide_Character literal (page 6)
Examples are based on the work with the GNAT compiler. The request is directed to the standard,
because the change of the compiler should be the result of changes in the standard.

John-Eric S6derman

In this request the Y2018, with it’s sub package “Y2018.Text” should not be considered as a part of
the request for change.

Problem (1)

Facts and the standard

The “&” operator should result in an array type. Here are some not so clear questions
1. if left argument is a non-array type and right argument is an array type or a container type
then the result should be an array type of the left argument (and not a container type)
2. if left argument is an array type and right argument is of the a array type or a container type
then the result should be of the same array type as the left argument
3. if left argument is a container type and right argument is of the a array type or a container
type then the result should be of the same container type as the left argument
4. the container types are not array types. Because you cannot specify a simple array indexing
to a container type (ct.Element(I) is not the same as ct(I))
There seems to be some confusion about this in the ADA Standard package and in the GNAT
library.
When dealing with “text” this confusion results in compiler and run-time errors. It is probably an
error to specify in the standard packages operators, a better solution is to specify operator-only sub-
packages. The programmer can choose will he or she use this operator or not, as has been done in
this Enhancement Request for ADA.

ER for ADA 2018-01-03 2(9)

GNAT implementation

Some “&”-functions violates the standard. A search of the GNAT standard library resulted in this
list.

****x Jusr/lib/gcc/x86 64-linux-gnu/4.9/rts-native/adainclude/g-spitbho.ads
0203 function "&"(Num : Integer; Str : String) return String;

0204 | function "&"(Str : String; Num : Integer) return String;

0205 function "&"(Num : Integer; Str : VString) return VString;

0206 | function "&"(Str : VString; Num : Integer) return VString;

**xx fusr/lib/gcc/x86 64-linux-gnu/4.9/rts-native/adainclude/a-strunb.adb

0063 | function "&"(Left : Unbounded String;Right : Unbounded String) return
Unbounded String

0103 function "&"(Left : Unbounded String;Right : String) return

Unbounded String

0136 function "&"(Left : String;Right : Unbounded String) return

Unbounded String (+

0169 | function "&"(Left : Unbounded String;Right : Character) return
Unbounded String

0186 | function "&"(Left : Character;Right : Unbounded String) return
Unbounded String

Forokok /usr/llb/gcc/x86 64-1linux-gnu/4.9/rts-native/adainclude/a-stzbou.ads
0116 function "&"(Left : Bounded Wide Wide String;Right :
Bounded Wide Wide String) return Bounded Wide Wide String;

0120 function "&"(Left : Bounded Wide Wide String;Right : Wide Wide String)
return Bounded Wide Wide String;

0124 function "&"(Left : Wide Wide String;Right : Bounded Wide Wide String)
return Bounded Wide Wide String;

0128 function "&"(Left : Bounded Wide Wide String;Right :

Wide Wide Character) return Bounded Wide Wide String;

0132 function "&"(Left : Wide Wide Character;Right :

Bounded Wide Wide String) return Bounded Wide Wide String;

0566 | function "&"(Left : Bounded Wide Wide String;Right :
Bounded Wide Wide String) return Bounded Wide Wide String

0571 function "&"(Left : Bounded Wide Wide String;Right : Wide Wide String)
return Bounded Wide Wide String

0576 | function "&"(Left : Wide Wide String;Right : Bounded Wide Wide String)
return Bounded Wide Wide String

0581 | function "&"(Left : Bounded Wide Wide String;Right :

Wide Wide Character) return Bounded Wide Wide String

0586 | function "&"(Left : Wide Wide Character;Right :
Bounded Wide Wide String) return Bounded Wide Wide String

**¥x%k fusr/lib/gcc/x86 64-linux-gnu/4.9/rts-native/adainclude/a-stzunb.ads

0092 | function "&"(Left : Unbounded Wide Wide String;Right :
Unbounded Wide Wide String) return Unbounded Wide Wide String;

0096 | function "&"(Left : Unbounded Wide Wide String;Right : Wide Wide String)
return Unbounded Wide Wide String;

0100 | function "&"(Left : Wide Wide String;Right : Unbounded Wide Wide String)
return Unbounded Wide Wide String;

0104 | function "&"(Left : Unbounded Wide Wide String;Right :

Wide Wide Character) return Unbounded Wide Wide String;

0108 | function "&"(Left : Wide Wide Character;Right :
Unbounded Wide Wide String) return Unbounded Wide Wide String; (-

****x Jusr/lib/gcc/x86 64-linux-gnu/4.9/rts-native/adainclude/a-stwiun.ads

0092 | function "&"(Left : Unbounded Wide String;Right : Unbounded Wide String)
return Unbounded Wide String;

ER for ADA 2018-01-03 3(9)

0096 | function "&"(Left : Unbounded Wide String;Right : Wide String) return
Unbounded Wide String;

0100 | function "&"(Left : Wide String;Right : Unbounded Wide String) return
Unbounded Wide String;

0104 | function "&"(Left : Unbounded Wide String;Right : Wide Character) return
Unbounded Wide String;

0108 function "&"(Left : Wide Character;Right : Unbounded Wide String) return
Unbounded Wide String;

**xx fusr/lib/gcc/x86 64-linux-gnu/4.9/rts-native/adainclude/a-stwibo.ads
0116 function "&"(Left : Bounded Wide String;Right : Bounded Wide String)
return Bounded Wide String;

0120 function "&"(Left : Bounded Wide String;Right : Wide String) return
Bounded Wide String;

0124 function "&"(Left : Wide String;Right : Bounded Wide String) return
Bounded Wide String;

0128 function "&"(Left : Bounded Wide String;Right : Wide Character) return
Bounded Wide String;

0132 function "&"(Left : Wide Character;Right : Bounded Wide String) return
Bounded Wide String;

0557 function "&"(Left : Bounded Wide String;Right : Bounded Wide String)
return Bounded Wide String

0562 | function "&"(Left : Bounded Wide String;Right : Wide String) return
Bounded Wide String

0567 | function "&"(Left : Wide String;Right : Bounded Wide String) return
Bounded Wide String

0572 function "&"(Left : Bounded Wide String;Right : Wide Character) return
Bounded Wide String

0577 function "&"(Left : Wide Character;Right : Bounded Wide String) return
Bounded Wide String

***%x fusr/lib/gcc/x86 64-linux-gnu/4.9/rts-native/adainclude/a-strbou.ads
0115 function "&"(Left : Bounded String;Right : Bounded String) return
Bounded String;

0119 function "&"(Left : Bounded String;Right : String) return

Bounded String;

0123 function "&"(Left : String;Right : Bounded String) return

Bounded String;

0127 | function "&"(Left : Bounded String;Right : Character) return

Bounded String;

0131 function "&"(Left : Character;Right : Bounded String) return

Bounded String;

0555 | function "&"(Left : Bounded String;Right : Bounded String) return
Bounded String

0560 | function "&"(Left : Bounded String;Right : String) return Bounded String
0565 | function "&"(Left : String;Right : Bounded String) return Bounded String
0570 | function "&"(Left : Bounded String;Right : Character) return

Bounded String

0575 function "&"(Left : Character;Right : Bounded String) return

Bounded String

Because theese functions are in GNAT rts-native directory there are no way to nicely correct the
problem. The fact seems to be if you use “&” operator you have to guess what will be the result.

Do’s and Do not’s

To correct the problem Y2018.Text.STR can be used in a Use-clause (“use Y2018.Text.STR;”). But
do not specify Unbounded_String or Unbounded_Wide_Wide_String as a Use-clause. It is OK
to specify both in the With-clause.

ER for ADA 2018-01-03 4(9)

with Ada.Text IO; use Ada.Text IO;

with Y2018.Text; use Y2018.Text;

with Y2018.Text.STR; use Y2018.Text.STR;
with Y2018.Text.UTF; use Y2018.Text.UTF;
with Ada.Strings.Unbounded;

-- use Ada.Strings.Unbounded; << NOT THIS

procedure Fuzzy 1is
us:Ada.Strings.Unbounded.Unbounded_String:=Ada.Strings.Unbounded.To_Unbounded_ St
ring("Urk");
begin

Ada.Text_I0.Put_Line (UTF.To8(">" & us & "<"));

Ada.Text I0.Put Line ("*** End of Fuzzy ***");
end Fuzzy;

This will work but is complicated. The second problem is that the GNAT compiler cannot difference
between “>” as a String literal and “>” as Wide_Wide_String literal and to correct this UTF.To8 is
used. In Y2018.Text package is only Wide_Wide_String used never String or Wide_String.

But by using renaming the code can be easier to code also with this use-restriction.

with Ada.Text I0; use Ada.Text IO;

with Y2018.Text; use Y2018.Text;

with Y2018.Text.STR; use Y2018.Text.STR;
with Y2018.Text.UTF; use Y2018.Text.UTF;
with Ada.Strings.Unbounded;

-- use Ada.Strings.Unbounded; << NOT THIS

procedure Fuzzy is
package AUX renames Ada.Strings.Unbounded;
package AUW renames Ada.Strings.Wide Wide Unbounded;
us:AUX.Unbounded String:=AUX.To Unbounded String("Urk");
begin
Ada.Text I0.Put Line (UTF.To8(">" & us & "<"));
Ada.Text I0.Put Line ("*** End of Fuzzy ***");
end Fuzzy;

We still have here the problem with the ADA-compiler. In this case it seems that the compiler
chooses to use Wide_Wide_String for “>” and “<”, maybe that the compiler tries to honor the
UTF.To8 choice and then the overloading of the ampersand is successful in this case.

The STR style

In using Y2018.Text package you have a choice

1. Use Y2018.Text.STR

2. Do not use the “Y2018.Text.STR” but use Ada.Strings.Unbounded and

Ada.Wide_Wide_Strings.Unbounded

If you decide to use the STR then you can write {something} & {something} & {something} & ...
and be sure that the result of the whole expression is of the same type as the first “something”
except if the first “something” is a Wide_Wide_Character then the result is a Wide_Wide_String.
This feature is not possible in the second case. Inside the STR overloading package Bounded_String
and Bounded_Wide_Wide_String is not supported. In STR and other Y2018.Text sub-packages
only Wide_Wide_String is defined which makes it clear for the ADA compiler that the arguments
cannot be String or Wide_String and the get rid of the multiple choice errors for strings.

ER for ADA

2018-01-03

5(9)

The STR style comes with a cost, you have to spell out Ada.Strings.Unbounded and
Ada.Wide_Wide_Strings.Unbounded.
Inside the Y2018.Text.STR package following specifications are defined:

1. function "&"(left:Wide Wide String;

Wide Wide String;
2. function "&"(left:Wide Wide String; right:Unbounded Wide Wide String)
return Wide Wide String;
3. function "&"(left:Wide Wide String; right:Unbounded String) return
Wide Wide String;
4. function "&"(left:Unbounded Wide Wide String; right:Wide Wide String)
return Unbounded Wide Wide String;
5. function "&"(left:Unbounded Wide Wide String;
right:Unbounded Wide Wide String) return Unbounded Wide Wide String;
6. function "&"(left:Unbounded Wide Wide String; right:Unbounded String)
return Unbounded Wide Wide String;
7. function "&"(left:Unbounded String; right:Wide Wide String) return
Unbounded String;
8. function "&"(left:Unbounded String; right:Unbounded Wide Wide String)
return Unbounded String;
9. function "&"(left:Unbounded String; right:Unbounded String) return
Unbounded String;

10.

function "&"(left:Unbounded Wide Wide String;

right:Wide Wide Character) return

right:Wide Wide Character) return Unbounded Wide Wide String;
right:Wide Wide Character)

11.

function "&"(left

return Unbounded String;

12.

function "&"(left

return Wide Wide String;

13.

function "&"(left

return Wide Wide String;

14.

function

:Unbounded String;
:Wide Wide Character;

:Wide Wide Character;

right:Wide Wide String)

right:Wide Wide Character)

"§&" (left:Wide Wide Character;right:Unbounded Wide Wide String) return
Wide Wide String;

15.

Wide Wide String;

1.

function "&"(left:Wide Wide Character;right:Unbounded String) return

Note the omission of function "&"

Wide Wide String; because this is a part of basic ADA.

Following table maybe helpful:

left\right Wide_Wide_String |Unbounded_Wide_ |Unbounded_String | Wide_Wide_Charact
argument Wide_String er
Wide_Wide_String |(0) 2 3 [UTF-32] 1

Wide_Wide_String Wide_Wide_String Wide_Wide_String Wide_Wide_String
Unbounded_Wide_ |4 5 6 [UTF-32] 10

Wide_String

Unbounded_Wide_Wi
de_String

Unbounded_Wide_Wi
de_String

Unbounded_Wide_Wi
de_String

Unbounded_Wide_Wi
de_String

Unbounded_String |7 [UTF-8] 8 [UTF-8] 9 11 [UTF-8]
Unbounded_String Unbounded_String Unbounded_String Unbounded_String
Wide_Wide_Charact | 12 14 15 [UTF-32] 13

er

Wide_Wide_String

Wide_Wide_String

Wide_Wide_String

Wide_Wide_String

In every table element is the result type of the expression. Some of functions contains UTF-32 or

UTF-8 conversions.

ER for ADA 2018-01-03 6(9)

With Wide_Wide_String as a different type than String

Same table but extended with rows and columns for String and Character:

left\right String Wide_Wide_S | Unbounded_ |Unbounded_S | Character Wide_Wide_C

argument tring Wide_Wide_S | tring haracter

tring

String String [UTF-8] String | [UTF-8] String | String String [UTF-8] String

Wide_Wide_S | [UTF-32] 0) 2 3 [UTF-32] [UTF-32] 1

tring Wide_Wide_St | Wide_Wide_St | Wide_Wide_St | Wide_Wide_St | Wide_Wide_St | Wide_Wide_St
ring ring ring ring ring ring

Unbounded_ |[UTF-32] 4 5 6 [UTF-32] [UTF-32] 10

Wide_Wide_S | Unbounded_W | Unbounded_W | Unbounded_W | Unbounded_W | Unbounded_W | Unbounded W

tring ide_Wide_Strin |ide_Wide_Strin |ide_Wide_Strin |ide_Wide_Strin |ide_Wide_Strin |ide_Wide_Strin

g

8

g

8

g

8

Unbounded_S
tring

Unbounded_ Str
ing

7 [UTF-8]
Unbounded_Str
ing

8 [UTF-8]
Unbounded_Str
ing

9
Unbounded_Str
ing

Unbounded_Str
ing

11 [UTF-8]
Unbounded_Str
ing

ring

ring

ring

ring

ring

Character String [UTF-8] String | [UTF-8] String | String String [UTF-8] String
Wide_Wide_C | [UTF-32] 12 14 15 [UTF-32] [UTF-32] 13
haracter Wide_Wide_St | Wide_Wide_St | Wide_Wide_St | Wide_Wide_St | Wide_Wide_St | Wide_Wide_St

ring

... but this cannot be specified in ADA today.

Problem (2 and 3)

GNAT ADA compiler generates String, Wide_String and Wide_Wide_String from any String literal
it sees and the GNAT runtime handles String, Wide_String and Wide_Wide_String as ”the same
type”. This makes writing Unicode letters a problem if the letter is not in basic ASCII.

UTF-32BE seems to be the best candidate for Unicode text and with simple mapping to
Wide_Wide_String. GNAT input source code is in UTF-8 (in our case) and with the problems with
String, Wide_String and Wide_Wide_String literals, literal handling is extended with a new literals,
literals for Wide_Wide_String and for Wide_Wide_Character. These extensions are "What”W as a
Wide_Wide_String literal and "W’W as a Wide_Wide_Character literal. For every "What”W literal
a Wide_Wide_String constant is generated and filled with the text as numeric code point values and
for every "W’W a Wide_Wide_Character constant is generated with a numeric code point value.

The result for writing code is that you can code ”This is true”W instead of writing

(Wide_Wide_Character'Val(16#54#), Wide_Wide_Character'Val(16#68#),
Wide_Wide_Character'Val(16#69#), Wide_Wide_Character'Val(16#73#),
Wide_Wide_Character'Val(16#20#), Wide_Wide_Character'Val(16#69#),
Wide_Wide_Character'Val(16#73#), Wide_Wide_Character'Val(16#20%#),
Wide_Wide_Character'Val(16#74#), Wide_Wide_Character'Val(16#72#),
Wide_Wide_Character'Val(16#75#), Wide_Wide_Character'Val(16#65#)). Of course these
characters are all basic ASCII but if the text contains characters outside basic ASCII then you have
this complication.

The text ”Detta ar en 16gn”W (in Swedish, this is a lie) is

ER for ADA 2018-01-03 7(9)

(Wide_Wide_Character'Val(16#44#), Wide_Wide_Character'Val(16#65#),
Wide_Wide_Character'Val(16#74#), Wide_Wide_Character'Val(16#74#),
Wide_Wide_Character'Val(16#61#), Wide_Wide_Character'Val(16#20#),
Wide_Wide_Character'Val(16#E4#), Wide_Wide_Character'Val(16#72#),
Wide_Wide_Character'Val(16#20#), Wide_Wide_Character'Val(16#65#),
Wide_Wide_Character'Val(16#6E#), Wide_Wide_Character'Val(16#20#),
Wide_Wide_Character'Val(16#6C#), Wide_Wide_Character'Val(16#F6#),
Wide_Wide_Character'Val(16#67#), Wide_Wide_Character'Val(16#6E#)).

To make it more complicated the text “euro €’W is

(Wide_Wide_Character'Val(16#65#), Wide_Wide_Character'Val(16#75#),
Wide_Wide_Character'Val(16#72#), Wide_Wide_Character'Val(16#6F#),
Wide_Wide_Character'Val(16#20#), Wide_Wide_Character'Val(16#20AC#)).

W-String literal content is

2NNV N NN ND INT NN NP [\ T [\X[O-9A-Fa-f1{2} |\u[0-9A-Fa-f1{4}|\v[0-9A-Fa-f]
{6}|\y[0-9A-Fa-f1{8}|"")*

and W-Character literal content is

ANNTIN" N INNVND N NN N[\t [\X[0-9A-Fa-f1{2}|\u[0-9A-Fa-f1{4}|\v[0-9A-Fa-f]
{6}|\y[0-9A-Fa-f1{8}|""

as regular expression patterns.

[A\\] in String and [A’\\] in Character — any other except backslash and quotation mark or
apostrophe
\” — escaped quotation mark
\’ — escaped apostrophe
\b — generate BS
\f — generate FF
\n — generate LF
\r — generate CR
\t — generate HT
\x[0-9A-Fa-f]{2} — generate Wide_Wide_Character corresponding to this hexadecimal
value (two digits)
\u[0-9A-Fa-f]{4} — generate Wide_Wide_Character corresponding to this hexadecimal
value (four digits)
\v[0-9A-Fa-f]{6} — generate Wide_Wide_Character corresponding to this hexadecimal
value (six digits)
\y[0-9A-Fa-f]{8} — generate Wide_Wide_Character corresponding to this hexadecimal
value (eight digits)
Notation \x[0-9A-Fa-f]{2} we have in C and Perl. Notation \u[0-9A-Fa-f]{2} we have in Java.
Notation \v[0-9A-Fa-f]{6} is new and can be used for Unicode characters which are at most 21-bits.
Notation \y[0-9A-Fa-f]{8} is also new but usage is not clear (today) but consistent. Because of the
Wide_Wide_Character limit, maximum value is \y7FFFFFFF in ADA, values outside the limit is
considered to be an error. The hexadecimal values are, as in ADA, is in Big-Endian format. The
reason to use y-character as the marker is to use something different than "\w”, which is the meta
character code for word character in a regular expression pattern.

¢ & oo e

L 4

A:Wide_Wide_String:="A good reason\nHappy New Year\nRegards and 10 € for \v010600"W;

A:Wide_Wide_String:=(Wide_Wide_Character'Val(16#41#),Wide_Wide_Character'Val(16#20#),
Wide_Wide_Character'Val(16#67#),Wide_Wide_Character'Val(16#6F#),Wide_Wide_Character'Val
(16#6F#),Wide_Wide_Character'Val(16#64+#),Wide_Wide_Character'Val(16#20#),Wide_Wide_Cha

ER for ADA 2018-01-03 8(9)

racter'Val(16#72#),Wide_Wide_Character'Val(16#65#),Wide_ Wide_Character'Val(16#61#),Wide_
Wide_Character'Val(16#73#),Wide_Wide_Character'Val(16#6F#), Wide_Wide_Character'Val(16#6E
#),Wide_Wide_Character'Val(16#0A#),Wide_Wide_Character'Val(16#48#),Wide_Wide_Character'
Val(16#61#),Wide_Wide_Character'Val(16#70#),Wide_Wide_Character'Val(16#70#),Wide_Wide_
Character'Val(16#79#),Wide_Wide_Character'Val(16#20#),Wide_Wide_Character'Val(16#4E#),Wi
de_Wide_Character'Val(16#65#),Wide_Wide_Character'Val(16#77#),Wide_Wide_Character'Val(16
#20#),Wide_Wide_Character'Val(16#59#),Wide_Wide_Character'Val(16#65#),Wide_Wide_Charact
er'Val(16#61#),Wide_Wide_Character'Val(16#72#),Wide_Wide_Character'Val(16#0A#),Wide_Wid
e_Character'Val(16#52#),Wide_Wide_Character'Val(16#65#),Wide_Wide_Character'Val(16#67#),
Wide_Wide_Character'Val(16#61#),Wide_Wide_Character'Val(16#72#),Wide_Wide_Character'Val(
16#64#),Wide_Wide_Character'Val(16#73#),Wide_Wide_Character'Val(16#20#),Wide_Wide_Char
acter'Val(16#61#),Wide_Wide_Character'Val(16#6E#),Wide_Wide_Character'Val(16#64#),Wide_W
ide_Character'Val(16#20#),Wide_Wide_Character'Val(16#31#),Wide_Wide_Character'Val(16#30#)
,Wide_Wide_Character'Val(16#20#),Wide_Wide_Character"Val(16#20AC#),Wide_Wide_Character'
Val(16#20#),Wide_Wide_Character'Val(16#66#),Wide_Wide_Character"Val(16#6F#),Wide_Wide_
Character'Val(16#72#),Wide_Wide_Character'Val(16#20#),Wide_Wide_Character'Val(16#010600#

));

UTF and Character, Wide_ Character,
Wide Wide_ Character

Unicode Encoding Forms

Unicode uses five encoding forms

e UTF-8

* UTF-16BE
 UTF-16LE
* UTF-32BE
 UTF-32LE

and bits needed for storing a Unicode character (code point) are 21. The result is that only UTF-
32BE and UTF-32LE supports one character in one storage unit.

The UTF-8 problem

UTF-8 as the base for Unicode characters and mapping this to ADA Character results in problems
with indexing characters and the length of a character.

The GNAT ADA compiler uses UTF-8 coded data as input. UTF-8 is well packed Unicode and
saves storage space. But from a programming viewpoint it is hard to handle with a character length
between one to four bytes (Unicode UTF-8 encoding).

The UTF-16 encoding forms have the same problem as UTF-8. In UTF-16 a character is stored in
one or two 16 bits storage units, and is not as well packed as UTF-8.

Solution UTF-32BE

UTF-32BE maps Unicode code point to Wide_Wide_Character one character to one storage unit. If
the platform do not support UTF-32BE but rather UTF-32LE a mapping as in ADA should be done
to Big-Endian notation in the source code. UTF-32 is also used when defining code points for
Unicode characters (Values in memory is stored as UTF-32LE on an Intel platform, but the value is
written in ADA as UTF-32BE with hexadecimal digits).

ER for ADA 2018-01-03 9(9)

ADA do not have a elegant literal notation for Wide_Wide_Characters and this must be created. A
solution to this is a notation “<text>"W for Wide_Wide_String literals and ‘<character>"W for
Wide_Wide_Characters (see page 6) (This type of solution can be found in PL/T). There are no
reason to not implement the well known escape sequences from Java, C and Perl languages inside a
W-string or a W-character literal.

With the Unicode code point mapped to Wide_Wide_String or what is a Wide_Wide_Character
array type, we can use ADA array slicing to get parts of the array and we can also assign text to
parts of the array. Then by using the Y2018.Text.STR sub-package we do have Unbounded_String,
Unbounded_Wide_Wide_String and Wide_Wide_String as a well integrated unit and can mix text
from these types in one expression (see page 1). In many cases no parenthesis or conversion
functions is needed in the source code.

The Y2018.Text package

The Y2018.Text sub-package contains (sub-) sub-packages
% STR — contains overloading of “&” operator, nothing more or nothing less (see page 1).
% UTF - conversions from Wide_Wide_String to String (To8) and the reverse conversion
(To32).
The Y2018.Text package do not contain any procedures, functions, as result do not have a body.

