Information technology —Programming languages —
Ada

AMENDMENT 1 (Draft 1)

Technologies de l'information —Langages de programmation — Ada

AMENDEMENT 1

Amendment 1 to International Standard ISO/IEC 8652:1995 was prepared by AXE Consultants.

© 2002, AXE Consultants. All Rights Reserved.

This document may be copied, in whole or in part, in any form or by anymeans, as is, or with alterations,
provided that (1) alterations areclearly marked as alterations and (2) this copyright notice is
includedunmodified in any copy. Compiled copies og standard library units andexamples need not contain
this copyright notice so long as the notice isincluded in all copies of the source code and documentation.
Any other useor distribution of this document is prohibited without the prior expresspermission of AXE.




ISO/IEC 8652:1995/WD.1:2002

Introduction

International Standard | SO/IEC 8652:1995 defines the Ada programming language.
This amendment modifies Ada by making changes and additions that improve:
The safety of applicationswrittenin Ada;
The portability of applicationswrittenin Ada;
Interoperability with other languages and systems; and
Accessibility and ease of transition from idiomsin other programming and modeling languages.
This amendment incorporates the following major additions to the International Standard:
Control of overriding to eliminate errors (see clause 8.3);
A mechanism for writing C unions to make interfaces with C system easier (see clause x.x); and
Type stubs to allow mutually dependent types (see clause X.x).

This Amendment is organized by sections corresponding to those in the International Standard. These sections
include wording changes and additionsto the International Standard. Clause and subclause headings are given for
each clause that contains awording change. Clauses and subclauses that do not contain any change or addition
are omitted.

For each change, an anchor paragraph from the International Standard (as corrected by Technical Corrigendum 1)
isgiven. New or revised text and instructions are given with each change. The anchor paragraph can be replaced or
deleted, or text can be inserted before or after it. When a heading immediately precedes the anchor paragraph, any
text inserted before the paragraph isintended to appear under the heading.

Typographical conventions:

Instructions about the text changes are in this font. The actual text changes arein the same fonts asthe
International Standard - thisfont for text, this font for syntax, and this font for Ada source code.

Disclaimer:

This document is a draft of a possible amendment to Ada 95 (International Standard ISO/IEC
8652:1995). This draft contains only proposals substantially approved by the ISO/IEC JTC 1/SC
22/WG 9 Ada Rapporteur Group (ARG). Many other important proposals are under consideration
by the ARG. Neither the ARG nor any other group has determined which, if any, of these
proposals will be included in the amendment. Any proposal may be substantially changed or
withdrawn before this document begins standardization, and other proposals may be added.
This document is not an official publication or work product of the ARG.



ISO/IEC 8652:1995/WD.1:2002

Section 1: General

No changesin this section.



ISO/IEC 8652:1995/WD.1:2002

Section 2: Lexical Elements

No changesin this section.



ISO/IEC 8652:1995/WD.1:2002

Section 3: Declarations and Types

3.10 Access Types

Replace paragraph 9: [Al95-00225-01]

by:

A view of an object isdefined to be aliased if it is defined by anobject_declaration or component_definition
with the reserved word aliased, or by arenaming of an aliased view. In addition, the dereference of an access-
to-object value denotes an aliased view, as does aview conversion (see 4.6) of an aliased view. Finally, the
current instance of alimited type, and aformal parameter or generic formal object of atagged type are defined
to bealiased. Aliased views are the ones that can be designated by an access value. If the view defined by an
object_declaration is aliased, and the type of the object has discriminants, then the object is constrained; if its
nominal subtype isunconstrained, then the object is constrained by itsinitial value. Similarly, if the object
created by an allocator has discriminants, the object is constrained, either by the designated subtype, or by its
initial value.

A view of an object isdefined to be aliased if it is defined by anobject_declaration or component_definition
with the reserved word aliased, or by arenaming of an aliased view. In addition, the dereference of an access-
to-object value denotes an aliased view, as does aview conversion (see 4.6) of an aliased view. A current
instance of alimited tagged type, a protected type, atask type, or atype that has the reserved word limitedin
itsfull definition is aso defined to be aliased. Finally, aformal parameter or generic formal object of atagged
typeisdefined to be aliased. Aliased views are the ones that can be designated by an access value. If the view
defined by an object_declaration is aliased, and the type of the object has discriminants, then the object is
constrained; if its nominal subtype is unconstrained, then the object is constrained by itsinitial value.
Similarly, if the object created by anallocator has discriminants, the object is constrained, either by the
designated subtype, or by itsinitial value.

3.10.2 Operations of Access Types

Replace paragraph 2: [Al95-00235-01]

by:

For an attribute_reference with attribute_designator Access (or Unchecked_Access -- see 13.10), the
expected type shall be a single access type; the prefix of such an attribute_referenceis never interpreted as
an implicit_dereference. If the expected type is an access-to-subprogram type, then the expected profile of the
prefix is the designated profile of the access type.

For an attribute_reference with attribute_designator Access (or Unchecked_Access -- see 13.10), the
expected type shall be asingle access type A such that:

A isan access-to-object type with designated type D and the type of the prefix isD'Classor is
covered by D, or

A is an access-to-subprogram type whose designated profile is type conformant with that of the
prefix.

The prefix of such an attribute_reference is never interpreted as animplicit_dereference or parameterless
function_call (see 4.1.4). The designated type or profile of the expected type of the attribute_referenceisthe
expected type or profile for the prefix.

Replace paragraph 32: [Al95-00229-01]

P'Accessyields an access val ue that designates the subprogram denoted by P. The type of P'Access
is an access-to-subprogram type (S), as determined by the expected type. The accessibility level of P
shall not be statically deeper than that of S. In addition to the places where Legality Rules normally



ISO/IEC 8652:1995/WD.1:2002

by:

apply (see 12.3), thisrule applies also in the private part of an instance of a generic unit. The profile of
P shall be subtype-conformant with the designated profile of S, and shall not be Intrinsic. If the
subprogram denoted by P is declared within ageneric body, S shall be declared within the generic
body.

P'Accessyields an access val ue that designates the subprogram denoted by P. The type of P'Access
is an access-to-subprogram type (S), as determined by the expected type. The accessibility level of P
shall not be statically deeper than that of S. In addition to the places where Legality Rules normally
apply (see 12.3), thisrule applies aso in the private part of an instance of a generic unit. The profile of
P shall be subtype-conformant with the designated profile of S, and shall not be Intrinsic. If the
subprogram denoted by P is declared within a generic unit, and the expression P'Access occurs within
the body of that generic unit or within the body of a generic unit declared within the declarative
region of the generic, then the ultimate ancestor of Sshall be anon-formal type declared within the
generic unit.



ISO/IEC 8652:1995/WD.1:2002

Section 4: Names and Expressions

4.6 Type Conversions

Replace paragraph 9: [Al95-00246-01]
If the target typeis an array type, then the operand type shall be an array type. Further:
by:

If the target typeisan array type, then the operand type shall be an array type. The target type and operation
type shall have acommon ancestor, or:

Replace paragraph 12: [Al95-00246-01]

The component subtypes shall statically match; and
by:

The component subtypes shall statically match;

Replace paragraph 12.1: [Al195-00246-01]

In aview conversion, the target type and the operand type shall both or neither have aliased
components.

by:
Neither the target type nor the operand type shall be limited; and

In aview conversion: the target type and the operand type shall both or neither have aliased
components; and the operand type shall not have atagged, private, or volatile subcomponent.

4.9 Static Expressions and Static Subtypes

Replace paragraph 38: [Al95-00268-01]

For areal static expression that is not part of alarger static expression, and whose expected typeisnot a
descendant of aformal scalar type, the implementation shall round or truncate the val ue (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
valueis exactly half-way between two machine numbers, any rounding shall be performed away from zero. If
the expected type is a descendant of aformal scalar type, no specia rounding or truncating isrequired - normal
accuracy rules apply (see Annex G).

by:
For areal static expression that is not part of alarger static expression, and whose expected typeisnot a
descendant of aformal scalar type, the implementation shall round or truncate the val ue (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
valueisexactly half-way between two machine numbers, the rounding performed isimplementation-defined. If
the expected type is adescendant of aformal scalar type, no special rounding or truncating isrequired - normal
accuracy rules apply (see Annex G).

Implementation Advice

For areal static expression that is not part of alarger static expression, and whose expected typeisnot a
descendant of aformal scalar type, the rounding should be the same as the default rounding for the target
system.



ISO/IEC 8652:1995/WD.1:2002

Section 5: Statements

No changesin this section.



ISO/IEC 8652:1995/WD.1:2002

Section 6: Subprograms

No changesin this section.



ISO/IEC 8652:1995/WD.1:2002

Section 7: Packages

7.6 User-Defined Assignment and Finalization

Replace paragraph 5: [Al95-00161-01]
type Controlled is abstract tagged private;
by:
type Controlled is abstract tagged private;
pragmae Preel aborable_lInitialization(Controlled);
Replace paragraph 7: [Al95-00161-01]
type Limted_Controlled is abstract tagged linmted private;
by:

type Limted_Controlled is abstract tagged limted private;
pragma Preel aborable_Initialization(Limted_Controlled);

10



ISO/IEC 8652:1995/WD.1:2002

Section 8: Visibility Rules

8.3 Visibility
Insert after paragraph 26: [A195-00218-01]

A non-overridable declarationisillegal if thereisahomograph occurring immediately within the same
declarativeregion that is visible at the place of the declaration, and is not hidden from all visibility by the non-
overridable declaration. In addition, atype extensionisillegal if somewhere within itsimmediate scopeit has
two visible components with the same name. Similarly, the context_clause for asubunit isillegal if it mentions
(inawith_clause) some library unit, and there is a homograph of the library unit that is visible at the place of
the corresponding stub, and the homograph and the mentioned library unit are both declared immediately
within the same declarative region. These rules also apply to dispatching operations declared in the visible part
of an instance of ageneric unit. However, they do not apply to other overloadable declarationsin an instance;
such declarations may have type conformant profilesin theinstance, so long as the corresponding
declarationsin the generic were not type conformant.

the new paragraphs:
Syntax
The form of apragma Explicit_Overriding isasfollows:
pragma Explicit_Overriding;
Theform of apragmaOverriding is asfollows:
pragma Overriding [(designator)];
Theform of apragma Optional_Overriding is asfollows:
pragma Optional_Overriding [(designator)];
Pragma Explicit_Overriding is a configuration pragma.
Legality Rules

Pragmas Overriding and Optional_Overriding shall immediately follow (except for other pragmas) the explicit
declaration of aprimitive operation. The optional designator of a pragma Overriding or Optional_Overriding
shall be the same as the designator of the operation which it follows. Only one of the pragmas Overriding and
Optional_Overriding shall be given for asingle primitive operation.

A primitive operation to which pragma Overriding applies shall override another operation. In addition to the
places where Legality Rules normally apply, thisrule also appliesin the private part of an instance of ageneric
unit.

The configuration pragma Explicit_Overriding appliesto all declarations within compilation unitsto which it
applies, except that in an instance of ageneric unit, Explicit_Overriding appliesif and only if it appliesto the
generic unit. At aplace where apragma Explicit_Overriding applies, an explicit subprogram_declaration to
which neither pragma Overriding nor Optional_Overriding applies shall not be an overriding declaration. In
addition to the places where Legality Rules normally apply, thisrule also appliesin the private part of an
instance of ageneric unit.

11



ISO/IEC 8652:1995/WD.1:2002

Section 9: Tasks and Synchronization

9.6 Delay Statements, Duration, and Time

Replace paragraph 10: [Al95-00161-01]
package Ada. Cal endar is
type Tinme is private;
by:
package Ada. Cal endar is

type Tinme is private;
pragma Preel aborable_lInitialization(Tine);

12



ISO/IEC 8652:1995/WD.1:2002

Section 10: Program Structure and Compilation Issues

10.2.1 Elaboration Control

Insert after paragraph 4: [Al195-00161-01]
A pragma Preelaborateisalibrary unit pragma.
the new paragraphs:
Theform of pragma Preelaborable_|nitializationisasfollows:

pragma Preelaborable_|nitialization (direct_name);

Replace paragraph 9: [Al95-00161-01]

The creation of adefault-initialized object (including a component) of a descendant of a private type,

private extension, controlled type, task type, or protected type with entry_declarations; similarly the
evaluation of an extension_aggregate with an ancestor subtype_mark denoting a subtype of such
atype.

by:
The creation of an object (including a component) of atype which does not have preelaborable

initialization. Similarly the evaluation of anextension_aggregate with an ancestor subtype_mark
denoting a subtype of such atype.

Insert after paragraph 11: [Al95-00161-01]

If apragma Preelaborate (or pragma Pure -- see below) appliesto alibrary unit, then it ispreelaborated. If a
library unit is preelaborated, then its declaration, if any, and body, if any, are elaborated prior to al non-
preelaborated library_items of the partition. The declaration and body of a preelaborated library unit, and al
subunits that are elaborated as part of elaborating the library unit, shall be preelaborable. In addition to the
places where Legality Rules normally apply (see 12.3), thisrule applies also in the private part of an instance of
ageneric unit. In addition, all compilation units of a preelaborated library unit shall depend semantically only
on compilation units of other preelaborated library units.

the new paragraphs:
The following rules specify which entities have preelaborabl e initialization:

The partial view of aprivate type or private extension, a protected type without entry _declarations, a
generic formal private type, or ageneric formal derived type, have preelaborableinitiaization if and
only if the pragma Preelaborable_|nitialization has been applied to them.

A component (including adiscriminant) of arecord or protected type has preelaborable initialization if
its declaration includes a default_expression whose execution does not perform any actions
prohibited in preelaborable constructs as described above, or if its declaration does not include a
default expression and its type has preelaborable initialization.

A derived type has preelaborable initialization if its parent type has preelaborable initialization and (in
the case of aderived record or protected type) if the non-inherited components all have preelaborable
initialization. Moreover, a user-defined controlled type with an overridding Initialize procedure does
not have preelaborable initialization.

A view of atype has preelaborableinitiaization if it isan elementary type, an array type whose
component type has preelaborable initialization, or arecord type whose components all have
preelaborable initialization.

A pragma Preelaborable_Initialization specifiesthat atype has preelaborable initialization. This pragma shall
appear in the visible part of a package or generic package.

13



ISO/IEC 8652:1995/WD.1:2002

14

If the pragma appearsin thefirst list of declarative_items of a package_specification, then the direct_name
shall denote the first subtype of a private type, private extension, or protected type without
entry_declarations, and the type shall be declared within the same package as the pragma. If the pragma is
applied to aprivate type or a private extension, the full view of the type shall have preelaborable initialization. If
the pragma is applied to a protected type, each component of the protected type shall have preelaborable
initialization. In addition to the places where Legality Rules normally apply, these rules apply also in the private
part of an instance of a generic unit.

If the pragma appearsin ageneric_formal_part, then the direct_name shall denote ageneric formal private
type or ageneric formal derived type declared in the same generic_formal_part asthe pragma. Ina
generic_instantiation the corresponding actual type shall have preelaborableinitialization.



ISO/IEC 8652:1995/WD.1:2002

Section 11: Exceptions

11.4.1 The Package Exceptions

Replace paragraph 14: [Al95-00241-01]

Raise_Exception and Reraise_Occurrence have no effect in the case of Null_Id or Null_Occurrence.
Exception_Message, Exception_ldentity, Exception_Name, and Exception_Information raise Constraint_Error
for aNull_Id or Null_Occurrence.

by:

Raise_Exception and Reraise_Occurrence have no effect in the case of Null_Id or Null_Occurrence.
Exception_Name raises Constraint_Error for aNull_Id. Exception_Message, Exception_Name, and
Exception_Information raise Constraint_Error for a Null_Occurrence. Exception_ldentity applied to
Null_Occurrence returns Null_Id.

15



ISO/IEC 8652:1995/WD.1:2002

Section 12: Generic Units

12.5 Formal Types

Replace paragraph 8: [Al95-00233-01]

by:

Theformal type also belongsto each class that contains the determined class. The primitive subprograms of
the type are asfor any type in the determined class. For aformal type other than aformal derived type, these
are the predefined operators of the type. For an elementary formal type, the predefined operators are implicitly
declared immediately after the declaration of the formal type. For acomposite formal type, the predefined
operators are implicitly declared either immediately after the declaration of the formal type, or later inits
immediate scope according to the rules of 7.3.1. In aninstance, the copy of such an implicit declaration declares
aview of the predefined operator of the actual type, even if this operator has been overridden for the actual
type. The rules specific to formal derived typesaregivenin 12.5.1.

Theformal type also belongsto each class that contains the determined class. The primitive subprograms of
the type are asfor any type in the determined class. For aformal type other than aformal derived type, these
are the predefined operators of the type. For an elementary formal type, the predefined operators are implicitly
declared immediately after the declaration of the formal type. For acomposite formal type, the predefined
operators areimplicitly declared either immediately after the declaration of the formal type, or later immediately
within the declarative region in which the type is declared according to the rules of 7.3.1. In an instance, the
copy of such an implicit declaration declares aview of the predefined operator of the actual type, even if this
operator has been overridden for the actual type. The rules specific to formal derived typesare givenin 12.5.1.

12.5.1 Formal Private and Derived Types

Replace paragraph 20: [Al95-00233-01]

by:

If the ancestor type isacomposite type that is not an array type, the formal type inherits components from the
ancestor type (including discriminantsif anew discriminant_part is not specified), asfor aderived type
defined by aderived_type_definition (see 3.4).

If the ancestor type isacomposite type that is not an array type, the formal type inherits components from the
ancestor type (including discriminantsif anew discriminant_part is not specified), asfor a derived type
defined by aderived_type_definition (see 3.4 and 7.3.1).

Replace paragraph 21: [Al95-00233-01]

by:

16

For aformal derived type, the predefined operators and inherited user-defined subprograms are determined by
the ancestor type, and areimplicitly declared at the earliest place, if any, within the immediate scope of the
formal type, where the corresponding primitive subprogram of the ancestor isvisible (see 7.3.1). In aninstance,
the copy of such an implicit declaration declares aview of the corresponding primitive subprogram of the
ancestor of the formal derived type, even if this primitive has been overridden for the actual type. When the
ancestor of theformal derived typeisitself aformal type, the copy of theimplicit declaration declares aview of
the corresponding copied operation of the ancestor. In the case of aformal private extension, however, the tag
of the formal typeisthat of the actual type, soif thetagin acall is statically determined to be that of the formal
type, the body executed will be that corresponding to the actual type.

For aformal derived type, the predefined operators and inherited user-defined subprograms are determined by
the ancestor type, and areimplicitly declared at the earliest place, if any, immediately within the declarative
region in which the formal typeis declared, where the corresponding primitive subprogram of the ancestor is
visible (see 7.3.1). In an instance, the copy of such an implicit declaration declares aview of the corresponding



ISO/IEC 8652:1995/WD.1:2002

primitive subprogram of the ancestor of the formal derived type, even if this primitive has been overridden for
the actual type. When the ancestor of the formal derived typeisitself aformal type, the copy of theimplicit
declaration declares aview of the corresponding copied operation of the ancestor. In the case of aformal
private extension, however, the tag of the formal typeisthat of the actual type, soif thetaginacall isstatically
determined to be that of the formal type, the body executed will be that corresponding to the actual type.

17



ISO/IEC 8652:1995/WD.1:2002

Section 13: Representation Issues

13.3 Representation Attributes

Delete paragraph 26: [A195-00247-01]

If an Alignment is specified for acomposite subtype or object, this Alignment shall be equal to the
least common multiple of any specified Alignments of the subcomponent subtypes, or an integer
multiple thereof.

13.7 The Package System

Replace paragraph 12: [Al95-00161-01]

type Address is inplenentation-defined,;
Nul | _Address : constant Address;

by:
type Address is inplenentation-defined;
pragnme Preel aborable_Initialization(Address);
Nul | _Address : constant Address;
In paragraph 15 replace: [Al95-00221-01]
Default _Bit_Oder : constant Bit_Order;
by:
Default _Bit_Order : constant Bit_Order := inplenentation-defined;
Replace paragraph 35: [Al95-00221-01]
See 13.5.3 for an explanation of Bit_Order and Default_Bit_Order.
by:
See 13.5.3 for an explanation of Bit_Order and Default_Bit_Order. Default_Bit_Order shall be a static constant.

13.11 Storage Management

Replace paragraph 6: [Al95-00161-01]

type Root_Storage Pool is
abstract new Ada. Controlled.Limted Controlled with private;

by:

type Root_Storage_ Pool is
abstract new Ada. Controlled.Limted_Controlled with private;
pragnma Preel aborable_Initialization(Root_Storage_Pool);

13.12 Pragma Restrictions

Insert after paragraph 7: [A195-00257-01]
The set of restrictions isimplementation defined.

18



ISO/IEC 8652:1995/WD.1:2002

the new paragraphs:

The following restriction_identifiers are language-defined (additional restrictions are defined in the Specialized
Needs Annexes):

No_Implementation_Attributes
There are no implementation-defined attributes. This restriction applies only to the current
compilation or environment, not the entire partition.

No_Implementation_Pragmas
There are no implementati on-defined pragmas or pragma arguments. Thisrestriction applies only to
the current compilation or environment, not the entire partition.

13.13.1 The Package Streams

Replace paragraph 3: [Al95-00161-01]

type Root_Stream Type is abstract tagged linmted private;
by:

type Root_Stream Type is abstract tagged limted private;

pragnma Preel aborabl e I nitializati on(Root_Stream Type);
Replace paragraph 8: [Al95-00227-01]

The Read operation transfers Item’'Length stream elements from the specified stream to fill the array Item. The
index of the last stream element transferred isreturned in Last. Last islessthan Item'Last only if the end of the
stream is reached.

by:
The Read operation transfers stream elements from the specified stream to fill the array Item. Elements are
transferred until 1tem’Length elements have been transferred, or until the end of the stream isreached. If any
elements aretransferred, theindex of the last stream element transferred is returned in Last. Otherwise,
Item'First - Lisreturned in Last. Last islessthan Item'Last only if the end of the stream is reached.

Insert after paragraph 10: [Al195-00227-01]
See A.12.1, " The Package Streams.Stream_1O" for an example of extending type Root_Stream_Type.

the new paragraph:

If the end of stream has been reached, and Item'First is Stream_Element_Offset'First, Read will raise
Constraint_Error.

13.13.2 Stream-Oriented Attributes

Insert after paragraph 28: [Al195-00260-01]
For every subtype S'Class of aclass-wide type T'Class:
the new paragraphs:
SClassTag_Write
S'ClassTag_Write denotes a procedure with the following specification:

procedure S Cass' Tag Wite (
Stream : access Streans. Root _Stream Type' d ass;
Tag : Ada. Tags. Tag);

SClassTag_Write writesthe value of Tag to Stream.
SClassTag_Read
19



ISO/IEC 8652:1995/WD.1:2002

SClassTag_Read denotes a function with the following specification:

function S dass' Tag Wite (
Stream : access Streamns. Root _Stream Type' d ass)
return Ada. Tags. Tag;

SClassTag_Read reads atag from Stream, and returnsits val ue.
The default implementations of the Tag_Write and Tag_Read operate as follows:

If Tisaderived type with parent type P, the default implementation of Tag_Write calls
P'ClassTag_Write, and the default implementation of Tag_Read callsP'ClassTag_Read;

Otherwise, the default implementation of Tag_Write calls String'Output(Stream,
Tags.External_Tag(Tag)) -- see 3.9. The default implementation of Tag_Read returns the value of
Tags.Internal_Tag(String'Input(Stream)).

Replace paragraph 31: [Al95-00260-01]

by:

First writes the external tag of Itemto Stream (by calling String'Output(Tags.External_Tag(ItemTag) -- see 3.9)
and then dispatches to the subprogram denoted by the Output attribute of the specific typeidentified by the

tag.

First writes the external tag of I1temto Stream (by calling STag_Write(Stream, IteniTag)) and then dispatches
to the subprogram denoted by the Output attribute of the specific type identified by the tag.

Replace paragraph 34: [Al95-00260-01]

by:

First reads the external tag from Streamand determines the corresponding internal tag (by calling
Tags.Internal_Tag(String'l nput(Stream)) -- see 3.9) and then dispatches to the subprogram denoted by the
Input attribute of the specific typeidentified by theinternal tag; returnsthat result.

First reads the external tag from Streamand determines the corresponding internal tag (by calling
STag_Read(Stream)) and then dispatches to the subprogram denoted by the Input attribute of the specific
typeidentified by the internal tag; converts that result to SClass and returnsit.

Insert after paragraph 38: [A195-00260-01]

User-specified attributes of S'Class are not inherited by other class-wide types descended from S.

the new paragraph:

20

User-specified Tag_Read and Tag_Write attributes should raise an exception if presented with atag value not
in SClass.



ISO/IEC 8652:1995/WD.1:2002

Annex A: Predefined Language Environment

A.4.2 The Package Strings.Maps

Replace paragraph 4: [Al95-00161-01]

- - Representation for a set of Wide_Character values:
type Wde_Character_Set is private;

by:

- - Representation for a set of Wide_Character values:

type Wde_Character_Set is private;

pragne Preel aborabl e I nitializati on(Wde_Character_Set);
Replace paragraph 4: [Al95-00161-01]

- - Representation for a set of character values:
type Character_Set is private;

by:
- - Representation for a set of character values:
type Character_Set is private;
pragnma Preel aborabl e Initialization(Character_Set);

Replace paragraph 20: [Al95-00161-01]

- - Representation for a Wide_Character to Wide_Character mapping:
type Wde_Character_Mapping is private;

by:
- - Representation for a Wide_Character to Wide_Character mapping:
type Wde_Character_Mapping is private;
pragma Preel aborabl e_Initialization(Wde_Character_Mpping);
Replace paragraph 20: [Al95-00161-01]

- - Representation for a character to character mapping:
type Character_Mapping is private;

by:

- - Representation for a character to character mapping:
type Character_Mapping is private;
pragne Preel aborabl e_Initialization(Character_Mapping);

A.4.4 Bounded-Length String Handling

Replace paragraph 101: [Al95-00238-01]

Returnsthe slice at positions Low through High in the string represented by Source; propagates Index_Error if
Low > Length(Source)+1 or High > Length(Source).

by:

Returns the slice at positions Low through High in the string represented by Source; propagates Index_Error if
Low > Length(Source)+1 or High > Length(Source). The bounds of the returned string are Low and High.

21



ISO/IEC 8652:1995/WD.1:2002

A.4.5 Unbounded-Length String Handling

Replace paragraph 4: [Al95-00161-01]

by:

type Unbounded_String is private;

type Unbounded_String is private;
pragma Preel aborable_Initialization(Unbounded_String);

A.5.3 Attributes of Floating Point Types

Insert after paragraph 41: [Al195-00267-01]

The function yields the integral value nearest to X, rounding toward the even integer if X lies exactly
halfway between two integers. A zero result hasthe sign of X when SSigned_Zerosis True.

the new paragraphs:

SMachine_Rounding
SMachine_Rounding denotes afunction with the following specification:

function S Machine_Rounding (X : T)
return T

Thefunction yields the integral value nearest to X. If X lies exactly halfway between two integers, one
of those integersisreturned, but which of them is returned is unspecified. A zero result hasthe sign
of Xwhen S'Signed Zerosis True. Thisfunction provides accessto the rounding behavior whichis
most efficient on the target processor.

A.10.6 Get and Put Procedures

In paragraph 5replace: [A195-00223-01]

by:

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any Get procedure
for an enumeration type begins by skipping any leading blanks, or line or page terminators. Get procedures for
numeric or enumeration types start by skipping leading blanks, where ablank is defined as a space or a
horizontal tabulation character. Next, characters are input only so long as the sequence input is an initial
sequence of an identifier or of acharacter literal (in particular, input ceases when aline terminator is
encountered). The character or line terminator that causes input to cease remains available for subsequent
input.

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any Get procedure
for an enumeration type begins by skipping any leading blanks, or line or page terminators. A blank is defined
asaspace or ahorizontal tabulation character. Next, characters are input only so long as the sequence input is
aninitial sequence of an identifier or of acharacter literal (in particular, input ceases when aline terminator is
encountered). The character or line terminator that causes input to cease remains available for subsequent
input.

A.12.1 The Package Streams.Stream_|O

Replace paragraph 28.1: [Al95-00085-01]

22

The Set_Mode procedure changes the mode of thefile. If the new modeis Append_File, thefileis positioned
to its end; otherwise, the position in the file is unchanged.



ISO/IEC 8652:1995/WD.1:2002

by:

The Set_Mode procedure sets the mode of thefile. If the new mode is Append_File, thefileis positioned to its
end; otherwise, the position in the file is unchanged.

23



ISO/IEC 8652:1995/WD.1:2002

Annex B: Interface to Other Languages

B.3 Interfacing with C

Replace paragraph 50: [Al95-00258-01]

Theresult of To_Cisachar_array value of length Item'Length (if Append_Nul is False) or Item'Length+1 (if
Append_Nul is True). Thelower bound is 0. For each component Item(l), the corresponding component in the
resultisTo_C applied to Item(l). The value nul is appended if Append_Nul is True.

by:

Theresult of To_Cisachar_array value of length Item'Length (if Append_Nul is False) or Item'Length+1 (if
Append_Nul is True). Thelower bound is 0. For each component Item(l), the corresponding component in the
resultisTo_C applied to Item(l). The value nul is appended if Append_Nul is True. If Append_Nul isFalse
and Item'Length is 0, then To_C propagates Constraint_Error.

B.3.1 The Package Interfaces.C.Strings

Replace paragraph 5: [Al95-00161-01]
type Chars_Ptr is private;
by:
type Chars_Ptr is private;
pragnma Preel aborable_Initialization(Chars_Ptr);
Replace paragraph 50: [Al95-00242-01]
Equivaent to Update(ltem, Offset, To_C(Str), Check).
by:
Equivalent to Update(Item, Offset, To_C(Str, Append_Nul => False), Check).

24



ISO/IEC 8652:1995/WD.1:2002

Annex C: Systems Programming

C.3.1 Protected Procedure Handlers

Replace paragraph 8: [Al95-00253-01]

The Interrupt_Handler pragmais only allowed immediately within a protected_definition. The corresponding
protected_type_declaration shall be alibrary level declaration. In addition, any object_declaration of such a
type shall be alibrary level declaration.

by:

The Interrupt_Handler pragmais only allowed immediately within a protected_definition where the
corresponding subprogram is declared. The corresponding protected_type_declaration or
single_protected_declaration shall be alibrary level declaration. In addition, any object_declaration of such
atypeshall bealibrary level declaration.

C.4 Preelaboration Requirements

Insert after paragraph 4: [Al195-00161-01]

Any subtype_mark denotes a statically constrained subtype, with statically constrained
subcomponents, if any;

the new paragraph:

No subtype_mark denotes a controlled type, a private type, a private extension, ageneric formal
private type, ageneric formal derived type, or adescendant of such atype;

C.6 Shared Variable Control

Replace paragraph 7: [Al95-00272-01]

An atomic type is one to which a pragma Atomic applies. Anatomic object (including a component) isone to
which apragma Atomic applies, or acomponent of an array to which a pragma Atomic_Components applies, or
any object of an atomic type.

by:

An atomic type is one to which a pragma Atomic applies. Anatomic object (including a component) is one to
which a pragma Atomic applies, or acomponent of an array to which a pragma Atomic_Components applies, or
any object of an atomic type, other than objects obtained by evaluating aslice.

25



ISO/IEC 8652:1995/WD.1:2002

Annex D: Real-Time Systems

No changesin this section.

26



ISO/IEC 8652:1995/WD.1:2002

Annex E: Distributed Systems

E.2.2 Remote Types Library Units

Replace paragraph 8: [Al95-00240-01]

if the full view of atype declared in the visible part of the library unit has a part that is of anon-remote
access type, then that access type, or the type of some part that includes the access type
subcomponent, shall have user-specified Read and Write attributes.

by:

if the full view of atype declared in the visible part of the library unit has a part that is of anon-remote
access type, then that access type, or the type of some part that includes the access type
subcomponent, shall have Read and Write attributes specified by avisible
attribute_definition_clause.

Replace paragraph 14: [Al95-00240-01]

The primitive subprograms of the corresponding specific limited private type shall only have access
parametersif they are controlling formal parameters; each non-controlling formal parameter shall have
either anonlimited type or atype with Read and Write attributes specified viaan
attribute_definition_clause;

by:

The primitive subprograms of the corresponding specific limited private type shall only have access
parametersif they are controlling formal parameters; each non-controlling formal parameter shall have
either anonlimited type or atype with available Read and Write attributes (see 13.13.2);

E.2.3 Remote Call Interface Library Units

Replace paragraph 14: [Al95-00240-01]

it shall not be, nor shall itsvisible part contain, a subprogram (or access-to-subprogram) declaration
whose profile has an access parameter, or aformal parameter of alimited type unlessthat limited type
has user-specified Read and Write attributes;

by:

it shall not be, nor shall itsvisible part contain, a subprogram (or access-to-subprogram) declaration
whose profile has an access parameter, or aformal parameter of alimited type unless that limited type
has available Read and Write attributes (see 13.13.2);

E.5 Partition Communication Subsystem

Replace paragraph 1: [Al95-00273-01]

The Partition Communication Subsystem (PCS) provides facilities for supporting communication between the
active partitions of adistributed program. The package System.RPC is alanguage-defined interface to the PCS.
An implementation conforming to this Annex shall use the RPC interface to implement remote subprogram
calls.

by:

The Partition Communication Subsystem (PCS) provides facilities for supporting communication between the
active partitions of adistributed program. The package System.RPC is alanguage-defined interface to the PCS.

27



ISO/IEC 8652:1995/WD.1:2002

Insert after paragraph 27: [Al95-00273-01]
A body for the package System.RPC need not be supplied by the implementation.
the new paragraph:

An alternative declaration is allowed for package System.RPC aslong asit provides a set of operationsthat is
substantially equivalent to the specification defined in this clause.

28



ISO/IEC 8652:1995/WD.1:2002

Annex F: Information Systems

No changesin this section.

29



ISO/IEC 8652:1995/WD.1:2002

Annex G: Numerics

G.1.1 Complex Types

Replace paragraph 4: [Al95-00161-01]
type Imaginary is private;
by:

type I maginary is private;
pragnma Preel aborable_|nitialization(lnmaginary);

G.1.2 Complex Elementary Functions

Replace paragraph 15: [Al95-00185-01]

Thereal (resp., imaginary) component of the result of the Arcsin and Arccos (resp., Arctanh)
functionsis discontinuous as the parameter X crossesthe real axisto theleft of -1.0 or the right of 1.0.

by:

Theimaginary component of the result of the Arcsin, Arccos, and Arctanh functions is discontinuous
asthe parameter X crosses the real axisto theleft of -1.0 or theright of 1.0.

Replace paragraph 16: [Al95-00185-01]
Thereal (resp., imaginary) component of the result of the Arctan (resp., Arcsinh) functionis
discontinuous as the parameter X crosses the imaginary axis below -i or abovei.

by:

The real component of the result of the Arctan and Arcsinh functionsis discontinuous as the
parameter X crosses the imaginary axis below -i or abovei.

Replace paragraph 17: [Al95-00185-01]
Thereal component of the result of the Arccot function is discontinuous as the parameter X crosses
the imaginary axis between -i andi.

by:
Thereal component of the result of the Arccot function is discontinuous as the parameter X crosses
the imaginary axisbelow -i or abovei.

Replace paragraph 20: [Al95-00185-01]

The computed results of the mathematically multivalued functions are rendered single-valued by the following
conventions, which are meant to imply the principal branch:

by:
The computed results of the mathematically multivalued functions are rendered single-valued by the following
conventions, which are meant to imply that the principal branch is an analytic continuation of the
corresponding real-valued function in Ada.Numerics.Generic_Elementary_Functions. (For Arctan and Arccot,
the single-argument function in question is that obtained from the two-argument version by fixing the second
argument to beits default value.)

30



ISO/IEC 8652:1995/WD.1:2002

Annex H: Safety and Security

No changesin this section.

31



ISO/IEC 8652:1995/WD.1:2002

Annex J: Obsolescent Features

No changesin this section.

32



