
Information technology —Programming languages —
Ada

AMENDMENT 1 (Draft 8)

Technologies de l'information —Langages de programmation — Ada

AMENDEMENT 1

Amendment 1 to International Standard ISO/IEC 8652:1995 was prepared by AXE Consultants.

© 2004, AXE Consultants. All Rights Reserved.

This document may be copied, in whole or in part, in any form or by any means, as is, or with
alterations, provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is
included unmodified in any copy. Compiled copies of standard library units and examples need not
contain this copyright notice so long as the notice is included in all copies of the source code and
documentation. Any other use or distribution of this document is prohibited without the prior express
permission of AXE.

ISO/IEC 8652:1995/WD.1:2004

2

Introduction

International Standard ISO/IEC 8652:1995 defines the Ada programming language.

This amendment modifies Ada by making changes and additions that improve:

• The safety of applications written in Ada;

• The portability of applications written in Ada;

• Interoperability with other languages and systems; and

• Accessibility and ease of transition from idioms in other programming and modeling languages.

This amendment incorporates the following major additions to the International Standard:

• The Ravenscar profile to provide a simplified tasking system for high-integrity systems (see clause
D.13);

• A non-preemptive task dispatching policy (see clause D.2.4);

• Aggregates, constructor functions, and constants for limited types (see clauses 4.3.1, 6.5, and 7.5);

• Control of overriding to eliminate errors (see clause 8.3);

• Improvements for access types, such as null excluding subtypes (see clause 3.10), additional uses for
anonymous access types (see clauses 3.6 and 8.5.1), and anonymous access-to-subprogram subtypes to
support 'downward closures' (see clauses 3.10 and 3.10.2);

• Additional context clause capabilities: limited views to allow mutually dependent types (see clauses
3.10.1 and 10.1.2) and private context clauses that apply only in the private part of a package (see clause
10.1.2);

• Added standard packages, including time management (see 9.6), file directory and name management
(see clause A.16), execution-time clocks (see clause D.14), timing events (see clause D.15), and array
and vector operations (see clause G.3);

• Interfaces, to provide a limited form of multiple inheritance of operations (see clause 3.9.4); and

• A mechanism for writing C unions to make interfaces with C systems easier (see clause B.3.3).

This Amendment is organized by sections corresponding to those in the International Standard. These sections
include wording changes and additions to the International Standard. Clause and subclause headings are given
for each clause that contains a wording change. Clauses and subclauses that do not contain any change or
addition are omitted.

For each change, an anchor paragraph from the International Standard (as corrected by Technical Corrigendum
1) is given. New or revised text and instructions are given with each change. The anchor paragraph can be
replaced or deleted, or text can be inserted before or after it. When a heading immediately precedes the anchor
paragraph, any text inserted before the paragraph is intended to appear under the heading.

Typographical conventions:

Instructions about the text changes are in this font. The actual text changes are in the same fonts as the
International Standard - this font for text, this font for syntax, and this font for Ada source
code.

Disclaimer:

This document is a draft of a possible amendment to Ada 95 (International Standard ISO/IEC
8652:1995). This draft contains only proposals substantially approved by the ISO/IEC JTC 1/SC
22/WG 9 Ada Rapporteur Group (ARG). Many other important proposals are under

ISO/IEC 8652:1995/WD.1:2004

3

consideration by the ARG. Neither the ARG nor any other group has determined which, if any,
of these proposals will be included in the amendment. Any proposal may be substantially
changed or withdrawn before this document begins standardization, and other proposals may
be added. This document is not an official publication or work product of the ARG.

ISO/IEC 8652:1995/WD.1:2004

4

Forward and Introduction

Introduction

Replace paragraph 32: [AI95-00285-01]

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states or an
alphabet of characters. The enumeration types Boolean, Character, and Wide_Character are predefined.

by:

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states or an
alphabet of characters. The enumeration types Boolean, Character, Wide_Character, and
Wide_Wide_Character are predefined.

Replace paragraph 34: [AI95-00285-01]

Composite types allow definitions of structured objects with related components. The composite types in the
language include arrays and records. An array is an object with indexed components of the same type. A
record is an object with named components of possibly different types. Task and protected types are also
forms of composite types. The array types String and Wide_String are predefined.

by:

Composite types allow definitions of structured objects with related components. The composite types in the
language include arrays and records. An array is an object with indexed components of the same type. A
record is an object with named components of possibly different types. Task and protected types are also
forms of composite types. The array types String, Wide_String, and Wide_Wide_String are predefined.

ISO/IEC 8652:1995/WD.1:2004

5

Section 1: General

1.1.2 Structure

Replace paragraph 13: [AI95-00347-01]

• Annex H, ``Safety and Security''

by:

• Annex H, ``High Integrity Systems''

1.1.4 Method of Description and Syntax Notation

Insert after paragraph 14: [AI95-00285-01]

• If the name of any syntactic category starts with an italicized part, it is equivalent to the category
name without the italicized part. The italicized part is intended to convey some semantic
information. For example subtype_name and task_name are both equivalent to name alone.

the new paragraph:

The terminals of the grammar, including reserved words, punctuation and components of lexical elements,
are exclusively made of the characters whose code position is between 16#20# and 16#7E#, inclusively. For
example, the character E in the definition of exponent is the character whose name is "LATIN CAPITAL
LETTER E", not "GREEK CAPITAL LETTER EPSILON".

ISO/IEC 8652:1995/WD.1:2004

6

Section 2: Lexical Elements

2.1 Character Set

Replace paragraph 1: [AI95-00285-01]

The only characters allowed outside of comments are the graphic_characters and format_effectors.

by:

The characters whose code position is 16#FFFE# or 16#FFFF# are not allowed anywhere in the text of a
program. The characters in categories other_control, other_private_use, and other_surrogate are only
allowed in comments.

Delete paragraph 2: [AI95-00285-01]

character ::= graphic_character | format_effector | other_control_function

Delete paragraph 3: [AI95-00285-01]

graphic_character ::= identifier_letter | digit | space_character | special_character

Replace paragraph 4: [AI95-00285-01]

The character repertoire for the text of an Ada program consists of the collection of characters called the
Basic Multilingual Plane (BMP) of the ISO 10646 Universal Multiple-Octet Coded Character Set, plus a set
of format_effectors and, in comments only, a set of other_control_functions; the coded representation for
these characters is implementation defined (it need not be a representation defined within ISO-10646-1).

by:

The character repertoire for the text of an Ada program consists of the collection of characters described by
the ISO/IEC 10646:2003 Universal Multiple-Octet Coded Character Set. The coded representation for these
characters is implementation defined (it need not be a representation defined within ISO/IEC 10646:2003).

The semantics of an Ada program whose text is not in Normalization Form KC (as defined by section 24 of
ISO/IEC 10646:2003) are implementation-defined.

Replace paragraph 5: [AI95-00285-01]

The description of the language definition in this International Standard uses the graphic symbols defined
for Row 00: Basic Latin and Row 00: Latin-1 Supplement of the ISO 10646 BMP; these correspond to the
graphic symbols of ISO 8859-1 (Latin-1); no graphic symbols are used in this International Standard for
characters outside of Row 00 of the BMP. The actual set of graphic symbols used by an implementation for
the visual representation of the text of an Ada program is not specified.

by:

The description of the language definition in this International Standard uses the character properties
General Category and Decimal Digit Value of the documents referenced by the note in section 1 of ISO/IEC
10646:2003. The actual set of graphic symbols used by an implementation for the visual representation of the
text of an Ada program is not specified.

Delete paragraph 7: [AI95-00285-01]

identifier_letter
 upper_case_identifier_letter | lower_case_identifier_letter

Replace paragraph 8: [AI95-00285-01]

upper_case_identifier_letter
 Any character of Row 00 of ISO 10646 BMP whose name begins ``Latin Capital Letter''.

ISO/IEC 8652:1995/WD.1:2004

7

by:

letter_uppercase
 Any character whose General Category is defined to be "Letter, Uppercase".

Replace paragraph 9: [AI95-00285-01]

lower_case_identifier_letter
 Any character of Row 00 of ISO 10646 BMP whose name begins ``Latin Small Letter''.

by:

letter_lowercase
 Any character whose General Category is defined to be "Letter, Lowercase".

letter_titlecase
 Any character whose General Category is defined to be "Letter, Titlecase".

letter_modifier
 Any character whose General Category is defined to be "Letter, Modifier".

letter_other
 Any character whose General Category is defined to be "Letter, Other".

mark_non_spacing
 Any character whose General Category is defined to be "Mark, Non-Spacing".

mark_spacing_combining
 Any character whose General Category is defined to be "Mark, Spacing Combining".

Replace paragraph 10: [AI95-00285-01]

digit
 One of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

by:

number_decimal_digit
 Any character whose General Category is defined to be "Number, Decimal Digit".

number_letter
 Any character whose General Category is defined to be "Number, Letter".

Delete paragraph 11: [AI95-00285-01]

space_character
 The character of ISO 10646 BMP named ``Space''.

Replace paragraph 12: [AI95-00285-01]

special_character
 Any character of the ISO 10646 BMP that is not reserved for a control function, and is not the

space_character, an identifier_letter, or a digit.

by:

other_control
 Any character whose General Category is defined to be "Other, Control".

other_format
 Any character whose General Category is defined to be "Other, Format".

other_private_use
 Any character whose General Category is defined to be "Other, Private Use".

other_surrogate
 Any character whose General Category is defined to be "Other, Surrogate".

ISO/IEC 8652:1995/WD.1:2004

8

punctuation_connector
 Any character whose General Category is defined to be "Punctuation, Connector".

separator_space
 Any character whose General Category is defined to be "Separator, Space".

separator_line
 Any character whose General Category is defined to be "Separator, Line".

separator_paragraph
 Any character whose General Category is defined to be "Separator, Paragraph".

Replace paragraph 13: [AI95-00285-01]

format_effector
 The control functions of ISO 6429 called character tabulation (HT), line tabulation (VT), carriage

return (CR), line feed (LF), and form feed (FF).

by:

format_effector
 The characters whose code position is 16#09# (CHARACTER TABULATION), 16#0A# (LINE

FEED(LF)), 16#0B# (LINE TABULATION), 16#0C# (FORM FEED(FF)), 16#0D# (CARRIAGE
RETURN(CR)), 16#85# (NEXT LINE(NEL)), and the characters in categories separator_line and
separator_paragraph. The names mentioned in parenthese in this list are not defined by ISO/IEC
10646:2003; they are only used for convenience in this International Standard.

Replace paragraph 14: [AI95-00285-01]

other_control_function
 Any control function, other than a format_effector, that is allowed in a comment; the set of

other_control_functions allowed in comments is implementation defined.

by:

graphic_character
 Any character which is not in the categories other_control, other_private_use, other_surrogate,

other_format, format_effector, and whose code position is neither 16#FFFE# nor 16#FFFF#.

Replace paragraph 15: [AI95-00285-01]

The following names are used when referring to certain special_characters:

by:

The following names are used when referring to certain characters (the first name is that given in ISO/IEC
10646:2003):

Delete paragraph 16: [AI95-00285-01]

In a nonstandard mode, the implementation may support a different character repertoire; in particular, the
set of characters that are considered identifier_letters can be extended or changed to conform to local
conventions.

Delete paragraph 17: [AI95-00285-01]

1 Every code position of ISO 10646 BMP that is not reserved for a control function is defined to be a
graphic_character by this International Standard. This includes all code positions other than 0000 - 001F, 007F
- 009F, and FFFE - FFFF.

ISO/IEC 8652:1995/WD.1:2004

9

2.2 Lexical Elements, Separators, and Delimiters

Replace paragraph 3: [AI95-00285-01]

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any of a
space character, a format effector, or the end of a line, as follows:

by:

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any of a
separator_space, a format_effector or the end of a line, as follows:

Replace paragraph 4: [AI95-00285-01]

• A space character is a separator except within a comment, a string_literal, or a character_literal.

by:

• A separator_space is a separator except within a comment, a string_literal, or a
character_literal.

Replace paragraph 5: [AI95-00285-01]

• Character tabulation (HT) is a separator except within a comment.

by:

• Character Tabulation is a separator except within a comment.

Replace paragraph 8: [AI95-00285-01]

A delimiter is either one of the following special characters:

by:

A delimiter is either one of the following characters:

2.3 Identifiers

Replace paragraph 2: [AI95-00285-01]

identifier ::=
 identifier_letter {[underline] letter_or_digit}

by:

identifier_start ::= letter_uppercase |
 letter_lowercase |
 letter_titlecase |
 letter_modifier |
 letter_other |
 number_letter
identifier_extend ::= identifier_start |
 mark_non_spacing |
 mark_spacing_combining |
 number_decimal_digit |
 other_format
identifier ::= identifier_start {[punctuation_connector] identifier_extend}

Delete paragraph 3: [AI95-00285-01]

letter_or_digit ::= identifier_letter | digit

Replace paragraph 5: [AI95-00285-01]

All characters of an identifier are significant, including any underline character. Identifiers differing only in
the use of corresponding upper and lower case letters are considered the same.

ISO/IEC 8652:1995/WD.1:2004

10

by:

Two identifiers are considered the same if they consist of same sequence of characters after applying the
following transformations (in this order):

• The characters in category other_format are eliminated.

• Full case folding, as defined by documents referenced in the note in section 1 of ISO/IEC
10646:2003, is applied to obtain the uppercase version of each character.

2.6 String Literals

Insert after paragraph 6: [AI95-00285-01]

A null string literal is a string_literal with no string_elements between the quotation marks.

the new paragraph:

No modification is performed on the sequence of characters in a string_literal.

2.9 Reserved Words

In the list in paragraph 2, add: [AI95-00284-02]

interface

overriding

synchronized

ISO/IEC 8652:1995/WD.1:2004

11

Section 3: Declarations and Types

3.1 Declarations

Replace paragraph 3: [AI95-00348-01]

basic_declaration ::=
 type_declaration | subtype_declaration
 | object_declaration | number_declaration
 | subprogram_declaration | abstract_subprogram_declaration
 | package_declaration | renaming_declaration
 | exception_declaration | generic_declaration
 | generic_instantiation

by:

basic_declaration ::=
 type_declaration | subtype_declaration
 | object_declaration | number_declaration
 | subprogram_declaration | abstract_subprogram_declaration
 | null_procedure_declaration | package_declaration
 | renaming_declaration | exception_declaration
 | generic_declaration | generic_instantiation

3.2 Types and Subtypes

Replace paragraph 4: [AI95-00326-01]

The composite types are the record types, record extensions, array types, task types, and protected types. A
private type or private extension represents a partial view (see 7.3) of a type, providing support for data
abstraction. A partial view is a composite type.

by:

The composite types are the record types, record extensions, array types, task types, and protected types.

There can be multiple views of a type with varying sets of operations. An incomplete type represents an
incomplete view (see 3.10.1) of a type with a very restricted usage, providing support for recursive data
structures. A private type or private extension represents a partial view (see 7.3) of a type, providing support
for data abstraction. The full view (see 3.2.1) of a type provides its complete declaration. An incomplete or
partial view is considered a composite type.

Replace paragraph 5: [AI95-00326-01]

Certain composite types (and partial views thereof) have special components called discriminants whose
values affect the presence, constraints, or initialization of other components. Discriminants can be thought of
as parameters of the type.

by:

Certain composite types (and views thereof) have special components called discriminants whose values
affect the presence, constraints, or initialization of other components. Discriminants can be thought of as
parameters of the type.

3.2.1 Type Declarations

Replace paragraph 4: [AI95-00251-01]

type_definition ::=
 enumeration_type_definition | integer_type_definition
 | real_type_definition | array_type_definition

ISO/IEC 8652:1995/WD.1:2004

12

 | record_type_definition | access_type_definition
 | derived_type_definition

by:

type_definition ::=
 enumeration_type_definition | integer_type_definition
 | real_type_definition | array_type_definition
 | record_type_definition | access_type_definition
 | derived_type_definition | interface_type_definition

Replace paragraph 8: [AI95-00326-01]

A named type that is declared by a full_type_declaration, or an anonymous type that is defined as part of
declaring an object of the type, is called a full type. The type_definition, task_definition,
protected_definition, or access_definition that defines a full type is called a full type definition. Types
declared by other forms of type_declaration are not separate types; they are partial or incomplete views of
some full type.

by:

A named type that is declared by a full_type_declaration, or an anonymous type that is defined as part of
declaring an object of the type, is called a full type. A full type defines the full view of a type. The
type_definition, task_definition, protected_definition, or access_definition that defines a full type is
called a full type definition. Types declared by other forms of type_declaration are not separate types; they
are partial or incomplete views of some full type.

3.2.2 Subtype Declarations

Replace paragraph 3: [AI95-00231-01]

subtype_indication ::= subtype_mark [constraint]

by:

subtype_indication ::=
 [null_exclusion] subtype_mark [scalar_constraint | composite_constraint]

Delete paragraph 5: [AI95-00231-01]

constraint ::= scalar_constraint | composite_constraint

3.2.3 Classification of Operations

Insert after paragraph 6: [AI95-00335-01]

• For a specific type declared immediately within a package_specification, any subprograms (in
addition to the enumeration literals) that are explicitly declared immediately within the same
package_specification and that operate on the type;

the new paragraph:

• For a specific type, the stream-oriented attributes of the type that are available (see 13.13.2) at the
end of the list of declarative_items where the type is declared;

Replace paragraph 7: [AI95-00200-01]

• Any subprograms not covered above that are explicitly declared immediately within the same
declarative region as the type and that override (see 8.3) other implicitly declared primitive
subprograms of the type.

ISO/IEC 8652:1995/WD.1:2004

13

by:

• In the case of a nonformal type, any subprograms not covered above that are explicitly declared
immediately within the same declarative region as the type and that override (see 8.3) other
implicitly declared primitive subprograms of the type.

3.3.1 Object Declarations

Replace paragraph 5: [AI95-00287-01]

An object_declaration without the reserved word constant declares a variable object. If it has a
subtype_indication or an array_type_definition that defines an indefinite subtype, then there shall be an
initialization expression. An initialization expression shall not be given if the object is of a limited type.

by:

An object_declaration without the reserved word constant declares a variable object. If it has a
subtype_indication or an array_type_definition that defines an indefinite subtype, then there shall be an
initialization expression.

Replace paragraph 9: [AI95-00363-01]

If a composite object declared by an object_declaration has an unconstrained nominal subtype, then if this
subtype is indefinite or the object is constant or aliased (see 3.10) the actual subtype of this object is
constrained. The constraint is determined by the bounds or discriminants (if any) of its initial value; the
object is said to be constrained by its initial value. In the case of an aliased object, this initial value may be
either explicit or implicit; in the other cases, an explicit initial value is required. When not constrained by its
initial value, the actual and nominal subtypes of the object are the same. If its actual subtype is constrained,
the object is called a constrained object.

by:

If a composite object declared by an object_declaration has an unconstrained nominal subtype, then if this
subtype is indefinite or the object is constant the actual subtype of this object is constrained. The constraint is
determined by the bounds or discriminants (if any) of its initial value; the object is said to be constrained by
its initial value. When not constrained by its initial value, the actual and nominal subtypes of the object are
the same. If its actual subtype is constrained, the object is called a constrained object.

3.4 Derived Types and Classes

Replace paragraph 2: [AI95-00251-01]

derived_type_definition ::= [abstract] new parent_subtype_indication [record_extension_part]

by:

interface_list ::= interface_subtype_mark {and interface_subtype_mark}

derived_type_definition ::=
 [abstract] new parent_subtype_indication [[and interface_list] record_extension_part]

Replace paragraph 3: [AI95-00251-01]

The parent_subtype_indication defines the parent subtype; its type is the parent type.

by:

The parent_subtype_indication defines the parent subtype; its type is the parent type. A derived type has
one parent type and zero or more interface ancestor types.

Replace paragraph 8: [AI95-00251-01]

• Each class of types that includes the parent type also includes the derived type.

ISO/IEC 8652:1995/WD.1:2004

14

by:

• Each class of types that includes the parent type or an interface ancestor type also includes the
derived type.

Insert after paragraph 23: [AI95-00251-01]

If a primitive subprogram of the parent type is visible at the place of the derived_type_definition, then the
corresponding inherited subprogram is implicitly declared immediately after the derived_type_definition.
Otherwise, the inherited subprogram is implicitly declared later or not at all, as explained in 7.3.1.

the new paragraph:

If a type declaration names an interface type in an interface_list, then the declared type inherits any user-
defined primitive subprograms of the interface type in the same way.

Insert after paragraph 35: [AI95-00251-01]

17 If the reserved word abstract is given in the declaration of a type, the type is abstract (see 3.9.3).

the new paragraph:

18 An interface type which has an interface ancestor "is derived from" that type, and therefore is a derived
type. A derived_type_definition, however, never defines an interface type.

3.4.1 Derivation Classes

Replace paragraph 2: [AI95-00251-01]

A derived type is derived from its parent type directly; it is derived indirectly from any type from which its
parent type is derived. The derivation class of types for a type T (also called the class rooted at T) is the set
consisting of T (the root type of the class) and all types derived from T (directly or indirectly) plus any
associated universal or class-wide types (defined below).

by:

A derived type is derived from its parent type directly; it is derived indirectly from any type from which its
parent type is derived. A derived type or interface type is also derived from each of its interface ancestor
types, if any. The derivation class of types for a type T (also called the class rooted at T) is the set consisting
of T (the root type of the class) and all types derived from T (directly or indirectly) plus any associated
universal or class-wide types (defined below).

Replace paragraph 6: [AI95-00230-01]

Universal types
 Universal types are defined for (and belong to) the integer, real, and fixed point classes, and are

referred to in this standard as respectively, universal_integer, universal_real, and universal_fixed.
These are analogous to class-wide types for these language-defined numeric classes. As with class-
wide types, if a formal parameter is of a universal type, then an actual parameter of any type in the
corresponding class is acceptable. In addition, a value of a universal type (including an integer or
real numeric_literal) is ``universal'' in that it is acceptable where some particular type in the class
is expected (see 8.6).

by:

Universal types
 Universal types are defined for (and belong to) the integer, real, fixed point, and access classes, and

are referred to in this standard as respectively, universal_integer, universal_real, universal_fixed,
and universal_access. These are analogous to class-wide types for these language-defined classes.
As with class-wide types, if a formal parameter is of a universal type, then an actual parameter of
any type in the corresponding class is acceptable. In addition, a value of a universal type (including
an integer or real numeric_literal) is ``universal'' in that it is acceptable where some particular type
in the class is expected (see 8.6).

ISO/IEC 8652:1995/WD.1:2004

15

Replace paragraph 10: [AI95-00251-01]

A specific type T2 is defined to be a descendant of a type T1 if T2 is the same as T1, or if T2 is derived
(directly or indirectly) from T1. A class-wide type T2'Class is defined to be a descendant of type T1 if T2 is a
descendant of T1. Similarly, the universal types are defined to be descendants of the root types of their
classes. If a type T2 is a descendant of a type T1, then T1 is called an ancestor of T2. The ultimate ancestor
of a type is the ancestor of the type that is not a descendant of any other type.

by:

A specific type T2 is defined to be a descendant of a type T1 if T2 is the same as T1, or if T2 is derived
(directly or indirectly) from T1. A class-wide type T2'Class is defined to be a descendant of type T1 if T2 is a
descendant of T1. Similarly, the universal types are defined to be descendants of the root types of their
classes. If a type T2 is a descendant of a type T1, then T1 is called an ancestor of T2. An ultimate ancestor of
a type is an ancestor of that type that is not a descendant of any other type. Each untagged type has a unique
ultimate ancestor.

3.5 Scalar Types

Replace paragraph 28: [AI95-00285-01]

S'Wide_Image
 S'Wide_Image denotes a function with the following specification:

by:

S'Wide_Wide_Image
 S'Wide_Wide_Image denotes a function with the following specification:

Replace paragraph 29: [AI95-00285-01]

 function S'Wide_Image(Arg : S'Base)
 return Wide_String

by:

 function S'Wide_Wide_Image(Arg : S'Base)
 return Wide_Wide_String

Insert after paragraph 34: [AI95-00285-01]

The image of a fixed point value is a decimal real literal best approximating the value (rounded
away from zero if halfway between) with a single leading character that is either a minus sign or a
space, one or more digits before the decimal point (with no redundant leading zeros), a decimal
point, and S'Aft (see 3.5.10) digits after the decimal point.

the new paragraphs:

S'Wide_Image
 S'Wide_Image denotes a function with the following specification:

 function S'Wide_Image(Arg : S'Base)
 return Wide_String

The function returns an image of the value of Arg as a Wide_String. The lower bound of the result
is one. The image has the same sequence of character as defined for S'Wide_Wide_Image if all the
graphic characters are defined in Wide_Character; otherwise the sequence of characters is
implementation defined (but no shorter than that of S'Wide_Wide_Image for the same value of
Arg).

Replace paragraph 37: [AI95-00285-01]

The function returns an image of the value of Arg as a String. The lower bound of the result is one.
The image has the same sequence of graphic characters as that defined for S'Wide_Image if all the

ISO/IEC 8652:1995/WD.1:2004

16

graphic characters are defined in Character; otherwise the sequence of characters is implementation
defined (but no shorter than that of S'Wide_Image for the same value of Arg).

by:

The function returns an image of the value of Arg as a String. The lower bound of the result is one.
The image has the same sequence of character as defined for S'Wide_Wide_Image if all the graphic
characters are defined in Character; otherwise the sequence of characters is implementation defined
(but no shorter than that of S'Wide_Wide_Image for the same value of Arg).

S'Wide_Wide_Width
 S'Wide_Wide_Width denotes the maximum length of a Wide_Wide_String returned by

S'Wide_Wide_Image over all the values of S. It denotes zero for a subtype that has a null range. Its
type is universal_integer.

Replace paragraph 40: [AI95-00285-01]

S'Wide_Value
 S'Wide_Value denotes a function with the following specification:

by:

S'Wide_Wide_Value
 S'Wide_Wide_Value denotes a function with the following specification:

Replace paragraph 41: [AI95-00285-01]

 function S'Wide_Value(Arg : Wide_String)
 return S'Base

by:

 function S'Wide_Wide_Value(Arg : Wide_Wide_String)
 return S'Base

Replace paragraph 42: [AI95-00285-01]

This function returns a value given an image of the value as a Wide_String, ignoring any leading or
trailing spaces.

by:

This function returns a value given an image of the value as a Wide_Wide_String, ignoring any
leading or trailing spaces.

Replace paragraph 43: [AI95-00285-01]

For the evaluation of a call on S'Wide_Value for an enumeration subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of an enumeration
literal and if it corresponds to a literal of the type of S (or corresponds to the result of S'Wide_Image
for a nongraphic character of the type), the result is the corresponding enumeration value; otherwise
Constraint_Error is raised.

by:

For the evaluation of a call on S'Wide_Wide_Value for an enumeration subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of an enumeration
literal and if it corresponds to a literal of the type of S (or corresponds to the result of
S'Wide_Wide_Image for a nongraphic character of the type), the result is the corresponding
enumeration value; otherwise Constraint_Error is raised.

Replace paragraph 44: [AI95-00285-01]

For the evaluation of a call on S'Wide_Value (or S'Value) for an integer subtype S, if the sequence
of characters of the parameter (ignoring leading and trailing spaces) has the syntax of an integer
literal, with an optional leading sign character (plus or minus for a signed type; only plus for a

ISO/IEC 8652:1995/WD.1:2004

17

modular type), and the corresponding numeric value belongs to the base range of the type of S, then
that value is the result; otherwise Constraint_Error is raised.

by:

For the evaluation of a call on S'Wide_Wide_Value for an integer subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of an integer
literal, with an optional leading sign character (plus or minus for a signed type; only plus for a
modular type), and the corresponding numeric value belongs to the base range of the type of S, then
that value is the result; otherwise Constraint_Error is raised.

Replace paragraph 45: [AI95-00285-01]

For the evaluation of a call on S'Wide_Value (or S'Value) for a real subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of one of the
following:

by:

For the evaluation of a call on S'Wide_Wide_Value for a real subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of one of the
following:

Insert after paragraph 51: [AI95-00285-01]

with an optional leading sign character (plus or minus), and if the corresponding numeric value
belongs to the base range of the type of S, then that value is the result; otherwise Constraint_Error is
raised. The sign of a zero value is preserved (positive if none has been specified) if S'Signed_Zeros
is True.

the new paragraphs:

S'Wide_Value
 S'Wide_Value denotes a function with the following specification:

 function S'Wide_Value(Arg : Wide_String)
 return S'Base

This function returns a value given an image of the value as a Wide_String, ignoring any leading or
trailing spaces. For the evaluation of a call on S'Wide_Value for an enumeration subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the result of
S'Wide_Image for a value of the type), the result is the corresponding enumeration value; otherwise
Constraint_Error is raised. For a numeric subtype S, the evaluation of a call on S'Wide_Value with
Arg of type Wide_String is equivalent to a call on S'Wide_Wide_Value for a corresponding Arg of
type Wide_Wide_String.

Replace paragraph 55: [AI95-00285-01]

For the evaluation of a call on S'Value for an enumeration subtype S, if the sequence of characters
of the parameter (ignoring leading and trailing spaces) has the syntax of an enumeration literal and
if it corresponds to a literal of the type of S (or corresponds to the result of S'Image for a value of the
type), the result is the corresponding enumeration value; otherwise Constraint_Error is raised. For a
numeric subtype S, the evaluation of a call on S'Value with Arg of type String is equivalent to a call
on S'Wide_Value for a corresponding Arg of type Wide_String.

by:

For the evaluation of a call on S'Value for an enumeration subtype S, if the sequence of characters
of the parameter (ignoring leading and trailing spaces) has the syntax of an enumeration literal and
if it corresponds to a literal of the type of S (or corresponds to the result of S'Image for a value of the
type), the result is the corresponding enumeration value; otherwise Constraint_Error is raised. For a

ISO/IEC 8652:1995/WD.1:2004

18

numeric subtype S, the evaluation of a call on S'Value with Arg of type String is equivalent to a call
on S'Wide_Wide_Value for a corresponding Arg of type Wide_Wide_String.

Replace paragraph 56: [AI95-00285-01]

An implementation may extend the Wide_Value, Value, Wide_Image, and Image attributes of a floating
point type to support special values such as infinities and NaNs.

by:

An implementation may extend the Wide_Wide_Value, Wide_Value, Value, Wide_Wide_Image,
Wide_Image, and Image attributes of a floating point type to support special values such as infinities and
NaNs.

Replace paragraph 59: [AI95-00285-01]

21 For any value V (including any nongraphic character) of an enumeration subtype S, S'Value(S'Image(V))
equals V, as does S'Wide_Value(S'Wide_Image(V)). Neither expression ever raises Constraint_Error.

by:

21 For any value V (including any nongraphic character) of an enumeration subtype S, S'Value(S'Image(V))
equals V, as do S'Wide_Value(S'Wide_Image(V)) and S'Wide_Wide_Value(S'Wide_Wide_Image(V)). Neither
expression ever raises Constraint_Error.

3.5.2 Character Types

Replace paragraph 2: [AI95-00285-01]

The predefined type Character is a character type whose values correspond to the 256 code positions of Row
00 (also known as Latin-1) of the ISO 10646 Basic Multilingual Plane (BMP). Each of the graphic
characters of Row 00 of the BMP has a corresponding character_literal in Character. Each of the
nongraphic positions of Row 00 (0000-001F and 007F-009F) has a corresponding language-defined name,
which is not usable as an enumeration literal, but which is usable with the attributes (Wide_)Image and
(Wide_)Value; these names are given in the definition of type Character in A.1, ``The Package Standard'',
but are set in italics.

by:

The predefined type Character is a character type whose values correspond to the 256 code positions of Row
00 (also known as Latin-1) of the ISO/IEC 10646:2003 Basic Multilingual Plane (BMP). Each of the graphic
characters of Row 00 of the BMP has a corresponding character_literal in Character. Each of the
nongraphic positions of Row 00 (0000-001F and 007F-009F) has a corresponding language-defined name,
which is not usable as an enumeration literal, but which is usable with the attributes Image, Wide_Image,
Wide_Wide_Image, Value, Wide_Value, and Wide_Wide_Value; these names are given in the definition of
type Character in A.1, ``The Package Standard'', but are set in italics.

Replace paragraph 3: [AI95-00285-01]

The predefined type Wide_Character is a character type whose values correspond to the 65536 code positions
of the ISO 10646 Basic Multilingual Plane (BMP). Each of the graphic characters of the BMP has a
corresponding character_literal in Wide_Character. The first 256 values of Wide_Character have the same
character_literal or language-defined name as defined for Character. The last 2 values of Wide_Character
correspond to the nongraphic positions FFFE and FFFF of the BMP, and are assigned the language-defined
names FFFE and FFFF. As with the other language-defined names for nongraphic characters, the names
FFFE and FFFF are usable only with the attributes (Wide_)Image and (Wide_)Value; they are not usable as
enumeration literals. All other values of Wide_Character are considered graphic characters, and have a
corresponding character_literal.

by:

The predefined type Wide_Character is a character type whose values correspond to the 65536 code positions
of the ISO/IEC 10646:2003 Basic Multilingual Plane (BMP). Each of the graphic characters of the BMP has

ISO/IEC 8652:1995/WD.1:2004

19

a corresponding character_literal in Wide_Character. The first 256 values of Wide_Character have the
same character_literal or language-defined name as defined for Character. Each of the graphic_characters
has a corresponding character_literal.

The predefined type Wide_Wide_Character is a character type whose values correspond to the 2147483648
code positions of the ISO/IEC 10646:2003 character set. Each of the graphic_characters has a
corresponding character_literal in Wide_Wide_Character. The first 65536 values of Wide_Wide_Character
have the same character_literal or language-defined name as defined for Wide_Character.

In types Wide_Character and Wide_Wide_Character, the characters whose code positions are 16#FFFE# and
16#FFFF# are assigned the language-defined names FFFE and FFFF. The other characters whose code
position is larger than 16#FF# and which are not graphic_characters have language-defined names which
are formed by appending to the string "Character_" the representation of their code position in hexadecimal
as eight extended digits. As with other language-defined names, these names are usable only with the
attributes (Wide_)Wide_Image and (Wide_)Wide_Value; they are not usable as enumeration literals.

Replace paragraph 4: [AI95-00285-01]

In a nonstandard mode, an implementation may provide other interpretations for the predefined types
Character and Wide_Character, to conform to local conventions.

by:

In a nonstandard mode, an implementation may provide other interpretations for the predefined types
Character, Wide_Character, and Wide_Wide_Character to conform to local conventions.

Delete paragraph 5: [AI95-00285-01]

If an implementation supports a mode with alternative interpretations for Character and Wide_Character, the
set of graphic characters of Character should nevertheless remain a proper subset of the set of graphic
characters of Wide_Character. Any character set ``localizations'' should be reflected in the results of the
subprograms defined in the language-defined package Characters.Handling (see A.3) available in such a
mode. In a mode with an alternative interpretation of Character, the implementation should also support a
corresponding change in what is a legal identifier_letter.

3.5.4 Integer Types

Replace paragraph 16: [AI95-00340-01]

For every modular subtype S, the following attribute is defined:

by:

For every modular subtype S, the following attributes are defined:

S'Mod

S'Mod denotes a function with the following specification:

 function S'Mod (Arg : universal_integer)
 return S'Base

This function returns Arg mod S'Modulus.

3.5.9 Fixed Point Types

Replace paragraph 8: [AI95-00100-01]

The set of values of a fixed point type comprise the integral multiples of a number called the small of the
type. For a type defined by an ordinary_fixed_point_definition (an ordinary fixed point type), the small
may be specified by an attribute_definition_clause (see 13.3); if so specified, it shall be no greater than the

ISO/IEC 8652:1995/WD.1:2004

20

delta of the type. If not specified, the small of an ordinary fixed point type is an implementation-defined
power of two less than or equal to the delta.

by:

The set of values of a fixed point type comprise the integral multiples of a number called the small of the
type. The machine numbers of a fixed point type are the values of the type that can be represented exactly in
every unconstrained variable of the type. For a type defined by an ordinary_fixed_point_definition (an
ordinary fixed point type), the small may be specified by an attribute_definition_clause (see 13.3); if so
specified, it shall be no greater than the delta of the type. If not specified, the small of an ordinary fixed point
type is an implementation-defined power of two less than or equal to the delta.

3.6 Array Types

Replace paragraph 7: [AI95-00230-01]

component_definition ::= [aliased] subtype_indication

by:

component_definition ::= [aliased] subtype_indication | access_definition

Delete paragraph 11: [AI95-00363-01]

Within the definition of a nonlimited composite type (or a limited composite type that later in its immediate
scope becomes nonlimited -- see 7.3.1 and 7.5), if a component_definition contains the reserved word
aliased and the type of the component is discriminated, then the nominal subtype of the component shall be
constrained.

Replace paragraph 22: [AI95-00230-01]

The elaboration of a discrete_subtype_definition that does not contain any per-object expressions creates
the discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the
range. The elaboration of a discrete_subtype_definition that contains one or more per-object expressions
is defined in 3.8. The elaboration of a component_definition in an array_type_definition consists of the
elaboration of the subtype_indication. The elaboration of any discrete_subtype_definitions and the
elaboration of the component_definition are performed in an arbitrary order.

by:

The elaboration of a discrete_subtype_definition that does not contain any per-object expressions creates
the discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the
range. The elaboration of a discrete_subtype_definition that contains one or more per-object expressions
is defined in 3.8. The elaboration of a component_definition in an array_type_definition consists of the
elaboration of the subtype_indication or access_definition. The elaboration of any
discrete_subtype_definitions and the elaboration of the component_definition are performed in an
arbitrary order.

3.6.2 Operations of Array Types

Replace paragraph 16: [AI95-00287-01]

48 A component of an array can be named with an indexed_component. A value of an array type can be
specified with an array_aggregate, unless the array type is limited. For a one-dimensional array type, a slice
of the array can be named; also, string literals are defined if the component type is a character type.

by:

48 A component of an array can be named with an indexed_component. A value of an array type can be
specified with an array_aggregate. For a one-dimensional array type, a slice of the array can be named; also,
string literals are defined if the component type is a character type.

ISO/IEC 8652:1995/WD.1:2004

21

3.6.3 String Types

Replace paragraph 2: [AI95-00285-01]

There are two predefined string types, String and Wide_String, each indexed by values of the predefined
subtype Positive; these are declared in the visible part of package Standard:

by:

There are three predefined string types, String, Wide_String, and Wide_Wide_String, each indexed by the
value of the predefined subtype Positive; these are declared in the visible part of package Standard:

Replace paragraph 4: [AI95-00285-01]

type String is array (Positive range <>) of Character;
type Wide_String is array (Positive range <>) of Wide_Character;

by:

type String is array (Positive range <>) of Character;
type Wide_String is array (Positive range <>) of Wide_Character;
type Wide_Wide_String is array (Positive range <>) of Wide_Wide_Character;

3.7 Discriminants

Replace paragraph 1: [AI95-00326-01]

A composite type (other than an array type) can have discriminants, which parameterize the type. A
known_discriminant_part specifies the discriminants of a composite type. A discriminant of an object is a
component of the object, and is either of a discrete type or an access type. An unknown_discriminant_part
in the declaration of a partial view of a type specifies that the discriminants of the type are unknown for the
given view; all subtypes of such a partial view are indefinite subtypes.

by:

A composite type (other than an array type) can have discriminants, which parameterize the type. A
known_discriminant_part specifies the discriminants of a composite type. A discriminant of an object is a
component of the object, and is either of a discrete type or an access type. An unknown_discriminant_part
in the declaration of a view of a type specifies that the discriminants of the type are unknown for the given
view; all subtypes of such a view are indefinite subtypes.

Replace paragraph 5: [AI95-00231-01]

discriminant_specification ::=
 defining_identifier_list : subtype_mark [:= default_expression]
 | defining_identifier_list : access_definition [:= default_expression]

by:

discriminant_specification ::=
 defining_identifier_list : [null_exclusion] subtype_mark [:= default_expression]
 | defining_identifier_list : access_definition [:= default_expression]

Replace paragraph 9: [AI95-00231-01; AI95-00254-01]

The subtype of a discriminant may be defined by a subtype_mark, in which case the subtype_mark shall
denote a discrete or access subtype, or it may be defined by an access_definition (in which case the
subtype_mark of the access_definition may denote any kind of subtype). A discriminant that is defined by
an access_definition is called an access discriminant and is of an anonymous general access-to-variable
type whose designated subtype is denoted by the subtype_mark of the access_definition.

by:

The subtype of a discriminant may be defined by an optional null_exclusion and a subtype_mark, in which
case the subtype_mark shall denote a discrete or access subtype, or it may be defined by an

ISO/IEC 8652:1995/WD.1:2004

22

access_definition. A discriminant that is defined by an access_definition is called an access discriminant
and is of an anonymous access type.

Delete paragraph 10: [AI95-00230-01]

A discriminant_specification for an access discriminant shall appear only in the declaration for a task or
protected type, or for a type with the reserved word limited in its (full) definition or in that of one of its
ancestors. In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in
the private part of an instance of a generic unit.

3.7.1 Discriminant Constraints

Replace paragraph 7: [AI95-00363-01]

A discriminant_constraint is only allowed in a subtype_indication whose subtype_mark denotes either
an unconstrained discriminated subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained discriminated subtype. However, in the case of a general access subtype, a
discriminant_constraint is illegal if there is a place within the immediate scope of the designated subtype
where the designated subtype's view is constrained.

by:

A discriminant_constraint is only allowed in a subtype_indication whose subtype_mark denotes either
an unconstrained discriminated subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained discriminated subtype. However, in the case of a general access subtype, a
discriminant_constraint is illegal if the designated type has defaults for its discriminants. In addition to the
places where Legality Rules normally apply (see 12.3), these rules apply also in the private part of an
instance of a generic unit. In a generic body, this rule is checked presuming all formal access types of the
generic might be general access types, and all untagged discriminated formal types of the generic might have
defaults.

3.8 Record Types

Delete paragraph 8: [AI95-00287-01]

A default_expression is not permitted if the component is of a limited type.

Replace paragraph 18: [AI95-00230-01]

Within the definition of a composite type, if a component_definition or discrete_subtype_definition (see
9.5.2) includes a name that denotes a discriminant of the type, or that is an attribute_reference whose
prefix denotes the current instance of the type, the expression containing the name is called a per-object
expression, and the constraint or range being defined is called a per-object constraint. For the elaboration
of a component_definition of a component_declaration or the discrete_subtype_definition of an
entry_declaration for an entry family (see 9.5.2), if the constraint or range of the subtype_indication or
discrete_subtype_definition is not a per-object constraint, then the subtype_indication or
discrete_subtype_definition is elaborated. On the other hand, if the constraint or range is a per-object
constraint, then the elaboration consists of the evaluation of any included expression that is not part of a per-
object expression. Each such expression is evaluated once unless it is part of a named association in a
discriminant constraint, in which case it is evaluated once for each associated discriminant.

by:

Within the definition of a composite type, if a component_definition or discrete_subtype_definition (see
9.5.2) includes a name that denotes a discriminant of the type, or that is an attribute_reference whose
prefix denotes the current instance of the type, the expression containing the name is called a per-object
expression, and the constraint or range being defined is called a per-object constraint. For the elaboration
of a component_definition of a component_declaration or the discrete_subtype_definition of an
entry_declaration for an entry family (see 9.5.2), if the component subtype is defined by an

ISO/IEC 8652:1995/WD.1:2004

23

access_definition or if the constraint or range of the subtype_indication or
discrete_subtype_definition is not a per-object constraint, then the access_definition,
subtype_indication, or discrete_subtype_definition is elaborated. On the other hand, if the constraint or
range is a per-object constraint, then the elaboration consists of the evaluation of any included expression
that is not part of a per-object expression. Each such expression is evaluated once unless it is part of a named
association in a discriminant constraint, in which case it is evaluated once for each associated discriminant.

Replace paragraph 25: [AI95-00287-01]

61 A component of a record can be named with a selected_component. A value of a record can be specified
with a record_aggregate, unless the record type is limited.

by:

61 A component of a record can be named with a selected_component. A value of a record can be specified
with a record_aggregate.

3.9 Tagged Types and Type Extensions

Replace paragraph 4: [AI95-00344-01]

The tag of a specific tagged type identifies the full_type_declaration of the type. If a declaration for a
tagged type occurs within a generic_package_declaration, then the corresponding type declarations in
distinct instances of the generic package are associated with distinct tags. For a tagged type that is local to a
generic package body, the language does not specify whether repeated instantiations of the generic body
result in distinct tags.

by:

The tag of a specific tagged type identifies the full_type_declaration of the type, and for a type extension, is
sufficient to uniquely identify the type among all descendants of the same ancestor. If a declaration for a
tagged type occurs within a generic_package_declaration, then the corresponding type declarations in
distinct instances of the generic package are associated with distinct tags. For a tagged type that is local to a
generic package body and with any ancestors also local to the generic body, the language does not specify
whether repeated instantiations of the generic body result in distinct tags.

Replace paragraph 6: [AI95-00362-01]

package Ada.Tags is
 type Tag is private;

by:

package Ada.Tags is
 pragma Preelaborate(Tags);
 type Tag is private;

Insert after paragraph 7: [AI95-00344-01]

 function Expanded_Name(T : Tag) return String;
 function External_Tag(T : Tag) return String;
 function Internal_Tag(External : String) return Tag;

the new paragraphs:

 function Descendant_Tag(External : String; Ancestor : Tag) return Tag;
 function Is_Descendant_At_Same_Level(Descendant, Ancestor : Tag)
 return Boolean;

Replace paragraph 12: [AI95-00279-01; AI95-00344-01]

The function Internal_Tag returns the tag that corresponds to the given external tag, or raises Tag_Error if
the given string is not the external tag for any specific type of the partition.

ISO/IEC 8652:1995/WD.1:2004

24

by:

The function Internal_Tag returns a tag that corresponds to the given external tag, or raises Tag_Error if the
given string is not the external tag for any specific type of the partition. Tag_Error is also raised if the
specific type identified is a library-level type whose tag has not yet been created.

The function Descendant_Tag returns the (internal) tag for the type that corresponds to the given external
tag and is both a descendant of the type identified by the Ancestor tag and has the same accessibility level as
the identified ancestor. Tag_Error is raised if External is not the external tag for such a type. Tag_Error is
also raised if the specific type identified is a library-level type whose tag has not yet been created.

The function Is_Descendant_At_Same_Level returns True if Descendant tag identifies a type that is both a
descendant of the type identified by Ancestor and at the same accessibility level. If not, it returns False.

Insert before paragraph 14: [AI95-00318-02]

The component_definition of a component_declaration defines the (nominal) subtype of the component.
If the reserved word aliased appears in the component_definition, then the component is aliased (see 3.10).

the new paragraph:

If a record_type_declaration includes the reserved word limited, it is called a limited record.

Replace paragraph 26: [AI95-00279-01]

The implementation of the functions in Ada.Tags may raise Tag_Error if no specific type corresponding to
the tag passed as a parameter exists in the partition at the time the function is called.

by:

The implementation of the functions in Ada.Tags may raise Tag_Error if no specific type corresponding to
the tag or external tag passed as a parameter exists in the partition at the time the function is called.

3.9.1 Type Extensions

Replace paragraph 3: [AI95-00344-01; AI95-00345-01]

The parent type of a record extension shall not be a class-wide type. If the parent type is nonlimited, then
each of the components of the record_extension_part shall be nonlimited. The accessibility level (see
3.10.2) of a record extension shall not be statically deeper than that of its parent type. In addition to the
places where Legality Rules normally apply (see 12.3), these rules apply also in the private part of an
instance of a generic unit.

by:

The parent type of a record extension shall not be a class-wide type nor shall it be a synchronized tagged type
(see 3.9.4). If the parent type is nonlimited, then each of the components of the record_extension_part
shall be nonlimited.

Replace paragraph 4: [AI95-00344-01]

A type extension shall not be declared in a generic body if the parent type is declared outside that body.

by:

Within the body of a generic unit, or the body of any of its descendant library units, a tagged type shall not
be declared as a descendant of a formal type declared within the formal part of the generic unit.

3.9.2 Dispatching Operations of Tagged Types

Replace paragraph 17: [AI95-00196-01]

If all of the controlling operands are tag-indeterminate, then:

ISO/IEC 8652:1995/WD.1:2004

25

by:

If all of the controlling operands (if any) are tag-indeterminate, then:

Replace paragraph 18: [AI95-00196-01; AI95-00239-01]

• If the call has a controlling result and is itself a (possibly parenthesized or qualified) controlling
operand of an enclosing call on a dispatching operation of type T, then its controlling tag value is
determined by the controlling tag value of this enclosing call;

by:

• If the call has a controlling result and is itself a (possibly parenthesized or qualified) controlling
operand of an enclosing call on a dispatching operation of a descendant of type T, then its
controlling tag value is determined by the controlling tag value of this enclosing call;

• If the call has a controlling result and is the (possibly parenthesized or qualified) expression of an
assignment statement whose target is of a class-wide type, then its controlling tag value is
determined by the target;

3.9.3 Abstract Types and Subprograms

Replace paragraph 1: [AI95-00345-01]

An abstract type is a tagged type intended for use as a parent type for type extensions, but which is not
allowed to have objects of its own. An abstract subprogram is a subprogram that has no body, but is intended
to be overridden at some point when inherited. Because objects of an abstract type cannot be created, a
dispatching call to an abstract subprogram always dispatches to some overriding body.

by:

An abstract type is a type intended for use as an ancestor of other types, but which is not allowed to have
objects of its own. An abstract subprogram is a subprogram that has no body, but is intended to be
overridden at some point when inherited. Because objects of an abstract type cannot be created, a dispatching
call to an abstract subprogram always dispatches to some overriding body.

Static Semantics

Interface types (see 3.9.4) are abstract types. In addition, a tagged type that has the reserved word abstract in
its declaration is an abstract type. The class-wide type (see 3.4.1) rooted at an abstract type is not itself an
abstract type.

Replace paragraph 2: [AI95-00345-01]

An abstract type is a specific type that has the reserved word abstract in its declaration. Only a tagged type is
allowed to be declared abstract.

by:

Only a tagged type shall have the reserved word abstract in its declaration.

Replace paragraph 4: [AI95-00251-01; AI95-00334-01]

For a derived type, if the parent or ancestor type has an abstract primitive subprogram, or a primitive
function with a controlling result, then:

by:

If a type has an implicitly declared primitive subprogram that is inherited or is the predefined equality
operator, and the corresponding primitive subprogram of the parent or ancestor type is abstract or is a
function with a controlling result, then:

Replace paragraph 5: [AI95-00251-01; AI95-00334-01]

• If the derived type is abstract or untagged, the inherited subprogram is abstract.

ISO/IEC 8652:1995/WD.1:2004

26

by:

• If the type is abstract or untagged, the implicitly declared subprogram is abstract.

3.9.4 Interface Types

Insert new clause: [AI95-00251-01; AI95-00345-01]

An interface type is an abstract tagged type which provides a restricted form of multiple inheritance. A
tagged, task, or protected type may be derived from one or more interface types.

Syntax

interface_type_definition ::=
 [limited | task | protected | synchronized] interface [and interface_list]

Static Semantics

An interface type (also called an "interface") is a specific abstract tagged type that is defined by an
interface_type_definition.

An interface with the reserved word limited, task, protected, or synchronized in its definition is termed,
respectively, a limited interface, a task interface, a protected interface, or a synchronized interface. In
addition, all task and protected interfaces are synchronized interfaces, and all synchronized interfaces are
limited interfaces. A view of an object that is of a task interface type (or of a corresponding class-wide type)
is a task object. Similarly, a view of an object that is of a protected interface type (or of a corresponding
class-wide type) is a protected object.

A task or protected type derived from an interface is a tagged type. Such a tagged type is called a
synchronized tagged type, as are synchronized interfaces and private extensions derived from synchronized
interfaces.

An interface type has no components.

Legality Rules

All user-defined primitive subprograms of an interface type shall be abstract subprograms or null procedures.

The type of a subtype named in an interface_list shall be an interface type.

If a type declaration names an interface type in an interface_list, then the accessibility level of the declared
type shall not be statically deeper than that of the interface type; also, the declared type shall not be declared
in a generic body if the interface type is declared outside that body.

A descendant of a nonlimited interface shall be nonlimited. A descendant of a task interface shall be a task
type or a task interface. A descendant of a protected interface shall be a protected type or a protected
interface. A descendant of a synchronized interface shall be a task type, a protected type, or a synchronized
interface.

A full view shall be a descendant of an interface type if and only if the corresponding partial view (if any) is
also a descendant of the interface type.

For an interface type declared in a visible part, a primitive subprogram shall not be declared in the private
part.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the private
part of an instance of a generic unit.

3.10 Access Types

Replace paragraph 2: [AI95-00231-01]

access_type_definition ::=
 access_to_object_definition
 | access_to_subprogram_definition

ISO/IEC 8652:1995/WD.1:2004

27

by:

access_type_definition ::=
 [null_exclusion] access_to_object_definition
 | [null_exclusion] access_to_subprogram_definition

Replace paragraph 6: [AI95-00231-01; AI95-00254-01]

access_definition ::= access subtype_mark

by:

null_exclusion ::= not null
access_definition ::=
 [null_exclusion] access [general_access_modifier] subtype_mark |
 [null_exclusion] access [protected] procedure parameter_profile |
 [null_exclusion] access [protected] function parameter_and_result_profile

Replace paragraph 9: [AI95-00225-01; AI95-00363-01]

A view of an object is defined to be aliased if it is defined by an object_declaration or
component_definition with the reserved word aliased, or by a renaming of an aliased view. In addition, the
dereference of an access-to-object value denotes an aliased view, as does a view conversion (see 4.6) of an
aliased view. Finally, the current instance of a limited type, and a formal parameter or generic formal object
of a tagged type are defined to be aliased. Aliased views are the ones that can be designated by an access
value. If the view defined by an object_declaration is aliased, and the type of the object has discriminants,
then the object is constrained; if its nominal subtype is unconstrained, then the object is constrained by its
initial value. Similarly, if the object created by an allocator has discriminants, the object is constrained,
either by the designated subtype, or by its initial value.

by:

A view of an object is defined to be aliased if it is defined by an object_declaration or
component_definition with the reserved word aliased, or by a renaming of an aliased view. In addition, the
dereference of an access-to-object value denotes an aliased view, as does a view conversion (see 4.6) of an
aliased view. A current instance of a limited tagged type, a protected type, a task type, or a type that has the
reserved word limited in its full definition is also defined to be aliased. Finally, a formal parameter or
generic formal object of a tagged type is defined to be aliased. Aliased views are the ones that can be
designated by an access value.

Replace paragraph 12: [AI95-00230-01; AI95-00231-01; AI95-00254-01]

An access_definition defines an anonymous general access-to-variable type; the subtype_mark denotes its
designated subtype. An access_definition is used in the specification of an access discriminant (see 3.7) or
an access parameter (see 6.1).

by:

An access_definition defines an anonymous general access type or an anonymous access-to-subprogram
type. For a general access type, the subtype_mark denotes its designated subtype; if the reserved word
constant appears, the type is an access-to-constant type; otherwise it is an access-to-variable type. For an
access-to-subprogram type, the parameter_profile or parameter_and_result_profile denotes its designated
profile. If a null_exclusion is present, or the access_definition is for a controlling access parameter (see
3.9.2), the access_definition defines an access subtype which excludes the null value; otherwise the subtype
includes a null value.

Replace paragraph 13: [AI95-00230-01; AI95-00231-01]

For each (named) access type, there is a literal null which has a null access value designating no entity at all.
The null value of a named access type is the default initial value of the type. Other values of an access type
are obtained by evaluating an attribute_reference for the Access or Unchecked_Access attribute of an
aliased view of an object or non-intrinsic subprogram, or, in the case of a named access-to-object type, an
allocator, which returns an access value designating a newly created object (see 3.10.2).

ISO/IEC 8652:1995/WD.1:2004

28

by:

For each access type, there is a null access value designating no entity at all. The null value of an access type
is the default initial value of the type. Other values of an access type are obtained by evaluating an
attribute_reference for the Access or Unchecked_Access attribute of an aliased view of an object or non-
intrinsic subprogram, or, in the case of an access-to-object type, an allocator, which returns an access value
designating a newly created object (see 3.10.2).

Replace paragraph 14: [AI95-00231-01]

All subtypes of an access-to-subprogram type are constrained. The first subtype of a type defined by an
access_definition or an access_to_object_definition is unconstrained if the designated subtype is an
unconstrained array or discriminated subtype; otherwise it is constrained.

by:

All subtypes of an access-to-subprogram type are constrained. The first subtype of a type defined by an
access_definition or an access_to_object_definition is unconstrained if the designated subtype is an
unconstrained array or discriminated subtype; otherwise it is constrained. The first subtype of a type defined
by an access_type_definition excludes the null value if a null_exclusion is present; otherwise, the first
subtype includes the null value.

Legality Rules

A null_exclusion is only allowed in a subtype_indication whose subtype_mark denotes an access subtype
that includes a null value.

Replace paragraph 15: [AI95-00231-01]

A composite_constraint is compatible with an unconstrained access subtype if it is compatible with the
designated subtype. An access value satisfies a composite_constraint of an access subtype if it equals the
null value of its type or if it designates an object whose value satisfies the constraint.

by:

A composite_constraint is compatible with an unconstrained access subtype if it is compatible with the
designated subtype. A null_exclusion is compatible with any access subtype that includes a null value. An
access value satisfies a composite_constraint of an access subtype if it equals the null value of its type or if
it designates an object whose value satisfies the constraint. An access value satisifes a null_exclusion
imposed on an access subtype if it does not equal the null value of its type.

Replace paragraph 17: [AI95-00230-01]

The elaboration of an access_definition creates an anonymous general access-to-variable type [(this
happens as part of the initialization of an access parameter or access discriminant)].

by:

The elaboration of an access_definition creates an anonymous general access-to-variable type.

3.10.1 Incomplete Type Declarations

Replace paragraph 2: [AI95-00326-01]

incomplete_type_declaration ::= type defining_identifier [discriminant_part];

by:

incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged];

Replace paragraph 4: [AI95-00326-01]

If an incomplete_type_declaration has a known_discriminant_part, then a full_type_declaration that
completes it shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1). If an
incomplete_type_declaration has no discriminant_part (or an unknown_discriminant_part), then a

ISO/IEC 8652:1995/WD.1:2004

29

corresponding full_type_declaration is nevertheless allowed to have discriminants, either explicitly, or
inherited via derivation.

by:

If an incomplete_type_declaration includes the reserved word tagged, then a full_type_declaration that
completes it shall declare a tagged type. If an incomplete_type_declaration has a
known_discriminant_part, then a full_type_declaration that completes it shall have a fully conforming
(explicit) known_discriminant_part (see 6.3.1). If an incomplete_type_declaration has no
discriminant_part (or an unknown_discriminant_part), then a corresponding full_type_declaration is
nevertheless allowed to have discriminants, either explicitly, or inherited via derivation.

Replace paragraph 5: [AI95-00326-01]

The only allowed uses of a name that denotes an incomplete_type_declaration are as follows:

by:

A name that denotes an incomplete view of a type may be used as follows:

Delete paragraph 7: [AI95-00326-01]

• as the subtype_mark defining the subtype of a parameter or result of an
access_to_subprogram_definition;

Replace paragraph 8: [AI95-00326-01]

• as the subtype_mark in an access_definition;

by:

• as the subtype_mark in an access_definition.

If such a name denotes a tagged incomplete view, it may also be used:

• as the subtype_mark defining the subtype of a parameter in a formal_part;

Replace paragraph 9: [AI95-00326-01]

• as the prefix of an attribute_reference whose attribute_designator is Class; such an
attribute_reference is similarly restricted to the uses allowed here; when used in this way, the
corresponding full_type_declaration shall declare a tagged type, and the attribute_reference
shall occur in the same library unit as the incomplete_type_declaration.

by:

• as the prefix of an attribute_reference whose attribute_designator is Class; such an
attribute_reference is restricted to the uses allowed here; it denotes a tagged incomplete view.

If such a name occurs within the list of declarative_items containing the completion of the incomplete view,
it may also be used:

• as the subtype_mark defining the subtype of a parameter or result of an
access_to_subprogram_definition.

If any of the above uses occurs as part of the declaration of a primitive subprogram of the incomplete view,
and the declaration occurs immediately within the private part of a package, then the completion of the
incomplete view shall also occur immediately within the private part; it may not be deferred to the package
body.

Replace paragraph 10: [AI95-00217-06; AI95-00326-01]

A dereference (whether implicit or explicit -- see 4.1) shall not be of an incomplete type.

by:

A prefix shall not be of an incomplete view.

ISO/IEC 8652:1995/WD.1:2004

30

Replace paragraph 11: [AI95-00326-01]

An incomplete_type_declaration declares an incomplete type and its first subtype; the first subtype is
unconstrained if a known_discriminant_part appears.

by:

An incomplete_type_declaration declares an incomplete view of a type, and its first subtype; the first
subtype is unconstrained if a known_discriminant_part appears. If the incomplete_type_declaration
includes the reserved word tagged, it declares a tagged incomplete view. An incomplete view of a type is a
limited view of the type (see 7.5).

Given an access type A whose designated type T is an incomplete view, a dereference of a value of type A
also has this incomplete view except when:

• it occurs in the immediate scope of the completion of T, or

• it occurs in the scope of a nonlimited_with_clause that mentions a library package in whose
visible part the completion of T is declared.

In these cases, the dereference has the full view of T.

3.10.2 Operations of Access Types

Replace paragraph 2: [AI95-00235-01]

For an attribute_reference with attribute_designator Access (or Unchecked_Access -- see 13.10), the
expected type shall be a single access type; the prefix of such an attribute_reference is never interpreted as
an implicit_dereference. If the expected type is an access-to-subprogram type, then the expected profile of
the prefix is the designated profile of the access type.

by:

For an attribute_reference with attribute_designator Access (or Unchecked_Access -- see 13.10), the
expected type shall be a single access type A such that:

• A is an access-to-object type with designated type D and the type of the prefix is D'Class or is
covered by D, or

• A is an access-to-subprogram type whose designated profile is type conformant with that of the
prefix.

The prefix of such an attribute_reference is never interpreted as an implicit_dereference or parameterless
function_call (see 4.1.4). The designated type or profile of the expected type of the attribute_reference is
the expected type or profile for the prefix.

Replace paragraph 12: [AI95-00230-01]

• The accessibility level of the anonymous access type of an access discriminant is the same as that of
the containing object or associated constrained subtype.

by:

• The accessibility level of the anonymous access type defined by an access_definition of an
object_renaming_declaration is the same as that of the renamed object (view).

• The accessibility level of the anonymous access type of an access discriminant specified for a limited
type is the same as the containing object or associated constrained subtype. For other components
having an anonymous access type, the accessibility level of the access type is the same as the level of
the containing composite type.

ISO/IEC 8652:1995/WD.1:2004

31

Replace paragraph 13: [AI95-00254-01; AI95-00318-02]

• The accessibility level of the anonymous access type of an access parameter is the same as that of
the view designated by the actual. If the actual is an allocator, this is the accessibility level of the
execution of the called subprogram.

by:

• The accessibility level of the anonymous access type of an access parameter specifying an access-to-
object type is the same as that of the view designated by the actual. If the actual is an allocator, this
is the accessibility level of the execution of the called subprogram.

• The accessibility level of the anonymous access type of an access parameter specifying an access-to-
subprogram type is infinite.

• The accessibility level of the anonymous access type of an access result type (see 6.5) is the same as
that of the associated function or access-to-subprogram type.

Replace paragraph 26: [AI95-00363-01]

• The view shall not be a subcomponent that depends on discriminants of a variable whose nominal
subtype is unconstrained, unless this subtype is indefinite, or the variable is aliased.

by:

• The view shall not be a subcomponent that depends on discriminants of a variable whose nominal
subtype is unconstrained, unless this subtype is indefinite, or the variable is constrained by its initial
value.

Replace paragraph 27: [AI95-00363-01]

• If A is a named access type and D is a tagged type, then the type of the view shall be covered by
D; if A is anonymous and D is tagged, then the type of the view shall be either D'Class or a type
covered by D; if D is untagged, then the type of the view shall be D, and A's designated subtype
shall either statically match the nominal subtype of the view or be discriminated and
unconstrained;

by:

• If A is a named access type and D is a tagged type, then the type of the view shall be covered by
D; if A is anonymous and D is tagged, then the type of the view shall be either D'Class or a type
covered by D; if D is untagged, then the type of the view shall be D, and either:

• A's designated subtype shall statically match the nominal subtype of the view; or

• D shall be discriminated in its full view and unconstrained in any partial view, and A's
designated subtype shall be unconstrained.

Replace paragraph 32: [AI95-00229-01; AI95-00254-01]

P'Access yields an access value that designates the subprogram denoted by P. The type of P'Access
is an access-to-subprogram type (S), as determined by the expected type. The accessibility level of P
shall not be statically deeper than that of S. In addition to the places where Legality Rules normally
apply (see 12.3), this rule applies also in the private part of an instance of a generic unit. The profile
of P shall be subtype-conformant with the designated profile of S, and shall not be Intrinsic. If the
subprogram denoted by P is declared within a generic body, S shall be declared within the generic
body.

by:

P'Access yields an access value that designates the subprogram denoted by P. The type of P'Access
is an access-to-subprogram type (S), as determined by the expected type. The accessibility level of P
shall not be statically deeper than that of S. In addition to the places where Legality Rules normally
apply (see 12.3), this rule applies also in the private part of an instance of a generic unit. The profile

ISO/IEC 8652:1995/WD.1:2004

32

of P shall be subtype-conformant with the designated profile of S, and shall not be Intrinsic. If the
subprogram denoted by P is declared within a generic unit, and the expression P'Access occurs
within the body of that generic unit or within the body of a generic unit declared within the
declarative region of the generic, then the ultimate ancestor of S shall be either a non-formal type
declared within the generic unit or an anonymous access type of a access parameter.

ISO/IEC 8652:1995/WD.1:2004

33

Section 4: Names and Expressions

4.1.3 Selected Components

Insert after paragraph 9: [AI95-00252-01]

• The prefix shall resolve to denote an object or value of some task or protected type (after any
implicit dereference). The selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within the visible part of that type.
The selected_component denotes the corresponding entry, entry family, or protected subprogram.

the new paragraph:

• A view of a subprogram whose first formal parameter is of a tagged or is an access parameter whose
designated type is tagged. The prefix (after any implicit dereference) shall resolve to denote an
object or value of a specific tagged type T or class-wide type T'Class. The selector_name shall
resolve to denote a view of a subprogram declared immediately within the region in which an
ancestor of the type T is declared. The first formal parameter of the subprogram shall be of type T,
or a class-wide type that covers T, or an access parameter designating one of these types. The
designator of the subprogram shall not be the same as that of a component of the tagged type visible
at the point of the selected_component. The selected_component denotes a view of this
subprogram that omits the first formal parameter.

Insert after paragraph 13: [AI95-00252-01]

If the prefix does not denote a package, then it shall be a direct_name or an expanded name, and it shall
resolve to denote a program unit (other than a package), the current instance of a type, a block_statement, a
loop_statement, or an accept_statement (in the case of an accept_statement or entry_body, no family
index is allowed); the expanded name shall occur within the declarative region of this construct. Further, if
this construct is a callable construct and the prefix denotes more than one such enclosing callable construct,
then the expanded name is ambiguous, independently of the selector_name.

the new paragraph:

Legality Rules

If a selected_component resolves to a view of a subprogram whose first parameter is an access parameter,
the prefix shall denote an aliased view of an object.

Insert after paragraph 15: [AI95-00252-01]

For a selected_component that denotes a component of a variant, a check is made that the values of the
discriminants are such that the value or object denoted by the prefix has this component. The exception
Constraint_Error is raised if this check fails.

the new paragraph:

For a selected_component with a tagged prefix and selector_name that denotes a view of a subprogram,
a call on the view denoted by the selected_component is equivalent to a call on the underlying subprogram
with the first actual parameter being provided by the object or value denoted by the prefix (or the Access
attribute of this object or value if the first formal is an access parameter), and the remaining actual
parameters given by the actual_parameter_part, if any.

4.2 Literals

Delete paragraph 2: [AI95-00230-01]

The expected type for a literal null shall be a single access type.

ISO/IEC 8652:1995/WD.1:2004

34

Delete paragraph 7: [AI95-00230-01; AI95-00231-01]

A literal null shall not be of an anonymous access type, since such types do not have a null value (see 3.10).

Replace paragraph 8: [AI95-00230-01]

An integer literal is of type universal_integer. A real literal is of type universal_real.

by:

An integer literal is of type universal_integer. A real literal is of type universal_real. The literal null is of
type universal_access.

4.3 Aggregates

Replace paragraph 3: [AI95-00287-01]

The expected type for an aggregate shall be a single nonlimited array type, record type, or record extension.

by:

The expected type for an aggregate shall be a single array type, record type, or record extension.

4.3.1 Record Aggregates

Replace paragraph 4: [AI95-00287-01]

record_component_association ::=
 [component_choice_list =>] expression

by:

record_component_association ::=
 [component_choice_list =>] expression
 | component_choice_list => <>

Replace paragraph 8: [AI95-00287-01]

The expected type for a record_aggregate shall be a single nonlimited record type or record extension.

by:

The expected type for a record_aggregate shall be a single record type or record extension.

Replace paragraph 16: [AI95-00287-01]

Each record_component_association shall have at least one associated component, and each needed
component shall be associated with exactly one record_component_association. If a
record_component_association has two or more associated components, all of them shall be of the same
type.

by:

Each record_component_association shall have at least one associated component, and each needed
component shall be associated with exactly one record_component_association. If a
record_component_association with an expression has two or more associated components, all of them
shall be of the same type.

Insert after paragraph 17: [AI95-00287-01]

If the components of a variant_part are needed, then the value of a discriminant that governs the
variant_part shall be given by a static expression.

ISO/IEC 8652:1995/WD.1:2004

35

the new paragraph:

A record_component_association for a discriminant without a default_expression shall have an
expression rather than <>.

Insert before paragraph 20: [AI95-00287-01]

The expression of a record_component_association is evaluated (and converted) once for each associated
component.

the new paragraph:

For a record_component_association with an expression, the expression defines the value for the
associated component(s). For a record_component_association with a <>, if the component_declaration
has a default_expression, that default_expression defines the value for the associated component(s);
otherwise, the associated component(s) are initialized by default as for a stand-alone object of the component
subtype (see 3.3.1).

4.3.2 Extension Aggregates

Replace paragraph 4: [AI95-00287-01]

The expected type for an extension_aggregate shall be a single nonlimited type that is a record extension.
If the ancestor_part is an expression, it is expected to be of any nonlimited tagged type.

by:

The expected type for an extension_aggregate shall be a single type that is a record extension. If the
ancestor_part is an expression, it is expected to be of any tagged type.

Replace paragraph 5: [AI95-00306-01]

If the ancestor_part is a subtype_mark, it shall denote a specific tagged subtype. The type of the
extension_aggregate shall be derived from the type of the ancestor_part, through one or more record
extensions (and no private extensions).

by:

If the ancestor_part is a subtype_mark, it shall denote a specific tagged subtype. If the ancestor_part is
an expression, it shall not be dynamically tagged. The type of the extension_aggregate shall be derived
from the type of the ancestor_part, through one or more record extensions (and no private extensions).

4.3.3 Array Aggregates

Replace paragraph 3: [AI95-00287-01]

positional_array_aggregate ::=
 (expression, expression {, expression})
 | (expression {, expression}, others => expression)

by:

positional_array_aggregate ::=
 (expression, expression {, expression})
 | (expression {, expression}, others => expression)
 | (expression {, expression}, others => <>)

Replace paragraph 5: [AI95-00287-01]

array_component_association ::=
 discrete_choice_list => expression

by:

array_component_association ::=

ISO/IEC 8652:1995/WD.1:2004

36

 discrete_choice_list => expression
 | discrete_choice_list => <>

Replace paragraph 7: [AI95-00287-01]

The expected type for an array_aggregate (that is not a subaggregate) shall be a single nonlimited array
type. The component type of this array type is the expected type for each array component expression of the
array_aggregate.

by:

The expected type for an array_aggregate (that is not a subaggregate) shall be a single array type. The
component type of this array type is the expected type for each array component expression of the
array_aggregate.

Insert before paragraph 24: [AI95-00287-01]

The bounds of the index range of an array_aggregate (including a subaggregate) are determined as follows:

the new paragraph:

Each array component expression defines the value for the associated component(s). For a component given
by <>, the associated component(s) are initialized by default (see 3.3.1).

4.5.2 Relational Operators and Membership Tests

Replace paragraph 3: [AI95-00251-01]

The tested type of a membership test is the type of the range or the type determined by the subtype_mark.
If the tested type is tagged, then the simple_expression shall resolve to be of a type that covers or is covered
by the tested type; if untagged, the expected type for the simple_expression is the tested type.

by:

The tested type of a membership test is the type of the range or the type determined by the subtype_mark.
If the tested type is tagged, then then the simple_expression shall resolve to be of a type that is convertible
(see 4.6) to the tested type; if untagged, the expected type for the simple_expression is the tested type.

Insert after paragraph 7: [AI95-00230-01]

function "=" (Left, Right : T) return Boolean
function "/="(Left, Right : T) return Boolean

the new paragraphs:

The following additional equality operators for the universal_access type are declared in package Standard
for use with anonymous access types:

function "=" (Left, Right : universal_access) return Boolean
function "/="(Left, Right : universal_access) return Boolean

Insert after paragraph 9: [AI95-00230-01]

function "<" (Left, Right : T) return Boolean
function "<="(Left, Right : T) return Boolean
function ">" (Left, Right : T) return Boolean
function ">="(Left, Right : T) return Boolean

the new paragraphs:

Name Resolution Rules

At least one of the operands of the equality operators for universal_access shall be of a specific anonymous
access type.

Legality Rules

The operands of the equality operators for universal_access shall be convertible to one another (see 4.6).

ISO/IEC 8652:1995/WD.1:2004

37

4.5.5 Multiplying Operators

Replace paragraph 20: [AI95-00364-01]

Legality Rules The above two fixed-fixed multiplying operators shall not be used in a context where the
expected type for the result is itself universal_fixed -- the context has to identify some other numeric type to
which the result is to be converted, either explicitly or implicitly.

by:

Name Resolution Rules The above two fixed-fixed multiplying operators shall not be used in a context where the
expected type for the result is itself universal_fixed -- the context has to identify some other numeric type to
which the result is to be converted, either explicitly or implicitly. An explicit conversion is required on the
result when using the above fixed-fixed multiplication operator when either operand is of a type having a
user-defined primitive multiplication operator declared immediately within the same list of declarations as
the type and with both formal parameters of a fixed-point type. A corresponding requirement applies to the
universal fixed-fixed division operator.

4.6 Type Conversions

Replace paragraph 8: [AI95-00251-01]

If the target type is a numeric type, then the operand type shall be a numeric type.

by:

In a view conversion for an untagged type, the target type shall be convertible (back) to the operand type.

If there is a type that is an ancestor of both the target type and the operand type, then

• The target type shall be untagged; or

• The operand type shall be covered by or descended from the target type; or

• The operand type shall be a class-wide type that covers the target type; or

• The operand and target types shall both be class-wide types and the specific type associated with at
least one of them shall be an interface type.

If there is no type that is an ancestor of both the target type and the operand type, then

• If the target type is a numeric type, then the operand type shall be a numeric type.

Replace paragraph 9: [AI95-00246-01; AI95-00251-01]

If the target type is an array type, then the operand type shall be an array type. Further:

by:

• If the target type is an array type, then the operand type shall be an array type. Further:

Replace paragraph 10: [AI95-00251-01]

• The types shall have the same dimensionality;

by:

• The types shall have the same dimensionality;

Replace paragraph 11: [AI95-00251-01]

• Corresponding index types shall be convertible;

by:

• Corresponding index types shall be convertible;

ISO/IEC 8652:1995/WD.1:2004

38

Replace paragraph 12: [AI95-00246-01; AI95-00251-01]

• The component subtypes shall statically match; and

by:

• The component subtypes shall statically match;

Replace paragraph 12.1: [AI95-00246-01; AI95-00251-01; AI95-00363-01]

• In a view conversion, the target type and the operand type shall both or neither have aliased
components.

by:

• Neither the target type nor the operand type shall be limited; and

• In a view conversion: if the target type has aliased components, then so shall the operand type;
and the operand type shall not have a tagged, private, or volatile subcomponent.

Replace paragraph 13: [AI95-00230-01; AI95-00251-01]

If the target type is a general access type, then the operand type shall be an access-to-object type. Further:

by:

• If the target type is universal_access, then the operand type shall be an access type.

• If the target type is a general access-to-object type, then the operand type shall be universal_access
or an access-to-object type. Further, if not universal_access:

Delete paragraph 14: [AI95-00251-01; AI95-00363-01]

• If the target type is an access-to-variable type, then the operand type shall be an access-to-variable
type;

Replace paragraph 15: [AI95-00251-01]

• If the target designated type is tagged, then the operand designated type shall be convertible to the
target designated type;

by:

• If the target designated type is tagged, then the operand designated type shall be convertible to
the target designated type;

Replace paragraph 16: [AI95-00251-01; AI95-00363-01; AI95-00384-01]

• If the target designated type is not tagged, then the designated types shall be the same, and either
the designated subtypes shall statically match or the target designated subtype shall be discriminated
and unconstrained; and

by:

• If the target designated type is not tagged, then the designated types shall be the same, and
either:

• the designated subtypes shall statically match; or

• the designated type shall be discriminated in its full view and unconstrained in any partial
view, and one of the designated subtypes shall be unconstrained;

• If the target type is an access-to-variable type, then the operand type shall be an access-to-
variable type; and

ISO/IEC 8652:1995/WD.1:2004

39

Replace paragraph 17: [AI95-00251-01]

• The accessibility level of the operand type shall not be statically deeper than that of the target type.
In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in the
private part of an instance of a generic unit.

by:

• The accessibility level of the operand type shall not be statically deeper than that of the target
type. In addition to the places where Legality Rules normally apply (see 12.3), this rule applies
also in the private part of an instance of a generic unit.

Replace paragraph 18: [AI95-00230-01; AI95-00251-01]

If the target type is an access-to-subprogram type, then the operand type shall be an access-to-subprogram
type. Further:

by:

• If the target type is an access-to-subprogram type, then the operand type shall be universal_access
or an access-to-subprogram type. Further, if not universal_access:

Replace paragraph 19: [AI95-00251-01]

• The designated profiles shall be subtype-conformant.

by:

• The designated profiles shall be subtype-conformant.

Replace paragraph 20: [AI95-00251-01]

• The accessibility level of the operand type shall not be statically deeper than that of the target type.
In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in the
private part of an instance of a generic unit. If the operand type is declared within a generic body,
the target type shall be declared within the generic body.

by:

• The accessibility level of the operand type shall not be statically deeper than that of the target
type. In addition to the places where Legality Rules normally apply (see 12.3), this rule applies
also in the private part of an instance of a generic unit. If the operand type is declared within a
generic body, the target type shall be declared within the generic body.

Delete paragraph 21: [AI95-00251-01]

If the target type is not included in any of the above four cases, there shall be a type that is an ancestor of
both the target type and the operand type. Further, if the target type is tagged, then either:

Delete paragraph 22: [AI95-00251-01]

• The operand type shall be covered by or descended from the target type; or

Delete paragraph 23: [AI95-00251-01]

• The operand type shall be a class-wide type that covers the target type.

Delete paragraph 24: [AI95-00251-01]

In a view conversion for an untagged type, the target type shall be convertible (back) to the operand type.

Replace paragraph 49: [AI95-00230-01; AI95-00231-01]

• If the target type is an anonymous access type, a check is made that the value of the operand is
not null; if the target is not an anonymous access type, then the result is null if the operand
value is null.

ISO/IEC 8652:1995/WD.1:2004

40

by:

• If the operand value is null, the result of the conversion is the null value of the target type.

Replace paragraph 51: [AI95-00231-01]

After conversion of the value to the target type, if the target subtype is constrained, a check is performed that
the value satisfies this constraint.

by:

After conversion of the value to the target type, if the target subtype is constrained, a check is performed that
the value satisfies this constraint. If the target subtype excludes the null value, then a check is made that the
value is not null.

4.8 Allocators

Replace paragraph 5: [AI95-00287-01; AI95-00344-01]

If the type of the allocator is an access-to-constant type, the allocator shall be an initialized allocator. If the
designated type is limited, the allocator shall be an uninitialized allocator.

by:

If the type of the allocator is an access-to-constant type, the allocator shall be an initialized allocator.

If the designated type of the type of the allocator is class-wide, the accessibility level of the type determined
by the subtype_indication or qualified_expression shall not be statically deeper than that of the type of the
allocator.

Replace paragraph 6: [AI95-00363-01]

If the designated type of the type of the allocator is elementary, then the subtype of the created object is the
designated subtype. If the designated type is composite, then the created object is always constrained; if the
designated subtype is constrained, then it provides the constraint of the created object; otherwise, the object
is constrained by its initial value (even if the designated subtype is unconstrained with defaults).

by:

If the designated type of the type of the allocator is elementary, then the subtype of the created object is the
designated subtype. If the designated type is composite, then the subtype of the created object is the
designated subtype when the designated subtype is constrained or there is a partial view of the designated
type that is constrained; otherwise, the created object is constrained by its initial value (even if the designated
subtype is unconstrained with defaults).

Replace paragraph 7: [AI95-00344-01]

For the evaluation of an allocator, the elaboration of the subtype_indication or the evaluation of the
qualified_expression is performed first. For the evaluation of an initialized allocator, an object of the
designated type is created and the value of the qualified_expression is converted to the designated subtype
and assigned to the object.

by:

For the evaluation of an allocator, the elaboration of the subtype_indication or the evaluation of the
qualified_expression is performed first. For the evaluation of an initialized allocator, an object of the
designated type is created and the value of the qualified_expression is converted to the designated subtype
and assigned to the object. If the designated type of the type of the allocator is class-wide, then a check is
made that the accessibility level of the type identified by the tag of the value of the qualified_expression is
not deeper than that of the type of the allocator. Constraint_Error is raised if this check fails.

ISO/IEC 8652:1995/WD.1:2004

41

Replace paragraph 11: [AI95-00280-01]

If the created object contains any tasks, they are activated (see 9.2). Finally, an access value that designates
the created object is returned.

by:

If the created object contains any tasks, and the master of the type of the allocator has finished waiting for
dependent tasks (see 9.3), Program_Error is raised.

If the created object contains any tasks, they are activated (see 9.2). Finally, an access value that designates
the created object is returned.

If the object created by the allocator has a controlled or protected part, and the finalization of the collection
of the type of the allocator (see 7.6.1) has started, Program_Error is raised.

Bounded (Run-Time) Errors

It is a bounded error if the finalization of the collection of the type (see 7.6.1) of the allocator has started. If
the error is detected, Program_Error is raised. Otherwise, the allocation proceeds normally.

4.9 Static Expressions and Static Subtypes

Replace paragraph 26: [AI95-00263-01]

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose type is not a descendant of a formal scalar type, or a constrained scalar
subtype formed by imposing a compatible static constraint on a static scalar subtype. A static string subtype
is an unconstrained string subtype whose index subtype and component subtype are static (and whose type is
not a descendant of a formal array type), or a constrained string subtype formed by imposing a compatible
static constraint on a static string subtype. In any case, the subtype of a generic formal object of mode in out,
and the result subtype of a generic formal function, are not static.

by:

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose type is not a descendant of a formal type, or a constrained scalar subtype
formed by imposing a compatible static constraint on a static scalar subtype. A static string subtype is an
unconstrained string subtype whose index subtype and component subtype are static, or a constrained string
subtype formed by imposing a compatible static constraint on a static string subtype. In any case, the subtype
of a generic formal object of mode in out, and the result subtype of a generic formal function, are not static.

Replace paragraph 35: [AI95-00269-01]

• If the expression is not part of a larger static expression, then its value shall be in the base range of
its expected type. Otherwise, the value may be arbitrarily large or small.

by:

• If the expression is not part of a larger static expression and the expression is expected to be a single
specific type, then its value shall be in the base range of its expected type. Otherwise, the value may
be arbitrarily large or small.

Replace paragraph 37: [AI95-00269-01]

The last two restrictions above do not apply if the expected type is a descendant of a formal scalar type (or a
corresponding actual type in an instance).

by:

The last restriction above does not apply if the expected type is a descendant of a formal scalar type (or a
corresponding actual type in an instance).

The above restrictions apply also in the private part of an instance of a generic unit.

ISO/IEC 8652:1995/WD.1:2004

42

Replace paragraph 38: [AI95-00268-01; AI95-00269-01]

For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal scalar type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
value is exactly half-way between two machine numbers, any rounding shall be performed away from zero. If
the expected type is a descendant of a formal scalar type, no special rounding or truncating is required -
normal accuracy rules apply (see Annex G).

by:

For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal scalar type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
value is exactly half-way between two machine numbers, the rounding performed is implementation-defined.
If the expected type is a descendant of a formal scalar type, or if the static expression appears in the body of
an instance of a generic unit and the corresponding expression is nonstatic in the corresponding generic
body, then no special rounding or truncating is required -- normal accuracy rules apply (see Annex G).

Implementation Advice

For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal scalar type, the rounding should be the same as the default rounding for the target
system.

4.9.1 Statically Matching Constraints and Subtypes

Replace paragraph 2: [AI95-00231-01; AI95-00254-01]

A subtype statically matches another subtype of the same type if they have statically matching constraints.
Two anonymous access subtypes statically match if their designated subtypes statically match.

by:

A subtype statically matches another subtype of the same type if they have statically matching constraints,
and, for access subtypes, either both or neither exclude null. Two anonymous access-to-object subtypes
statically match if their designated subtypes statically match, and either both or neither exclude null, and
either both or neither are access-to-constant. Two anonymous access-to-subprogram subtypes statically match
if their designated profiles are subtype conformant, and either both or neither exclude null.

ISO/IEC 8652:1995/WD.1:2004

43

Section 5: Statements

5.2 Assignment Statements

Replace paragraph 4: [AI95-00287-01]

The variable_name of an assignment_statement is expected to be of any nonlimited type. The expected
type for the expression is the type of the target.

by:

The variable_name of an assignment_statement is expected to be of any type. The expected type for the
expression is the type of the target.

Replace paragraph 5: [AI95-00287-01]

The target denoted by the variable_name shall be a variable.

by:

The target denoted by the variable_name shall be a variable of a nonlimited type.

ISO/IEC 8652:1995/WD.1:2004

44

Section 6: Subprograms

6.1 Subprogram Declarations

Replace paragraph 2: [AI95-00218-03]

subprogram_declaration ::= subprogram_specification ;

by:

overriding_indicator ::= [not] overriding
subprogram_declaration ::=
 [overriding_indicator]
 subprogram_specification ;

Replace paragraph 3: [AI95-00218-03]

abstract_subprogram_declaration ::= subprogram_specification is abstract;

by:

abstract_subprogram_declaration ::=
 [overriding_indicator]
 subprogram_specification is abstract;

Replace paragraph 4: [AI95-00348-01]

subprogram_specification ::=
 procedure defining_program_unit_name parameter_profile
 | function defining_designator parameter_and_result_profile

by:

procedure_specification ::= procedure defining_program_unit_name parameter_profile

function_specification ::= function defining_designator parameter_and_result_profile

subprogram_specification ::=
 procedure_specification
 | function_specification

Replace paragraph 13: [AI95-00318-02]

parameter_and_result_profile ::= [formal_part] return subtype_mark

by:

parameter_and_result_profile ::=
 [formal_part] return subtype_mark
 | [formal_part] return access_definition

Replace paragraph 15: [AI95-00231-01]

parameter_specification ::=
 defining_identifier_list : mode subtype_mark [:= default_expression]
 | defining_identifier_list : access_definition [:= default_expression]

by:

parameter_specification ::=
 defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression]
 | defining_identifier_list : access_definition [:= default_expression]

Replace paragraph 23: [AI95-00231-01]

The nominal subtype of a formal parameter is the subtype denoted by the subtype_mark, or defined by the
access_definition, in the parameter_specification.

ISO/IEC 8652:1995/WD.1:2004

45

by:

The nominal subtype of a formal parameter is the subtype determined by the optional null_exclusion and
the subtype_mark, or defined by the access_definition, in the parameter_specification.

Replace paragraph 24: [AI95-00231-01; AI95-00254-01]

An access parameter is a formal in parameter specified by an access_definition. An access parameter is of
an anonymous general access-to-variable type (see 3.10). Access parameters allow dispatching calls to be
controlled by access values.

by:

An access parameter is a formal in parameter specified by an access_definition. An access parameter is of
an anonymous access type (see 3.10). Access parameters of an access-to-object type allow dispatching calls to
be controlled by access values. Access parameters of an access-to-subprogram type permit calls to
subprograms passed as parameters irrespective of their accessibility level.

Replace paragraph 27: [AI95-00254-01]

• For any access parameters, the designated subtype of the parameter type.

by:

• For any access parameters of an access-to-object type, the designated subtype of the parameter type.

• For any access parameters of an access-to-subprogram type, the subtypes of the profile of the
parameter type.

6.3 Subprogram Bodies

Replace paragraph 2: [AI95-00218-03]

subprogram_body ::=
 subprogram_specification is
 declarative_part
 begin
 handled_sequence_of_statements
 end [designator];

by:

subprogram_body ::=
 [overriding_indicator]
 subprogram_specification is
 declarative_part
 begin
 handled_sequence_of_statements
 end [designator];

6.3.1 Conformance Rules

Replace paragraph 10: [AI95-00252-01]

• a subprogram declared immediately within a protected_body.

by:

• a subprogram declared immediately within a protected_body;

• the view of a subprogram denoted by a selected_component whose prefix denotes an object or
value of a tagged type, and whose selector_name denotes a subprogram operating on the type (see
4.1.3).

ISO/IEC 8652:1995/WD.1:2004

46

Insert after paragraph 13: [AI95-00254-01]

• The default calling convention is entry for an entry.

the new paragraph:

• The calling convention for an access parameter of an access-to-subprogram type is protected if the
reserved word protected appears in its definition and otherwise is the convention of the subprogram
that contains the parameter.

Replace paragraph 16: [AI95-00318-02]

Two profiles are mode conformant if they are type-conformant, and corresponding parameters have identical
modes, and, for access parameters, the designated subtypes statically match.

by:

Two profiles are mode conformant if they are type-conformant, corresponding parameters have identical
modes, and, for access parameters or access result types, the designated subtypes statically match.

Insert after paragraph 24: [AI95-00345-01]

Two discrete_subtype_definitions are fully conformant if they are both subtype_indications or are both
ranges, the subtype_marks (if any) denote the same subtype, and the corresponding simple_expressions
of the ranges (if any) fully conform.

the new paragraph:

Two subprograms or entries are type conformant (respectively mode conformant, subtype conformant, or
fully conformant) if their profiles are type conformant (respectively mode conformant, subtype conformant,
or fully conformant).

6.4 Subprogram Calls

Replace paragraph 8: [AI95-00310-01]

The name or prefix given in a procedure_call_statement shall resolve to denote a callable entity that is a
procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in a function_call
shall resolve to denote a callable entity that is a function. When there is an actual_parameter_part, the
prefix can be an implicit_dereference of an access-to-subprogram value.

by:

The name or prefix given in a procedure_call_statement shall resolve to denote a callable entity that is a
procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in a function_call
shall resolve to denote a callable entity that is a function. The name or prefix shall not resolve to denote an
abstract subprogram unless it is also a dispatching subprogram. When there is an actual_parameter_part,
the prefix can be an implicit_dereference of an access-to-subprogram value.

6.5 Return Statements

Replace paragraph 2: [AI95-00318-02]

return_statement ::= return [expression];

by:

return_statement ::= simple_return_statement | extended_return_statement

simple_return_statement ::= return [expression];

extended_return_statement ::=
 return identifier : [aliased] return_subtype_indication [:= expression] [do
 handled_sequence_of_statements
 end return];

ISO/IEC 8652:1995/WD.1:2004

47

return_subtype_indication ::= subtype_indication | access_definition

Replace paragraph 3: [AI95-00318-02]

The expression, if any, of a return_statement is called the return expression. The result subtype of a
function is the subtype denoted by the subtype_mark after the reserved word return in the profile of the
function. The expected type for a return expression is the result type of the corresponding function.

by:

The result subtype of a function is the subtype denoted by the subtype_mark, or defined by the
access_definition, after the reserved word return in the profile of the function. The expression, if any, of
a return_statement is called the return expression. The expected type for a return expression is the result
type of the corresponding function.

Replace paragraph 4: [AI95-00318-02]

A return_statement shall be within a callable construct, and it applies to the innermost one. A
return_statement shall not be within a body that is within the construct to which the return_statement
applies.

by:

A return_statement shall be within a callable construct, and it applies to the innermost callable construct or
extended_return_statement that contains it. A return_statement shall not be within a body that is within
the construct to which the return_statement applies.

Replace paragraph 5: [AI95-00318-02]

A function body shall contain at least one return_statement that applies to the function body, unless the
function contains code_statements. A return_statement shall include a return expression if and only if it
applies to a function body.

by:

A function body shall contain at least one return_statement that applies to the function body, unless the
function contains code_statements. A simple_return_statement shall include a return expression if and
only if it applies to a function body. An extended_return_statement shall apply to a function body.

If the result subtype of a function is defined by a subtype_mark, the return_subtype_indication of an
extended_return_statement that applies to the function body shall be a subtype_indication. The type of
the subtype_indication shall be the result type of the function. If the result subtype of the function is
constrained, then the subtype defined by the subtype_indication shall also be constrained and shall
statically match this result subtype. If the result subtype of the function is unconstrained, then the subtype
defined by the subtype_indication shall be a definite subtype, or there shall be a return expression.

If the result subtype of the function is defined by an access_definition, the return_subtype_indication
shall be an access_definition. The subtype defined by the access_definition shall statically match the
result subtype of the function. The accessibility level of this anonymous access subtype is that of the result
subtype.

If the type of the return expression is limited, then the return expression shall be an aggregate, a function
call (or equivalent use of an operator), or a qualified_expression or parenthesized expression whose
operand is one of these.

Static Semantics

Within an extended_return_statement, the return object is declared with the given identifier, with
nominal subtype defined by the return_subtype_indication.

Replace paragraph 6: [AI95-00318-02]

For the execution of a return_statement, the expression (if any) is first evaluated and converted to the
result subtype.

ISO/IEC 8652:1995/WD.1:2004

48

by:

For the execution of an extended_return_statement, the subtype_indication is elaborated. This creates
the nominal subtype of the return object. If there is an expression, it is evaluated and converted to the
nominal subtype (which might raise Constraint_Error -- see 4.6) and becomes the initial value of the return
object; otherwise, the return object is initialized by default as for a stand-alone object of its nominal subtype
(see 3.3.1). If the nominal subtype is indefinite, the return object is constrained by its initial value. The
handled sequence of statements, if any, is then executed.

For the execution of a simple_return_statement, the expression (if any) is first evaluated and converted to
the result subtype to become the value of the anonymous return object.

Delete paragraph 7: [AI95-00318-02]

If the result type is class-wide, then the tag of the result is the tag of the value of the expression.

Replace paragraph 8: [AI95-00318-02]

If the result type is a specific tagged type:

by:

If the result type of a function is a specific tagged type, the tag of the return object is that of the result type.

Delete paragraph 9: [AI95-00318-02]

• If it is limited, then a check is made that the tag of the value of the return expression identifies the
result type. Constraint_Error is raised if this check fails.

Delete paragraph 10: [AI95-00318-02]

• If it is nonlimited, then the tag of the result is that of the result type.

Delete paragraph 11: [AI95-00318-02]

A type is a return-by-reference type if it is a descendant of one of the following:

Delete paragraph 12: [AI95-00318-02]

• a tagged limited type;

Delete paragraph 13: [AI95-00318-02]

• a task or protected type;

Delete paragraph 14: [AI95-00318-02]

• a nonprivate type with the reserved word limited in its declaration;

Delete paragraph 15: [AI95-00318-02]

• a composite type with a subcomponent of a return-by-reference type;

Delete paragraph 16: [AI95-00318-02]

• a private type whose full type is a return-by-reference type.

Delete paragraph 17: [AI95-00318-02]

If the result type is a return-by-reference type, then a check is made that the return expression is one of the
following:

Delete paragraph 18: [AI95-00316-01; AI95-00318-02]

• a name that denotes an object view whose accessibility level is not deeper than that of the master
that elaborated the function body; or

ISO/IEC 8652:1995/WD.1:2004

49

Delete paragraph 19: [AI95-00318-02]

• a parenthesized expression or qualified_expression whose operand is one of these kinds of
expressions.

Replace paragraph 20: [AI95-00318-02; AI95-00344-01]

The exception Program_Error is raised if this check fails.

by:

If the result type is class-wide, a check is made that the accessibility level of the type identified by the tag of
the result is not deeper than that of the master that elaborated the function body. If this check fails,
Program_Error is raised.

Delete paragraph 21: [AI95-00318-02]

For a function with a return-by-reference result type the result is returned by reference; that is, the function
call denotes a constant view of the object associated with the value of the return expression. For any other
function, the result is returned by copy; that is, the converted value is assigned into an anonymous constant
created at the point of the return_statement, and the function call denotes that object.

Replace paragraph 22: [AI95-00318-02]

Finally, a transfer of control is performed which completes the execution of the construct to which the
return_statement applies, and returns to the caller.

by:

Finally, a transfer of control is performed which completes the execution of the construct to which the
return_statement applies, and returns to the caller. In the case of a function, the function_call denotes a
constant view of the return object.

Replace paragraph 24: [AI95-00318-02]

return; -- in a procedure body, entry_body, or accept_statement
return Key_Value(Last_Index); -- in a function body

by:

return; -- in a procedure body, entry_body,
 -- accept_statement, or extended_return_statement

return Key_Value(Last_Index); -- in a function body

return Node : Cell do -- in a function body, see 3.10.1 for Cell
 Node.Value := Result;
 Node.Succ := Next_Mode;
end return;

6.5.1 Pragma No_Return

Insert new clause: [AI95-00329-01]

A pragma No_Return indicates that a procedure can return only by propagating an exception.

Syntax

The form of a pragma No_Return, which is a program unit pragma (see 10.1.5), is as follows:

pragma No_Return(local_name{, local_name});

Legality Rules

The pragma shall apply to one or more procedures or generic procedures.

If a pragma No_Return applies to a procedure or a generic procedure, there shall be no return_statements
that apply to that procedure.

ISO/IEC 8652:1995/WD.1:2004

50

Static Semantics

If a pragma No_Return applies to a generic procedure, pragma No_Return applies to all instances of that
generic procedure.

Dynamic Semantics

If a pragma No_Return applies to a procedure, then the exception Program_Error is raised at the point of the
call of the procedure if the procedure body completes normally.

6.7 Null Procedures

Insert new clause: [AI95-00348-01]

A null_procedure_declaration provides a shorthand to declare a procedure with an empty body.

Syntax

null_procedure_declaration ::= procedure_specification is null;

Static Semantics

A null_procedure_declaration declares a null procedure. A completion is not allowed for a
null_procedure_declaration.

Dynamic Semantics

The execution of a null procedure is invoked by a subprogram call. For the execution of a subprogram call on
a null procedure, the execution of the subprogram_body has no effect.

ISO/IEC 8652:1995/WD.1:2004

51

Section 7: Packages

7.3 Private Types and Private Extensions

Replace paragraph 2: [AI95-00251-01]

private_extension_declaration ::=
 type defining_identifier [discriminant_part] is
 [abstract] new ancestor_subtype_indication with private;

by:

private_extension_declaration ::=
 type defining_identifier [discriminant_part] is
 [abstract] new ancestor_subtype_indication [and interface_list] with private;

7.4 Deferred Constants

Replace paragraph 9: [AI95-00256-01]

The completion of a deferred constant declaration shall occur before the constant is frozen (see 7.4).

by:

The completion of a deferred constant declaration shall occur before the constant is frozen (see 13.14).

7.5 Limited Types

Replace paragraph 1: [AI95-00287-01]

A limited type is (a view of) a type for which the assignment operation is not allowed. A nonlimited type is a
(view of a) type for which the assignment operation is allowed.

by:

A limited type is (a view of) a type for which copying (such as for an assignment_statement) is not allowed.
A nonlimited type is a (view of a) type for which copying is allowed.

Insert before paragraph 2: [AI95-00287-01; AI95-00318-02]

If a tagged record type has any limited components, then the reserved word limited shall appear in its
record_type_definition.

the new paragraph:

In the following contexts, an expression of a limited type is not permitted unless it is an aggregate, a
function_call, or a parenthesized expression or qualified_expression whose operand is permitted by this
rule:

• the initialization expression of an object_declaration (see 3.3.1)

• the default_expression of a component_declaration (see 3.8)

• the expression of a record_component_association (see 4.3.1)

• the expression for an ancestor_part of an extension_aggregate (see 4.3.2)

• an expression of a positional_array_aggregate or the expression of an
array_component_association (see 4.3.3)

• the qualified_expression of an initialized allocator (see 4.8)

• the expression of a return_statement (see 6.5)

ISO/IEC 8652:1995/WD.1:2004

52

• the default_expression or actual parameter for a formal object of mode in (see 12.4)

Insert after paragraph 8: [AI95-00287-01; AI95-00318-02]

There are no predefined equality operators for a limited type.

the new paragraph:

Implementation Requirements

For an aggregate of a limited type used to initialize an object as allowed above, the implementation shall
not create a separate anonymous object for the aggregate. For a function_call of a type with a part that is of
a task, protected, or limited record type that is used to initialize an object as allowed above, the
implementation shall not create a separate return object (see 6.5) for the function_call. The aggregate or
function_call shall be constructed directly in the new object.

Replace paragraph 9: [AI95-00287-01; AI95-00318-02]

13 The following are consequences of the rules for limited types:

by:

13 While it is allowed to write initializations of limited objects, such initializations never copy a limited
object. The source of such an assignment operation must be an aggregate or function_call, and such
aggregates and function_calls must be built directly in the target object.

Delete paragraph 10: [AI95-00287-01]

• An initialization expression is not allowed in an object_declaration if the type of the object is limited.

Delete paragraph 11: [AI95-00287-01]

• A default expression is not allowed in a component_declaration if the type of the record component is
limited.

Delete paragraph 12: [AI95-00287-01]

• An initialized allocator is not allowed if the designated type is limited.

Delete paragraph 13: [AI95-00287-01]

• A generic formal parameter of mode in must not be of a limited type.

Delete paragraph 14: [AI95-00287-01]

14 Aggregates are not available for a limited composite type. Concatenation is not available for a limited
array type.

Delete paragraph 15: [AI95-00287-01]

15 The rules do not exclude a default_expression for a formal parameter of a limited type; they do not
exclude a deferred constant of a limited type if the full declaration of the constant is of a nonlimited type.

7.6 User-Defined Assignment and Finalization

Replace paragraph 5: [AI95-00161-01]

 type Controlled is abstract tagged private;

by:

 type Controlled is abstract tagged private;
 pragma Preelaborable_Initialization(Controlled);

Replace paragraph 6: [AI95-00348-01]

 procedure Initialize (Object : in out Controlled);
 procedure Adjust (Object : in out Controlled);

ISO/IEC 8652:1995/WD.1:2004

53

 procedure Finalize (Object : in out Controlled);

by:

 procedure Initialize (Object : in out Controlled) is null;
 procedure Adjust (Object : in out Controlled) is null;
 procedure Finalize (Object : in out Controlled) is null;

Replace paragraph 7: [AI95-00161-01]

 type Limited_Controlled is abstract tagged limited private;

by:

 type Limited_Controlled is abstract tagged limited private;
 pragma Preelaborable_Initialization(Limited_Controlled);

Replace paragraph 8: [AI95-00348-01]

 procedure Initialize (Object : in out Limited_Controlled);
 procedure Finalize (Object : in out Limited_Controlled);
private
 ... -- not specified by the language
end Ada.Finalization;

by:

 procedure Initialize (Object : in out Limited_Controlled) is null;
 procedure Finalize (Object : in out Limited_Controlled) is null;
private
 ... -- not specified by the language
end Ada.Finalization;

Replace paragraph 9: [AI95-00348-01; AI95-00360-01]

A controlled type is a descendant of Controlled or Limited_Controlled. The (default) implementations of
Initialize, Adjust, and Finalize have no effect. The predefined "=" operator of type Controlled always returns
True, since this operator is incorporated into the implementation of the predefined equality operator of types
derived from Controlled, as explained in 4.5.2. The type Limited_Controlled is like Controlled, except that it
is limited and it lacks the primitive subprogram Adjust.

by:

A controlled type is a descendant of Controlled or Limited_Controlled. The predefined "=" operator of type
Controlled always returns True, since this operator is incorporated into the implementation of the predefined
equality operator of types derived from Controlled, as explained in 4.5.2. The type Limited_Controlled is like
Controlled, except that it is limited and it lacks the primitive subprogram Adjust.

A type is said to need finalization if:

• it is a controlled type, a task type or a protected type; or

• it has a component that needs finalization; or

• it is a limited type that has an access discriminant whose designated type needs finalization; or

• it is one of a number of language-defined types that are explicitly defined to need finalization.

Replace paragraph 21: [AI95-00147-01]

• For an aggregate or function call whose value is assigned into a target object, the implementation
need not create a separate anonymous object if it can safely create the value of the aggregate or
function call directly in the target object. Similarly, for an assignment_statement, the
implementation need not create an anonymous object if the value being assigned is the result of
evaluating a name denoting an object (the source object) whose storage cannot overlap with the
target. If the source object might overlap with the target object, then the implementation can avoid
the need for an intermediary anonymous object by exercising one of the above permissions and
perform the assignment one component at a time (for an overlapping array assignment), or not at all

ISO/IEC 8652:1995/WD.1:2004

54

(for an assignment where the target and the source of the assignment are the same object). Even if
an anonymous object is created, the implementation may move its value to the target object as part
of the assignment without re-adjusting so long as the anonymous object has no aliased
subcomponents.

by:

• For an aggregate or function call whose value is assigned into a target object, the implementation
need not create a separate anonymous object if it can safely create the value of the aggregate or
function call directly in the target object. Similarly, for an assignment_statement, the
implementation need not create an anonymous object if the value being assigned is the result of
evaluating a name denoting an object (the source object) whose storage cannot overlap with the
target. If the source object might overlap with the target object, then the implementation can avoid
the need for an intermediary anonymous object by exercising one of the above permissions and
perform the assignment one component at a time (for an overlapping array assignment), or not at all
(for an assignment where the target and the source of the assignment are the same object).

Furthermore, an implementation is permitted to omit implicit Initialize, Adjust, and Finalize calls and
associated assignment operations on an object of nonlimited controlled type provided that:

• any omitted Initialize call is not a call on a user-defined Initialize procedure, and

• any usage of the value of the object after the implicit Initialize or Adjust call and before any
subsequent Finalize call on the object does not change the external effect of the program, and

• after the omission of such calls and operations, any execution of the program that executes an
Initialize or Adjust call on an object or initializes an object by an aggregate will also later execute
a Finalize call on the object and will always do so prior to assigning a new value to the object, and

• the assignment operations associated with omitted Adjust calls are also omitted.

This permission applies to Adjust and Finalize calls even if the implicit calls have additional external effects.

7.6.1 Completion and Finalization

Replace paragraph 11: [AI95-00280-01]

The order in which the finalization of a master performs finalization of objects is as follows: Objects created
by declarations in the master are finalized in the reverse order of their creation. For objects that were created
by allocators for an access type whose ultimate ancestor is declared in the master, this rule is applied as
though each such object that still exists had been created in an arbitrary order at the first freezing point (see
13.14) of the ultimate ancestor type.

by:

The order in which the finalization of a master performs finalization of objects is as follows: Objects created
by declarations in the master are finalized in the reverse order of their creation. For objects that were created
by allocators for an access type whose ultimate ancestor is declared in the master, this rule is applied as
though each such object that still exists had been created in an arbitrary order at the first freezing point (see
13.14) of the ultimate ancestor type; the finalization of these objects is called the finalization of the
collection.

Replace paragraph 16: [AI95-00256-01]

• For an Adjust invoked as part of the initialization of a controlled object, other adjustments due to be
performed might or might not be performed, and then Program_Error is raised. During its
propagation, finalization might or might not be applied to objects whose Adjust failed. For an
Adjust invoked as part of an assignment statement, any other adjustments due to be performed are
performed, and then Program_Error is raised.

ISO/IEC 8652:1995/WD.1:2004

55

by:

• For an Adjust invoked as part of assignment operations other than those invoked as part of an
assignment statement, other adjustments due to be performed might or might not be performed, and
then Program_Error is raised. During its propagation, finalization might or might not be applied to
objects whose Adjust failed. For an Adjust invoked as part of an assignment statement, any other
adjustments due to be performed are performed, and then Program_Error is raised.

ISO/IEC 8652:1995/WD.1:2004

56

Section 8: Visibility Rules

8.1 Declarative Region

Insert after paragraph 4: [AI95-00318-02]

• a loop_statement;

the new paragraph:

• an extended_return_statement;

8.3 Visibility

Insert after paragraph 12: [AI95-00251-01]

• An implicit declaration of an inherited subprogram overrides a previous implicit declaration of an
inherited subprogram.

the new paragraphs:

• If two or more homographs are implicitly declared at the same place:

• If one is a non-null non-abstract subprogram, then it overrides all which are null or abstract
subprograms.

• If all are null procedures or abstract subprograms, then any null procedure overrides all abstract
subprograms; if more than one homograph remains that is not thus overridden, then one is
chosen arbitrarily to override the others.

Replace paragraph 20: [AI95-00217-06]

• The declaration of a library unit (including a library_unit_renaming_declaration) is hidden from
all visibility except at places that are within its declarative region or within the scope of a
with_clause that mentions it. For each declaration or renaming of a generic unit as a child of some
parent generic package, there is a corresponding declaration nested immediately within each
instance of the parent. Such a nested declaration is hidden from all visibility except at places that
are within the scope of a with_clause that mentions the child.

by:

• The declaration of a library unit (including a library_unit_renaming_declaration) is hidden from
all visibility except at places that are within its declarative region or within the scope of a
nonlimited_with_clause that mentions it. The limited view of a library package is hidden from all
visibility except at places that are within the scope of a limited_with_clause that mentions it but
not within the scope of a nonlimited_with_clause that mentions it. For each declaration or
renaming of a generic unit as a child of some parent generic package, there is a corresponding
declaration nested immediately within each instance of the parent. Such a nested declaration is
hidden from all visibility except at places that are within the scope of a with_clause that mentions
the child.

Insert after paragraph 23: [AI95-00195-01]

• A declaration is also hidden from direct visibility where hidden from all visibility.

the new paragraph:

An attribute_definition_clause is visible at a place if a declaration at the point of the
attribute_definition_clause would be immediately visible at the place.

ISO/IEC 8652:1995/WD.1:2004

57

Replace paragraph 26: [AI95-00218-01; AI95-00251-01]

A non-overridable declaration is illegal if there is a homograph occurring immediately within the same
declarative region that is visible at the place of the declaration, and is not hidden from all visibility by the
non-overridable declaration. In addition, a type extension is illegal if somewhere within its immediate scope
it has two visible components with the same name. Similarly, the context_clause for a subunit is illegal if
it mentions (in a with_clause) some library unit, and there is a homograph of the library unit that is visible
at the place of the corresponding stub, and the homograph and the mentioned library unit are both declared
immediately within the same declarative region. These rules also apply to dispatching operations declared in
the visible part of an instance of a generic unit. However, they do not apply to other overloadable
declarations in an instance; such declarations may have type conformant profiles in the instance, so long as
the corresponding declarations in the generic were not type conformant.

by:

A non-overridable declaration is illegal if there is a homograph occurring immediately within the same
declarative region that is visible at the place of the declaration, and is not hidden from all visibility by the
non-overridable declaration. In addition, a type extension is illegal if somewhere within its immediate scope
it has two visible components with the same name. Similarly, the context_clause for a subunit is illegal if
it mentions (in a with_clause) some library unit, and there is a homograph of the library unit that is visible
at the place of the corresponding stub, and the homograph and the mentioned library unit are both declared
immediately within the same declarative region.

If two or more homographs are implicitly declared at the same place (and not overridden by a non-
overridable declaration) then at most one shall be a non-null non-abstract subprogram. If all are null or
abstract, then all of the null subprograms shall be fully conformant with one another. If all are abstract, then
all of the subprograms shall be fully conformant with one another.

All of these rules also apply to dispatching operations declared in the visible part of an instance of a generic
unit. However, they do not apply to other overloadable declarations in an instance; such declarations may
have type conformant profiles in the instance, so long as the corresponding declarations in the generic were
not type conformant.

If a subprogram_declaration, abstract_subprogram_declaration, subprogram_body,
subprogram_body_stub, subprogram_renaming_declaration, or generic_instantiation of a subprogram
has an overriding_indicator, then:

• the operation shall be a primitive operation for some type;

• if the overriding_indicator is overriding, then the operation shall override a homograph at the
point of the declaration or body;

• if the overriding_indicator is not overriding, then the operation shall not override any homograph
(at any point).

In addition to the places where Legality Rules normally apply, these rules also apply in the private part of an
instance of a generic unit.

8.4 Use Clauses

Replace paragraph 5: [AI95-00217-06]

A package_name of a use_package_clause shall denote a package.

by:

A package_name of a use_package_clause shall denote a nonlimited view of a package.

Insert after paragraph 7: [AI95-00217-06]

For a use_clause immediately within a declarative region, the scope is the portion of the declarative region
starting just after the use_clause and extending to the end of the declarative region. However, the scope of a

ISO/IEC 8652:1995/WD.1:2004

58

use_clause in the private part of a library unit does not include the visible part of any public descendant of
that library unit.

the new paragraph:

A package is named in a use_package_clause if it is denoted by a package_name of that clause. A type is
named in a use_type_clause if it is determined by a subtype_mark of that clause.

Replace paragraph 8: [AI95-00217-06]

For each package denoted by a package_name of a use_package_clause whose scope encloses a place,
each declaration that occurs immediately within the declarative region of the package is potentially use-
visible at this place if the declaration is visible at this place. For each type T or T'Class determined by a
subtype_mark of a use_type_clause whose scope encloses a place, the declaration of each primitive
operator of type T is potentially use-visible at this place if its declaration is visible at this place.

by:

For each package named in a use_package_clause whose scope encloses a place, each declaration that
occurs immediately within the declarative region of the package is potentially use-visible at this place if the
declaration is visible at this place. For each type T or T'Class named in a use_type_clause whose scope
encloses a place, the declaration of each primitive operator of type T is potentially use-visible at this place if
its declaration is visible at this place.

8.5.1 Object Renaming Declarations

Replace paragraph 2: [AI95-00230-01]

object_renaming_declaration ::=
 defining_identifier : subtype_mark renames object_name;

by:

object_renaming_declaration ::=
 defining_identifier : subtype_mark renames object_name;
 | defining_identifier : access_definition renames object_name;

Replace paragraph 3: [AI95-00231-01; AI95-00254-01]

The type of the object_name shall resolve to the type determined by the subtype_mark.

by:

The type of the object_name shall resolve to the type determined by the subtype_mark, or in the case
where the type is defined by an access_definition, to a specific anonymous access type which in the case of
an access-to-object type shall have the same designated type as that of the access_definition and in the case
of an access-to-subprogram type shall have a designated profile which is subtype conformant with that of the
access_definition.

Replace paragraph 4: [AI95-00231-01; AI95-00254-01]

The renamed entity shall be an object.

by:

The renamed entity shall be an object. In the case where the type is defined by an access_definition of an
access-to-object type, the renamed entity shall be of an access-to-constant type if and only if the
access_definition defines an access-to-constant type.

Replace paragraph 5: [AI95-00363-01]

The renamed entity shall not be a subcomponent that depends on discriminants of a variable whose nominal
subtype is unconstrained, unless this subtype is indefinite, or the variable is aliased. A slice of an array shall
not be renamed if this restriction disallows renaming of the array. In addition to the places where Legality
Rules normally apply, these rules apply also in the private part of an instance of a generic unit. These rules

ISO/IEC 8652:1995/WD.1:2004

59

also apply for a renaming that appears in the body of a generic unit, with the additional requirement that
even if the nominal subtype of the variable is indefinite, its type shall not be a descendant of an untagged
generic formal derived type.

by:

The renamed entity shall not be a subcomponent that depends on discriminants of a variable whose nominal
subtype is unconstrained, unless this subtype is indefinite, or the variable is constrained by its initial value. A
slice of an array shall not be renamed if this restriction disallows renaming of the array. In addition to the
places where Legality Rules normally apply, these rules apply also in the private part of an instance of a
generic unit. These rules also apply for a renaming that appears in the body of a generic unit, with the
additional requirement that even if the nominal subtype of the variable is indefinite, its type shall not be a
descendant of an untagged generic formal derived type.

Replace paragraph 6: [AI95-00230-01]

An object_renaming_declaration declares a new view of the renamed object whose properties are identical
to those of the renamed view. Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected; similarly,
the constraints that apply to an object are not affected by renaming (any constraint implied by the
subtype_mark of the object_renaming_declaration is ignored).

by:

An object_renaming_declaration declares a new view of the renamed object whose properties are identical
to those of the renamed view. Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected; similarly,
the constraints that apply to an object are not affected by renaming (any constraint implied by the
subtype_mark or access_definition of the object_renaming_declaration is ignored).

8.5.3 Package Renaming Declarations

Replace paragraph 3: [AI95-00217-06]

The renamed entity shall be a package.

by:

The renamed entity shall be a nonlimited view of a package.

8.5.4 Subprogram Renaming Declarations

Replace paragraph 2: [AI95-00218-03]

subprogram_renaming_declaration ::= subprogram_specification renames callable_entity_name;

by:

subprogram_renaming_declaration ::=
 [overriding_indicator]
 subprogram_specification renames callable_entity_name;

Insert after paragraph 5: [AI95-00228-01]

The profile of a renaming-as-body shall be subtype-conformant with that of the renamed callable entity, and
shall conform fully to that of the declaration it completes. If the renaming-as-body completes that declaration
before the subprogram it declares is frozen, the profile shall be mode-conformant with that of the renamed
callable entity and the subprogram it declares takes its convention from the renamed subprogram; otherwise,
the profile shall be subtype-conformant with that of the renamed callable entity and the convention of the
renamed subprogram shall not be Intrinsic. A renaming-as-body is illegal if the declaration occurs before the
subprogram whose declaration it completes is frozen, and the renaming renames the subprogram itself,
through one or more subprogram renaming declarations, none of whose subprograms has been frozen.

ISO/IEC 8652:1995/WD.1:2004

60

the new paragraph:

If the callable_entity_name of a renaming denotes a subprogram which shall be overridden (see 3.9.3),
then the renaming is illegal.

8.6 The Context of Overload Resolution

Replace paragraph 25: [AI95-00230-01; AI95-00231-01; AI95-00254-01]

• when T is an anonymous access type (see 3.10) with designated type D, to an access-to-variable
type whose designated type is D'Class or is covered by D.

by:

• when T is a specific anonymous access-to-object type (see 3.10) with designated type D, to an
access-to-object type whose designated type is D'Class or is covered by D, and that is access-to-
constant only if T is access-to-constant; or

• when T is an anonymous access-to-subprogram type (see 3.10), to an access-to-subprogram type
whose designated profile is subtype-conformant with that of T.

ISO/IEC 8652:1995/WD.1:2004

61

Section 9: Tasks and Synchronization

9.1 Task Units and Task Objects

Replace paragraph 2: [AI95-00345-01]

task_type_declaration ::=
 task type defining_identifier [known_discriminant_part] [is task_definition];

by:

task_type_declaration ::=
 task type defining_identifier [known_discriminant_part] [is
 [new interface_list with]
 task_definition];

Insert after paragraph 8: [AI95-00345-01]

A task declaration requires a completion, which shall be a task_body, and every task_body shall be the
completion of some task declaration.

the new paragraphs:

Each interface_subtype_mark of an interface_list appearing within a task_type_declaration shall
denote a limited interface type that is not a protected interface.

If a task_type_declaration includes an interface_list, then for each primitive subprogram inherited by the
task type, at most one of the following shall apply:

• the inherited subprogram shall be overridden with a primitive subprogram of the task type, in which
case the overriding subprogram shall be subtype conformant with the inherited subprogram and not
abstract; or

• the first parameter of the inherited subprogram shall be of the task type or an access parameter
designating the task type, and there shall be an entry_declaration for a single entry with the same
identifier and a profile that is type conformant with that of the inherited subprogram after omitting
this first parameter, in which case the inherited subprogram is said to be implemented by the
conforming entry, and its profile after omitting the first parameter shall be subtype conformant with
that of the entry.

If neither applies, the inherited subprogram shall be a null procedure.

Insert after paragraph 9.1: [AI95-00345-01]

For a task declaration without a task_definition, a task_definition without task_items is assumed.

the new paragraph:

If a task_type_declaration includes an interface_list, the task type is derived from each interface named in
the interface_list.

Replace paragraph 21: [AI95-00287-01]

4 A task type is a limited type (see 7.5), and hence has neither an assignment operation nor predefined
equality operators. If an application needs to store and exchange task identities, it can do so by defining an
access type designating the corresponding task objects and by using access values for identification purposes.
Assignment is available for such an access type as for any access type. Alternatively, if the implementation
supports the Systems Programming Annex, the Identity attribute can be used for task identification (see C.7).

by:

4 A task type is a limited type (see 7.5), and hence has neither assignment nor predefined equality operators.
If an application needs to store and exchange task identities, it can do so by defining an access type designating
the corresponding task objects and by using access values for identification purposes. Assignment is available

ISO/IEC 8652:1995/WD.1:2004

62

for such an access type as for any access type. Alternatively, if the implementation supports the Systems
Programming Annex, the Identity attribute can be used for task identification (see C.7).

9.4 Protected Units and Protected Objects

Replace paragraph 2: [AI95-00345-01]

protected_type_declaration ::=
 protected type defining_identifier [known_discriminant_part] [is protected_definition];

by:

protected_type_declaration ::=
 protected type defining_identifier [known_discriminant_part] [is
 [new interface_list with]
 protected_definition];

Insert after paragraph 10: [AI95-00345-01]

A protected declaration requires a completion, which shall be a protected_body, and every
protected_body shall be the completion of some protected declaration.

the new paragraphs:

Each interface_subtype_mark of an interface_list appearing within a protected_type_declaration shall
denote a limited interface type that is not a task interface.

If a protected_type_declaration includes an interface_list, then for each primitive subprogram inherited
by the protected type, at most one of the following shall apply:

• the inherited subprogram shall be overridden with a primitive subprogram of the protected type; in
this case the overriding subprogram shall be subtype conformant with the inherited subprogram and
not abstract; or

• the first parameter of the inherited subprogram shall be of the protected type or an access parameter
designating the protected type, and there shall be a protected_operation_declaration for a
protected subprogram or single entry with the same identifier within the
protected_type_declaration, having a profile that is type conformant with that of the inherited
subprogram after omitting this first parameter; in this case the inherited subprogram is said to be
implemented by the conforming protected subprogram or entry, and its profile after omitting the
first parameter shall be subtype conformant with that of the protected subprogram or entry.

If neither applies, the inherited subprogram shall be a null procedure.

If an inherited subprogram is implemented by a protected procedure or entry, then its first parameter shall be
an access-to-variable parameter, or of mode out or in out.

Replace paragraph 11: [AI95-00345-01]

A protected_definition defines a protected type and its first subtype. The list of
protected_operation_declarations of a protected_definition, together with the
known_discriminant_part, if any, is called the visible part of the protected unit. The optional list of
protected_element_declarations after the reserved word private is called the private part of the protected
unit.

by:

A protected_definition defines a protected type and its first subtype. The list of
protected_operation_declarations of a protected_definition, together with the
known_discriminant_part, if any, is called the visible part of the protected unit. The optional list of
protected_element_declarations after the reserved word private is called the private part of the protected
unit. If a protected_type_declaration includes an interface_list, the protected type is derived from each
interface named in the interface_list.

ISO/IEC 8652:1995/WD.1:2004

63

Insert after paragraph 20: [AI95-00280-01]

As the first step of the finalization of a protected object, each call remaining on any entry queue of the object
is removed from its queue and Program_Error is raised at the place of the corresponding
entry_call_statement.

the new paragraph:

Bounded (Run-Time) Errors

It is a bounded error to call an entry or subprogram of a protected object after that object is finalized. If the
error is detected, Program_Error is raised. Otherwise, the call proceeds normally, which may leave a task
queued forever.

Replace paragraph 23: [AI95-00287-01]

15 A protected type is a limited type (see 7.5), and hence has neither an assignment operation nor predefined
equality operators.

by:

15 A protected type is a limited type (see 7.5), and hence has neither assignment nor predefined equality
operators.

9.6 Delay Statements, Duration, and Time

Replace paragraph 10: [AI95-00161-01]

package Ada.Calendar is
 type Time is private;

by:

package Ada.Calendar is
 type Time is private;
 pragma Preelaborable_Initialization(Time);

Replace paragraph 11: [AI95-00351-01]

 subtype Year_Number is Integer range 1901 .. 2099;
 subtype Month_Number is Integer range 1 .. 12;
 subtype Day_Number is Integer range 1 .. 31;
 subtype Day_Duration is Duration range 0.0 .. 86_400.0;

by:

 subtype Year_Number is Integer range 1901 .. 2399;
 subtype Month_Number is Integer range 1 .. 12;
 subtype Day_Number is Integer range 1 .. 31;
 subtype Day_Duration is Duration range 0.0 .. 86_400.0;

Replace paragraph 24: [AI95-00351-01]

The functions Year, Month, Day, and Seconds return the corresponding values for a given value of the type
Time, as appropriate to an implementation-defined timezone; the procedure Split returns all four
corresponding values. Conversely, the function Time_Of combines a year number, a month number, a day
number, and a duration, into a value of type Time. The operators "+" and "-" for addition and subtraction of
times and durations, and the relational operators for times, have the conventional meaning.

by:

The functions Year, Month, Day, and Seconds return the corresponding values for a given value of the type
Time, as appropriate to an implementation-defined time zone; the procedure Split returns all four
corresponding values. Conversely, the function Time_Of combines a year number, a month number, a day
number, and a duration, into a value of type Time. The operators "+" and "-" for addition and subtraction of
times and durations, and the relational operators for times, have the conventional meaning.

ISO/IEC 8652:1995/WD.1:2004

64

9.6.1 Formatting, Time Zones, and other operations for Time

Insert new clause: [AI95-00351-01]

Static Semantics

The following language-defined library packages exist:

package Ada.Calendar.Time_Zones is

 -- Time zone manipulation:

 type Time_Offset is range -1440 .. 1440;

 Unknown_Zone_Error : exception;

 function UTC_Time_Offset (Date : Time := Clock) return Time_Offset;

end Ada.Calendar.Time_Zones;

package Ada.Calendar.Arithmetic is

 -- Arithmetic on days:

 type Day_Count is range
 -366*(1+Year_Number'Last - Year_Number'First)
 ..
 366*(1+Year_Number'Last - Year_Number'First);

 subtype Leap_Seconds_Count is Integer range -999 .. 999;

 procedure Difference (Left, Right : in Time;
 Days : out Day_Count;
 Seconds : out Duration;
 Leap_Seconds : out Leap_Seconds_Count);

 function "+" (Left : Time; Right : Day_Count) return Time;

 function "+" (Left : Day_Count; Right : Time) return Time;

 function "-" (Left : Time; Right : Day_Count) return Time;

 function "-" (Left, Right : Time) return Day_Count;

end Ada.Calendar.Arithmetic;

with Ada.Calendar.Time_Zones;
package Ada.Calendar.Formatting is

 -- Day of the week:

 type Day_Name is (Monday, Tuesday, Wednesday, Thursday,
 Friday, Saturday, Sunday);

 function Day_of_Week (Date : Time) return Day_Name;

 -- Hours:Minutes:Seconds access:

 subtype Hour_Number is Natural range 0 .. 23;
 subtype Minute_Number is Natural range 0 .. 59;
 subtype Second_Number is Natural range 0 .. 59;
 subtype Second_Duration is Day_Duration range 0.0 .. 1.0;

 function Hour (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Hour_Number;

ISO/IEC 8652:1995/WD.1:2004

65

 function Minute (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Minute_Number;

 function Second (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Second_Number;

 function Sub_Second (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Second_Duration;

 function Seconds_Of (Hour : Hour_Number;
 Minute : Minute_Number;
 Second : Second_Number := 0;
 Sub_Second : Second_Duration := 0.0)
 return Day_Duration;

 procedure Split (Seconds : in Day_Duration;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration);

 procedure Split (Date : in Time;
 Time_Zone : in Time_Zones.Time_Offset := 0;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration);

 function Time_Of (Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Hour : Hour_Number;
 Minute : Minute_Number;
 Second : Second_Number;
 Sub_Second : Second_Duration := 0.0;
 Leap_Second: Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Time;

 function Time_Of (Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Seconds : Day_Duration;
 Leap_Second: Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Time;

 procedure Split (Date : in Time;
 Time_Zone : in Time_Zones.Time_Offset := 0;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration;
 Leap_Second: out Boolean);

 procedure Split (Date : in Time;

ISO/IEC 8652:1995/WD.1:2004

66

 Time_Zone : in Time_Zones.Time_Offset := 0;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Seconds : out Day_Duration;
 Leap_Second: out Boolean);

 -- Simple image and value:
 function Image (Date : Time;
 Include_Time_Fraction : Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0) return String;

 function Value (Date : String;
 Time_Zone : Time_Zones.Time_Offset := 0) return Time;

 function Image (Elapsed_Time : Duration;
 Include_Time_Fraction : Boolean := False) return String;

 function Value (Elapsed_Time : String) return Duration;

end Ada.Calendar.Formatting;

Type Time_Offset represents the number of minutes difference between the implementation-defined time
zone used by Ada.Calendar and another time zone.

function UTC_Time_Offset (Date : Time := Clock) return Time_Offset;

Returns, as a number of minutes, the difference between the implementation-defined time zone of
Calendar, and UTC time, at the time Date. If the time zone of the Calendar implementation is
unknown, then Unknown_Zone_Error is raised.

procedure Difference (Left, Right : in Time;
 Days : out Day_Count;
 Seconds : out Duration;
 Leap_Seconds : out Leap_Seconds_Count);

Returns the difference between Left and Right. Days is the number of days of difference, Seconds is
the remainder seconds of difference, and Leap_Seconds is the number of leap seconds. If Left <
Right, then Seconds <= 0.0, Days <= 0, and Leap_Seconds <= 0. Otherwise, all values are non-
negative. For the returned values, if Days = 0, then Seconds + Duration(Leap_Seconds) =
Calendar."-" (Left, Right).

function "+" (Left : Time; Right : Day_Count) return Time;
function "+" (Left : Day_Count; Right : Time) return Time;

Adds a number of days to a time value. Time_Error is raised if the result is not representable as a
value of type Time.

function "-" (Left : Time; Right : Day_Count) return Time;

Subtracts a number of days from a time value. Time_Error is raised if the result is not representable
as a value of type Time.

function "-" (Left, Right : Time) return Day_Count;

Subtracts two time values, and returns the number of days between them. This is the same value that
Difference would return in Days.

function Day_of_Week (Date : Time) return Day_Name;

Returns the day of the week for Time. This is based on the Year, Month, and Day values of Time.

function Hour (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Hour_Number;

Returns the hour for Date, as appropriate for the specified time zone offset.

function Minute (Date : Time;

ISO/IEC 8652:1995/WD.1:2004

67

 Time_Zone : Time_Zones.Time_Offset := 0)
 return Minute_Number;

Returns the minute within the hour for Date, as appropriate for the specified time zone offset.

function Second (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Second_Number;

Returns the second within the hour and minute for Date, as appropriate for the specified time zone
offset.

function Sub_Second (Date : Time;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Second_Duration;

Returns the fraction of second for Date (this has the same accuracy as Day_Duration), as
appropriate for the specified time zone offset.

function Seconds_Of (Hour : Hour_Number;
 Minute : Minute_Number;
 Second : Second_Number := 0;
 Sub_Second : Second_Duration := 0.0)
 return Day_Duration;

Returns a Day_Duration value for the Hour:Minute:Second.Sub_Second. This value can be used in
Calendar.Time_Of as well as the argument to Calendar."+" and Calendar."-".

procedure Split (Seconds : in Day_Duration;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration);

Splits Seconds into Hour:Minute:Second.Sub_Second.

procedure Split (Date : in Time;
 Time_Zone : in Time_Zones.Time_Offset := 0;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration);

Splits Date into its constituent parts (Year, Month, Day, Hour, Minute, Second, Sub_Second),
relative to the specified time zone offset.

function Time_Of (Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Hour : Hour_Number;
 Minute : Minute_Number;
 Second : Second_Number;
 Sub_Second : Second_Duration := 0.0;
 Leap_Second: Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0)
 return Time;

Returns a Time built from the date and time values, relative to the specified time zone offset.
Time_Error is raised if Leap_Second is True, and Hour, Minute, and Second are not appropriate for
a Leap_Second.

function Time_Of (Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Seconds : Day_Duration;
 Leap_Second: Boolean := False;

ISO/IEC 8652:1995/WD.1:2004

68

 Time_Zone : Time_Zones.Time_Offset := 0)
 return Time;

Returns a Time built from the date and time values, relative to the specified time zone offset.
Time_Error is raised if Leap_Second is True, and Seconds is not appropriate for a Leap_Second.

procedure Split (Date : in Time;
 Time_Zone : in Time_Zones.Time_Offset := 0;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Hour : out Hour_Number;
 Minute : out Minute_Number;
 Second : out Second_Number;
 Sub_Second : out Second_Duration;
 Leap_Second: out Boolean);

Split Date into its constituent parts (Year, Month, Day, Hour, Minute, Second, Sub_Second),
relative to the specified time zone offset. Leap_Second is true if Date identifies a leap second.

procedure Split (Date : in Time;
 Time_Zone : in Time_Zones.Time_Offset := 0;
 Year : out Year_Number;
 Month : out Month_Number;
 Day : out Day_Number;
 Seconds : out Day_Duration;
 Leap_Second: out Boolean);

Split Date into its constituent parts (Year, Month, Day, Seconds), relative to the specified time zone
offset. Leap_Second is true if Date identifies a leap second.

function Image (Date : Time;
 Include_Time_Fraction : Boolean := False;
 Time_Zone : Time_Zones.Time_Offset := 0) return String;

Returns a string form of the Date relative to the given Time_Zone. The format is "Year-Month-Day
Hour:Minute:Second", where each value other than Year is a 2-digit form of the value of the
functions defined in Calendar and Calendar.Formatting, including a leading '0', if needed. Year is a
4-digit value. If Include_Time_Fraction is True, Sub_Seconds*100 is suffixed to the string as a 2-
digit value following a '.'.

function Value (Date : String)
 Time_Zone : Time_Zones.Time_Offset := 0) return Time;

Returns a Time value for the image given as Date, relative to the given time zone. Constraint_Error
is raised if the string is not formatted as described for Image, or the function cannot interpret the
given string as a Time value.

function Image (Elapsed_Time : Duration;
 Include_Time_Fraction : Boolean := False) return String;

Returns a string form of the Elapsed_Time. The format is "Hour:Minute:Second", where each value
is a 2-digit form of the value, including a leading '0', if needed. If Include_Time_Fraction is True,
Sub_Seconds*100 is suffixed to the string as a 2-digit value following a '.'. If Elapsed_Time < 0.0,
the result is Image (abs Elapsed_Time, Include_Time_Fraction) prefixed with "-". If abs
Elapsed_Time represents 100 hours or more, the result is implementation-defined.

function Value (Elapsed_Time : String) return Duration;

Returns a Duration value for the image given as Elapsed_Time. Constraint_Error is raised if the
string is not formatted as described for Image, or the function cannot interpret the given string as a
Duration value.

Implementation Advice

ISO/IEC 8652:1995/WD.1:2004

69

An implementation should support leap seconds if the target system supports them. If leap seconds are not
supported, Difference should return zero for Leap_Seconds, Split should return False for Leap_Second, and
Time_Of should raise Time_Error if Leap_Second is True.

NOTES

36 The time in the time zone known as Greenwich Mean Time (GMT) is generally equivalent to UTC time.

37 The implementation-defined time zone used for type Time may be, but need not be, the local time zone.
UTC_Time_Offset always returns the difference relative to the implementation-defined time zone of package
Calendar. If UTC_Time_Offset does not raise Unknown_Zone_Error, UTC time can be safely calculated
(within the accuracy of the underlying time-base).

38 Calling Split on the results of subtracting Duration(UTC_Time_Offset*60) from Clock provides the
components (hours, minutes, and so on) of the UTC time. In the United States, for example,
UTC_Time_Offset will generally be negative.

9.7.2 Timed Entry Calls

Replace paragraph 1: [AI95-00345-01]

A timed_entry_call issues an entry call that is cancelled if the call (or a requeue-with-abort of the call) is
not selected before the expiration time is reached.

by:

A timed_entry_call issues an entry call that is cancelled if the call (or a requeue-with-abort of the call) is
not selected before the expiration time is reached. A procedure call may appear rather than an entry call for
cases where the procedure might be implemented by an entry.

Replace paragraph 3: [AI95-00345-01]

entry_call_alternative ::=
 entry_call_statement [sequence_of_statements]

by:

entry_call_alternative ::=
 procedure_or_entry_call_statement [sequence_of_statements]

procedure_or_entry_call ::=
 procedure_call_statement | entry_call_statement

Legality Rules

If a procedure_call_statement is used for a procedure_or_entry_call, the procedure_name or
procedure_prefix of the procedure_call_statement shall denote an entry renamed as a procedure, a formal
subprogram, or (a view of) a primitive subprogram of a limited interface whose first parameter is a
controlling parameter (see 3.9.2).

Static Semantics

If a procedure_call_statement is used for a procedure_or_entry_call, and the procedure is implemented
by an entry, then the procedure_name, or procedure_prefix and possibly the first parameter of the
procedure_call_statement, determine the target object of the call and the entry to be called.

Replace paragraph 4: [AI95-00345-01]

For the execution of a timed_entry_call, the entry_name and the actual parameters are evaluated, as for a
simple entry call (see 9.5.3). The expiration time (see 9.6) for the call is determined by evaluating the
delay_expression of the delay_alternative; the entry call is then issued.

by:

For the execution of a timed_entry_call, the entry_name, procedure_name, or procedure_prefix, and any
actual parameters are evaluated, as for a simple entry call (see 9.5.3) or procedure call (see 6.4). The
expiration time (see 9.6) for the call is determined by evaluating the delay_expression of the

ISO/IEC 8652:1995/WD.1:2004

70

delay_alternative. If the call is an entry call or a call on a procedure implemented by an entry, the entry call
is then issued. Otherwise, the call proceeds as described in 6.4 for a procedure call, followed by the
sequence_of_statements of the entry_call_alternative, and the delay_alternative sequence_of_statements is
ignored.

9.7.4 Asynchronous Transfer of Control

Replace paragraph 4: [AI95-00345-01]

triggering_statement ::= entry_call_statement | delay_statement

by:

triggering_statement ::= procedure_or_entry_call_statement | delay_statement

Replace paragraph 6: [AI95-00345-01]

For the execution of an asynchronous_select whose triggering_statement is an entry_call_statement,
the entry_name and actual parameters are evaluated as for a simple entry call (see 9.5.3), and the entry call
is issued. If the entry call is queued (or requeued-with-abort), then the abortable_part is executed. If the
entry call is selected immediately, and never requeued-with-abort, then the abortable_part is never started.

by:

For the execution of an asynchronous_select whose triggering_statement is an
procedure_or_entry_call_statement, the entry_name, procedure_name, or procedure_prefix, and any
actual parameters are evaluated as for a simple entry call (see 9.5.3) or procedure call (see 6.4). If the call is
an entry call or a call on a procedure implemented by an entry, the entry call is issued. If the entry call is
queued (or requeued-with-abort), then the abortable_part is executed. If the entry call is selected
immediately, and never requeued-with-abort, then the abortable_part is never started. If the call is on a
procedure that is not implemented by an entry, the call proceeds as described in 6.4, followed by the
sequence_of_statements of the triggering_alternative, and the abortable_part is never started.

9.8 Abort of a Task - Abort of a Sequence of Statements

Replace paragraph 3: [AI95-00345-01]

Each task_name is expected to be of any task type; they need not all be of the same task type.

by:

Each task_name is expected to be of any task type or task interface type; they need not all be of the same
type.

9.9 Task and Entry Attributes

Replace paragraph 1: [AI95-00345-01]

For a prefix T that is of a task type (after any implicit dereference), the following attributes are defined:

by:

For a prefix T that is of a task type or task interface type (after any implicit dereference), the following
attributes are defined:

ISO/IEC 8652:1995/WD.1:2004

71

Section 10: Program Structure and Compilation Issues

10.1.1 Compilation Units - Library Units

Insert after paragraph 12: [AI95-00217-06; AI95-00326-01]

A library_unit_declaration or a library_unit_renaming_declaration is private if the declaration is
immediately preceded by the reserved word private; it is otherwise public. A library unit is private or public
according to its declaration. The public descendants of a library unit are the library unit itself, and the public
descendants of its public children. Its other descendants are private descendants.

the new paragraphs:

For each library package_declaration in the environment, there is an implicit declaration of a limited view
of that library package. The limited view of a package contains:

• For each nested package_declaration, a declaration of the limited view of that package, with the
same defining_program_unit_name.

• For each type_declaration in the visible part, an incomplete view of the type is declared. If the
type_declaration is tagged, then the view is a tagged incomplete view.

The limited view of a library package_declaration is private if that library package_declaration is
immediately preceded by the reserved word private.

There is no syntax for declaring limited views of packages, because they are always implicit. The implicit
declaration of a limited view of a package is not the declaration of a library unit (the library
package_declaration is); nonetheless, it is a library_item.

A library package_declaration is the completion of the declaration of its limited view.

Replace paragraph 26: [AI95-00217-06]

A library_item depends semantically upon its parent declaration. A subunit depends semantically upon its
parent body. A library_unit_body depends semantically upon the corresponding library_unit_declaration,
if any. A compilation unit depends semantically upon each library_item mentioned in a with_clause of the
compilation unit. In addition, if a given compilation unit contains an attribute_reference of a type defined
in another compilation unit, then the given compilation unit depends semantically upon the other
compilation unit. The semantic dependence relationship is transitive.

by:

A library_item depends semantically upon its parent declaration. A subunit depends semantically upon its
parent body. A library_unit_body depends semantically upon the corresponding library_unit_declaration,
if any. The implicit declaration of the limited view of a library package depends semantically upon the
implicit declaration of the limited view of its parent. The declaration of a library package depends
semantically upon the implicit declaration of its limited view. A compilation unit depends semantically upon
each library_item mentioned in a with_clause of the compilation unit. In addition, if a given compilation
unit contains an attribute_reference of a type defined in another compilation unit, then the given
compilation unit depends semantically upon the other compilation unit. The semantic dependence
relationship is transitive.

Dynamic Semantics

The elaboration of the limited view of a package has no effect.

10.1.2 Context Clauses - With Clauses

Replace paragraph 4: [AI95-00217-06; AI95-00326-01]

with_clause ::= with library_unit_name {, library_unit_name};

ISO/IEC 8652:1995/WD.1:2004

72

by:

with_clause ::= limited_with_clause | nonlimited_with_clause
limited_with_clause ::= limited [private] with library_unit_name {, library_unit_name};
nonlimited_with_clause ::= [private] with library_unit_name {, library_unit_name};

Replace paragraph 6: [AI95-00217-06]

A library_item is mentioned in a with_clause if it is denoted by a library_unit_name or a prefix in the
with_clause.

by:

A library_item is named in a with_clause if it is denoted by a library_unit_name in the with_clause. A
library_item is mentioned in a with_clause if it is named in the with_clause or if it is denoted by a prefix
in the with_clause.

Replace paragraph 8: [AI95-00217-06; AI95-00220-01; AI95-00262-01]

If a with_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be either the declaration of a private descendant of that library unit or the body or a
subunit of a (public or private) descendant of that library unit.

by:

If a with_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be one of:

• the declaration, body, or subunit of a private descendant of that library unit;

• the body or subunit of a public descendant of that library unit, but not a subprogram body acting as a
subprogram declaration (see 10.1.4); or

• the declaration of a public descendant of that library unit, and the with_clause shall include the
reserved word private.

A name denoting a library item that is visible only due to being mentioned in with_clauses that include the
reserved word private shall appear only within

• a private part,

• a body, but not within the subprogram_specification of a library subprogram body,

• a private descendant of the unit on which one of these with_clauses appear, or

• a pragma within a context clause.

A library_item mentioned in a limited_with_clause shall be a package_declaration[, not a
subprogram_declaration, generic_declaration, generic_instantiation, or
package_renaming_declaration].

A limited_with_clause shall not appear on a library_unit_body or subunit.

A limited_with_clause which names a library_item shall not appear:

• in the same context_clause as a nonlimited_with_clause which mentions the same library_item;
or

• in the same context_clause as a use_clause which names an entity declared within the
declarative region of the library_item; or

• in the scope of a nonlimited_with_clause which mentions the same library_item; or

• in the scope of a use_clause which names an entity declared within the declarative region of the
library_item.

ISO/IEC 8652:1995/WD.1:2004

73

10.1.3 Subunits of Compilation Units

Replace paragraph 3: [AI95-00218-03]

subprogram_body_stub ::= subprogram_specification is separate;

by:

subprogram_body_stub ::=
 [overriding_indicator]
 subprogram_specification is separate;

Replace paragraph 8: [AI95-00243-01]

The parent body of a subunit is the body of the program unit denoted by its parent_unit_name. The term
subunit is used to refer to a subunit and also to the proper_body of a subunit.

by:

The parent body of a subunit is the body of the program unit denoted by its parent_unit_name. The term
subunit is used to refer to a subunit and also to the proper_body of a subunit. A subunit of a program unit
includes subunits declared directly in the program unit as well as any subunits declared in those subunits
(recursively).

10.1.4 The Compilation Process

Replace paragraph 3: [AI95-00217-06]

The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined.

by:

The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined. The mechanisms for adding a unit mentioned in a
limited_with_clause to an environment are implementation defined.

Replace paragraph 6: [AI95-00217-06]

The implementation may require that a compilation unit be legal before inserting it into the environment.

by:

The implementation may require that a compilation unit be legal before it can be mentioned in a
limited_with_clause or it can be inserted into the environment.

Replace paragraph 7: [AI95-00214-01]

When a compilation unit that declares or renames a library unit is added to the environment, the
implementation may remove from the environment any preexisting library_item with the same
defining_program_unit_name. When a compilation unit that is a subunit or the body of a library unit is
added to the environment, the implementation may remove from the environment any preexisting version of
the same compilation unit. When a given compilation unit is removed from the environment, the
implementation may also remove any compilation unit that depends semantically upon the given one. If the
given compilation unit contains the body of a subprogram to which a pragma Inline applies, the
implementation may also remove any compilation unit containing a call to that subprogram.

by:

When a compilation unit that declares or renames a library unit is added to the environment, the
implementation may remove from the environment any preexisting library_item or subunit with the same
full expanded name. When a compilation unit that is a subunit or the body of a library unit is added to the
environment, the implementation may remove from the environment any preexisting version of the same
compilation unit. When a compilation unit that contains a body_stub is added to the environment, the

ISO/IEC 8652:1995/WD.1:2004

74

implementation may remove any preexisting library_item or subunit with the same full expanded name as
the body_stub. When a given compilation unit is removed from the environment, the implementation may
also remove any compilation unit that depends semantically upon the given one. If the given compilation
unit contains the body of a subprogram to which a pragma Inline applies, the implementation may also
remove any compilation unit containing a call to that subprogram.

10.1.5 Pragmas and Program Units

Replace paragraph 9: [AI95-00212-01]

An implementation may place restrictions on configuration pragmas, so long as it allows them when the
environment contains no library_items other than those of the predefined environment.

by:

An implementation may require that configuration pragmas that select partition-wide or system-wide options
be compiled when the environment contains no library_items other than those of the predefined
environment. In this case, the implementation shall still accept configuration pragmas in individual
compilations that confirm the initially selected partition-wide or system-wide options.

10.2 Program Execution

Replace paragraph 6: [AI95-00217-06]

• If a compilation unit with stubs is needed, then so are any corresponding subunits.

by:

• If a compilation unit with stubs is needed, then so are any corresponding subunits;

• If the limited view of a unit is needed, then the full view of the unit is needed.

Replace paragraph 9: [AI95-00256-01]

The order of elaboration of library units is determined primarily by the elaboration dependences. There is an
elaboration dependence of a given library_item upon another if the given library_item or any of its subunits
depends semantically on the other library_item. In addition, if a given library_item or any of its subunits
has a pragma Elaborate or Elaborate_All that mentions another library unit, then there is an elaboration
dependence of the given library_item upon the body of the other library unit, and, for Elaborate_All only,
upon each library_item needed by the declaration of the other library unit.

by:

The order of elaboration of library units is determined primarily by the elaboration dependences. There is an
elaboration dependence of a given library_item upon another if the given library_item or any of its subunits
depends semantically on the other library_item. In addition, if a given library_item or any of its subunits
has a pragma Elaborate or Elaborate_All that names another library unit, then there is an elaboration
dependence of the given library_item upon the body of the other library unit, and, for Elaborate_All only,
upon each library_item needed by the declaration of the other library unit.

10.2.1 Elaboration Control

Insert after paragraph 4: [AI95-00161-01]

A pragma Preelaborate is a library unit pragma.

the new paragraphs:

The form of pragma Preelaborable_Initialization is as follows:

 pragma Preelaborable_Initialization (direct_name);

ISO/IEC 8652:1995/WD.1:2004

75

Replace paragraph 9: [AI95-00161-01]

• The creation of a default-initialized object (including a component) of a descendant of a private
type, private extension, controlled type, task type, or protected type with entry_declarations;
similarly the evaluation of an extension_aggregate with an ancestor subtype_mark denoting a
subtype of such a type.

by:

• The creation of an object (including a component) of a type which does not have preelaborable
initialization. Similarly the evaluation of an extension_aggregate with an ancestor
subtype_mark denoting a subtype of such a type.

Insert after paragraph 11: [AI95-00161-01]

If a pragma Preelaborate (or pragma Pure -- see below) applies to a library unit, then it is preelaborated. If
a library unit is preelaborated, then its declaration, if any, and body, if any, are elaborated prior to all non-
preelaborated library_items of the partition. The declaration and body of a preelaborated library unit, and all
subunits that are elaborated as part of elaborating the library unit, shall be preelaborable. In addition to the
places where Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance
of a generic unit. In addition, all compilation units of a preelaborated library unit shall depend semantically
only on compilation units of other preelaborated library units.

the new paragraphs:

The following rules specify which entities have preelaborable initialization:

• The partial view of a private type or private extension, a protected type without entry_declarations,
a generic formal private type, or a generic formal derived type, have preelaborable initialization if
and only if the pragma Preelaborable_Initialization has been applied to them.

• A component (including a discriminant) of a record or protected type has preelaborable
initialization if its declaration includes a default_expression whose execution does not perform
any actions prohibited in preelaborable constructs as described above, or if its declaration does not
include a default expression and its type has preelaborable initialization.

• A derived type has preelaborable initialization if its parent type has preelaborable initialization and
(in the case of a derived record or protected type) if the non-inherited components all have
preelaborable initialization. Moreover, a user-defined controlled type with an overridding Initialize
procedure does not have preelaborable initialization.

• A view of a type has preelaborable initialization if it is an elementary type, an array type whose
component type has preelaborable initialization, or a record type whose components all have
preelaborable initialization.

A pragma Preelaborable_Initialization specifies that a type has preelaborable initialization. This pragma
shall appear in the visible part of a package or generic package.

If the pragma appears in the first list of declarative_items of a package_specification, then the
direct_name shall denote the first subtype of a private type, private extension, or protected type without
entry_declarations, and the type shall be declared within the same package as the pragma. If the pragma
is applied to a private type or a private extension, the full view of the type shall have preelaborable
initialization. If the pragma is applied to a protected type, each component of the protected type shall have
preelaborable initialization. In addition to the places where Legality Rules normally apply, these rules apply
also in the private part of an instance of a generic unit.

If the pragma appears in a generic_formal_part, then the direct_name shall denote a generic formal
private type or a generic formal derived type declared in the same generic_formal_part as the pragma. In a
generic_instantiation the corresponding actual type shall have preelaborable initialization.

ISO/IEC 8652:1995/WD.1:2004

76

Section 11: Exceptions

11.3 Raise Statements

Replace paragraph 2: [AI95-00361-01]

raise_statement ::= raise [exception_name];

by:

raise_statement ::= raise; |
 raise exception_name [with string_expression];

Insert after paragraph 3: [AI95-00361-01]

The name, if any, in a raise_statement shall denote an exception. A raise_statement with no
exception_name (that is, a re-raise statement) shall be within a handler, but not within a body enclosed by
that handler.

the new paragraph:

Name Resolution Rules

The expression, if any, in a raise_statement, is expected to be of type String.

Replace paragraph 4: [AI95-00361-01]

To raise an exception is to raise a new occurrence of that exception, as explained in 11.4. For the execution
of a raise_statement with an exception_name, the named exception is raised. For the execution of a re-
raise statement, the exception occurrence that caused transfer of control to the innermost enclosing handler
is raised again.

by:

To raise an exception is to raise a new occurrence of that exception, as explained in 11.4. For the execution
of a raise_statement with an exception_name, the named exception is raised. If a string_expression is
present, a call of Ada.Exceptions.Exception_Message returns that string. For the execution of a re-raise
statement, the exception occurrence that caused transfer of control to the innermost enclosing handler is
raised again.

11.4.1 The Package Exceptions

Replace paragraph 2: [AI95-00362-01]

package Ada.Exceptions is
 type Exception_Id is private;
 Null_Id : constant Exception_Id;
 function Exception_Name(Id : Exception_Id) return String;

by:

package Ada.Exceptions is
 pragma Preelaborate(Exceptions);
 type Exception_Id is private;
 pragma Preelaborable_Initialization (Exception_Id);
 Null_Id : constant Exception_Id;
 function Exception_Name(Id : Exception_Id) return String;

Replace paragraph 3: [AI95-00362-01]

 type Exception_Occurrence is limited private;
 type Exception_Occurrence_Access is access all Exception_Occurrence;
 Null_Occurrence : constant Exception_Occurrence;

ISO/IEC 8652:1995/WD.1:2004

77

by:

 type Exception_Occurrence is limited private;
 pragma Preelaborable_Initialization (Exception_Occurrence);
 type Exception_Occurrence_Access is access all Exception_Occurrence;
 Null_Occurrence : constant Exception_Occurrence;

Replace paragraph 4: [AI95-00329-01]

 procedure Raise_Exception(E : in Exception_Id;
 Message : in String := "");
 function Exception_Message(X : Exception_Occurrence) return String;
 procedure Reraise_Occurrence(X : in Exception_Occurrence);

by:

 procedure Raise_Exception(E : in Exception_Id;
 Message : in String := "");
 pragma No_Return(Raise_Exception);
 function Exception_Message(X : Exception_Occurrence) return String;
 procedure Reraise_Occurrence(X : in Exception_Occurrence);

Replace paragraph 10: [AI95-00361-01; AI95-00378-01]

Raise_Exception raises a new occurrence of the identified exception. In this case, Exception_Message
returns the Message parameter of Raise_Exception. For a raise_statement with an exception_name,
Exception_Message returns implementation-defined information about the exception occurrence.
Reraise_Occurrence reraises the specified exception occurrence.

by:

Raise_Exception raises a new occurrence of the identified exception. In this case, Exception_Message
returns the Message parameter of Raise_Exception. For a raise_statement with an exception_name and a
string_expression, Exception_Message returns that string. For a raise_statement with an
exception_name but without a string_expression, Exception_Message returns implementation-defined
information about the exception occurrence. In all cases, Exception_Message returns a string with lower
bound 1. Reraise_Occurrence reraises the specified exception occurrence.

Replace paragraph 12: [AI95-00378-01]

The Exception_Name functions return the full expanded name of the exception, in upper case, starting with
a root library unit. For an exception declared immediately within package Standard, the defining_identifier
is returned. The result is implementation defined if the exception is declared within an unnamed
block_statement.

by:

The Exception_Name functions return the full expanded name of the exception, in upper case, starting with
a root library unit. The returned string has lower bound 1. For an exception declared immediately within
package Standard, the defining_identifier is returned. The result is implementation defined if the exception
is declared within an unnamed block_statement.

Replace paragraph 13: [AI95-00378-01]

Exception_Information returns implementation-defined information about the exception occurrence.

by:

Exception_Information returns implementation-defined information about the exception occurrence. The
returned string has lower bound 1.

Replace paragraph 14: [AI95-00241-01; AI95-00329-01]

Raise_Exception and Reraise_Occurrence have no effect in the case of Null_Id or Null_Occurrence.
Exception_Message, Exception_Identity, Exception_Name, and Exception_Information raise
Constraint_Error for a Null_Id or Null_Occurrence.

ISO/IEC 8652:1995/WD.1:2004

78

by:

Reraise_Occurrence has no effect in the case of Null_Occurrence. Raise_Exception and Exception_Name
raise Constraint_Error for a Null_Id. Exception_Message, Exception_Name, and Exception_Information
raise Constraint_Error for a Null_Occurrence. Exception_Identity applied to Null_Occurrence returns
Null_Id.

11.4.2 Pragmas Assert and Assertion_Policy

Insert new clause: [AI95-00286-01]

Pragma Assert is used to assert the truth of a boolean expression at any point within a sequence of
declarations or statements. Pragma Assertion_Policy is used to control whether such assertions are to be
ignored by the implementation, checked at run-time, or handled in some implementation-defined manner.

Syntax

The form of a pragma Assert is as follows:

pragma Assert([Check =>] Boolean_expression[, [Message =>] string_expression]);

A pragma Assert is allowed at the place where a declarative_item or a statement is allowed.

The form of a pragma Assertion_Policy is as follows:

pragma Assertion_Policy(policy_identifier);

A pragma Assertion_Policy is a configuration pragma.

Legality Rules

The policy_identifier of an Assertion_Policy pragma shall be either Check, Ignore, or an implementation-
defined identifier.

Static Semantics

A pragma Assertion_Policy is a configuration pragma that specifies the assertion policy in effect for the
compilation units to which it applies. Different policies may apply to different compilation units within the
same partition. The default assertion policy is implementation-defined.

The following language-defined library package exists:

package Ada.Assertions is
 pragma Pure(Assertions);

 Assertion_Error : exception;

 procedure Assert(Check : in Boolean);
 procedure Assert(Check : in Boolean; Message : in String);

end Ada.Assertions;

A compilation unit containing a pragma Assert has a semantic dependence on the Ada.Assertions library
unit.

The assertion policy that applies within an instance is the policy that applies within the generic unit.

Dynamic Semantics

An assertion policy specifies how a pragma Assert is interpreted by the implementation. If the assertion
policy is Ignore at the point of a pragma Assert, the pragma is ignored. If the assertion policy is Check at the
point of a pragma Assert, the elaboration of the pragma consists of evaluating the boolean expression, and if
it evaluates to False, evaluating the Message string, if any, and raising the exception
Ada.Assertions.Assertion_Error, with a message if the Message argument is provided.

Calling the procedure Ada.Assertions.Assert without a Message parameter is equivalent to:

if Check = False then

ISO/IEC 8652:1995/WD.1:2004

79

 raise Ada.Assertions.Assertion_Error;
end if;

Calling the procedure Ada.Assertions.Assert with a Message parameter is equivalent to:

if Check = False then
 raise Ada.Assertions.Assertion_Error with Message;
end if;

The procedures Assertions.Assert have these effects independent of the assertion policy in effect.

Implementation Permissions

Assertion_Error may be declared by renaming an implementation-defined exception from another package.

Implementations may define their own assertion policies.

NOTES

Normally, the boolean expression in an Assert pragma should not call functions that have significant side-
effects when the result of the expression is True, so that the particular assertion policy in effect will not affect
normal operation of the program.

11.5 Suppressing Checks

Replace paragraph 1: [AI95-00224-01]

A pragma Suppress gives permission to an implementation to omit certain language-defined checks.

by:

Checking pragmas give instructions to an implementation on handling language-defined checks. A pragma
Suppress gives permission to an implementation to omit certain language-defined checks, while a pragma
Unsuppress revokes the permission to omit checks.

Replace paragraph 3: [AI95-00224-01]

The form of a pragma Suppress is as follows:

by:

The forms of checking pragmas are as follows:

Replace paragraph 4: [AI95-00224-01]

pragma Suppress(identifier [, [On =>] name]);

by:

pragma Suppress(identifier);

pragma Unsuppress(identifier);

Replace paragraph 5: [AI95-00224-01]

A pragma Suppress is allowed only immediately within a declarative_part, immediately within a
package_specification, or as a configuration pragma.

by:

A checking pragma is allowed only immediately within a declarative_part, immediately within a
package_specification, or as a configuration pragma.

Replace paragraph 6: [AI95-00224-01]

The identifier shall be the name of a check. The name (if present) shall statically denote some entity.

by:

The identifier shall be the name of a check.

ISO/IEC 8652:1995/WD.1:2004

80

Delete paragraph 7: [AI95-00224-01]

For a pragma Suppress that is immediately within a package_specification and includes a name, the
name shall denote an entity (or several overloaded subprograms) declared immediately within the
package_specification.

Replace paragraph 8: [AI95-00224-01]

A pragma Suppress gives permission to an implementation to omit the named check from the place of the
pragma to the end of the innermost enclosing declarative region, or, if the pragma is given in a
package_specification and includes a name, to the end of the scope of the named entity. If the pragma
includes a name, the permission applies only to checks performed on the named entity, or, for a subtype, on
objects and values of its type. Otherwise, the permission applies to all entities. If permission has been given
to suppress a given check, the check is said to be suppressed.

by:

A checking pragma applies to the named check in a specific region (see below), and applies to all entities in
that region. A checking pragma given in a declarative_part or immediately within a
package_specification applies from the place of the pragma to the end of the innermost enclosing
declarative region. The region for a checking pragma given as a configuration pragma is the declarative
region for the entire compilation unit (or units) to which it applies.

If a checking pragma applies to a generic instantiation, then the checking pragma also applies to the
instance. If a checking pragma applies to a call to a subprogram that has a pragma Inline applied to it, then
the checking pragma also applies to the inlined subprogram body.

A pragma Suppress gives permission to an implementation to omit the named check (or every check in the
case of All_Checks) for any entities to which it applies. If permission has been given to suppress a given
check, the check is said to be suppressed.

A pragma Unsuppress revokes the permission to omit the named check (or every check in the case of
All_Checks) given by any pragma Suppress that applies at the point of the pragma Unsuppress. The
permission is revoked for the region to which the pragma Unsuppress applies. If there is no such permission
at the point of a pragma Unsuppress, then the pragma has no effect. A later pragma Suppress can renew
the permission.

Replace paragraph 11: [AI95-00231-01]

When evaluating a dereference (explicit or implicit), check that the value of the name is not null. When
passing an actual parameter to a formal access parameter, check that the value of the actual parameter is not
null. When evaluating a discriminant_association for an access discriminant, check that the value of the
discriminant is not null.

by:

When evaluating a dereference (explicit or implicit), check that the value of the name is not null. When
converting to a null-excluding subtype, check that the converted value is not null.

Replace paragraph 27: [AI95-00224-01]

An implementation is allowed to place restrictions on Suppress pragmas. An implementation is allowed to
add additional check names, with implementation-defined semantics. When Overflow_Check has been
suppressed, an implementation may also suppress an unspecified subset of the Range_Checks.

by:

An implementation is allowed to place restrictions on checking pragmas, subject only to the requirement that
pragma Unsuppress shall allow any check names supported by pragma Suppress. An implementation is
allowed to add additional check names, with implementation-defined semantics. When Overflow_Check has
been suppressed, an implementation may also suppress an unspecified subset of the Range_Checks.

An implementation may support an additional parameter on pragma Unsuppress similar to the one allowed
for pragma Suppress (see J.10). The meaning of such a parameter is implementation-defined.

ISO/IEC 8652:1995/WD.1:2004

81

Insert after paragraph 29: [AI95-00224-01]

2 There is no guarantee that a suppressed check is actually removed; hence a pragma Suppress should be
used only for efficiency reasons.

the new paragraph:

3 It is possible to give both a pragma Suppress and Unsuppress for the same check immediately within the
same declarative_part. In that case, the last pragma given determines whether or not the check is
suppressed. Similarly, it is possible to resuppress a check which has been unsuppressed by giving a pragma
Suppress in an inner declarative region.

Replace paragraph 32: [AI95-00224-01]

pragma Suppress(Range_Check);
pragma Suppress(Index_Check, On =

 Table);>

by:

pragma Suppress(Index_Check);
pragma Unsuppress(Overflow_Check);

ISO/IEC 8652:1995/WD.1:2004

82

Section 12: Generic Units

12.3 Generic Instantiation

Replace paragraph 2: [AI95-00218-03]

generic_instantiation ::=
 package defining_program_unit_name is
 new generic_package_name [generic_actual_part];
 | procedure defining_program_unit_name is
 new generic_procedure_name [generic_actual_part];
 | function defining_designator is
 new generic_function_name [generic_actual_part];

by:

generic_instantiation ::=
 package defining_program_unit_name is
 new generic_package_name [generic_actual_part];
 | [overriding_indicator]
 procedure defining_program_unit_name is
 new generic_procedure_name [generic_actual_part];
 | [overriding_indicator]
 function defining_designator is
 new generic_function_name [generic_actual_part];

12.4 Formal Objects

Delete paragraph 8: [AI95-00287-01]

The type of a generic formal object of mode in shall be nonlimited.

Replace paragraph 9: [AI95-00255-01]

A formal_object_declaration declares a generic formal object. The default mode is in. For a formal object
of mode in, the nominal subtype is the one denoted by the subtype_mark in the declaration of the formal.
For a formal object of mode in out, its type is determined by the subtype_mark in the declaration; its
nominal subtype is nonstatic, even if the subtype_mark denotes a static subtype.

by:

A formal_object_declaration declares a generic formal object. The default mode is in. For a formal object
of mode in, the nominal subtype is the one denoted by the subtype_mark in the declaration of the formal.
For a formal object of mode in out, its type is determined by the subtype_mark in the declaration; its
nominal subtype is nonstatic, even if the subtype_mark denotes a static subtype; for a composite type, its
nominal subtype is unconstrained if the first subtype of the type is unconstrained, even if the subtype_mark
denotes a constrained subtype.

Replace paragraph 10: [AI95-00269-01]

In an instance, a formal_object_declaration of mode in declares a new stand-alone constant object whose
initialization expression is the actual, whereas a formal_object_declaration of mode in out declares a view
whose properties are identical to those of the actual.

by:

In an instance, a formal_object_declaration of mode in is a full constant declaration and declares a new
stand-alone constant object whose initialization expression is the actual, whereas a
formal_object_declaration of mode in out declares a view whose properties are identical to those of the
actual.

ISO/IEC 8652:1995/WD.1:2004

83

12.5 Formal Types

Replace paragraph 3: [AI95-00251-01]

formal_type_definition ::=
 formal_private_type_definition
 | formal_derived_type_definition
 | formal_discrete_type_definition
 | formal_signed_integer_type_definition
 | formal_modular_type_definition
 | formal_floating_point_definition
 | formal_ordinary_fixed_point_definition
 | formal_decimal_fixed_point_definition
 | formal_array_type_definition
 | formal_access_type_definition

by:

formal_type_definition ::=
 formal_private_type_definition
 | formal_derived_type_definition
 | formal_discrete_type_definition
 | formal_signed_integer_type_definition
 | formal_modular_type_definition
 | formal_floating_point_definition
 | formal_ordinary_fixed_point_definition
 | formal_decimal_fixed_point_definition
 | formal_array_type_definition
 | formal_access_type_definition
 | formal_interface_type_definition

Replace paragraph 8: [AI95-00233-01]

The formal type also belongs to each class that contains the determined class. The primitive subprograms of
the type are as for any type in the determined class. For a formal type other than a formal derived type, these
are the predefined operators of the type. For an elementary formal type, the predefined operators are
implicitly declared immediately after the declaration of the formal type. For a composite formal type, the
predefined operators are implicitly declared either immediately after the declaration of the formal type, or
later in its immediate scope according to the rules of 7.3.1. In an instance, the copy of such an implicit
declaration declares a view of the predefined operator of the actual type, even if this operator has been
overridden for the actual type. The rules specific to formal derived types are given in 12.5.1.

by:

The formal type also belongs to each class that contains the determined class. The primitive subprograms of
the type are as for any type in the determined class. For a formal type other than a formal derived type, these
are the predefined operators of the type. For an elementary formal type, the predefined operators are
implicitly declared immediately after the declaration of the formal type. For a composite formal type, the
predefined operators are implicitly declared either immediately after the declaration of the formal type, or
later immediately within the declarative region in which the type is declared according to the rules of 7.3.1.
In an instance, the copy of such an implicit declaration declares a view of the predefined operator of the
actual type, even if this operator has been overridden for the actual type. The rules specific to formal derived
types are given in 12.5.1.

12.5.1 Formal Private and Derived Types

Replace paragraph 3: [AI95-00251-01]

formal_derived_type_definition ::= [abstract] new subtype_mark [with private]

by:

formal_derived_type_definition ::=

ISO/IEC 8652:1995/WD.1:2004

84

 [abstract] new subtype_mark [[and interface_list] with private]

Insert after paragraph 10: [AI95-00231-01]

• If the ancestor subtype is an unconstrained discriminated subtype, then the actual shall have the
same number of discriminants, and each discriminant of the actual shall correspond to a
discriminant of the ancestor, in the sense of 3.7.

the new paragraph:

• If the ancestor subtype is an access subtype, the actual subtype shall exclude null if and only if the
ancestor subtype excludes null.

Insert after paragraph 15: [AI95-00251-01]

For a generic formal type with an unknown_discriminant_part, the actual may, but need not, have
discriminants, and may be definite or indefinite.

the new paragraph:

The actual type shall be a descendant of every ancestor of the formal type.

Replace paragraph 20: [AI95-00233-01]

If the ancestor type is a composite type that is not an array type, the formal type inherits components from
the ancestor type (including discriminants if a new discriminant_part is not specified), as for a derived type
defined by a derived_type_definition (see 3.4).

by:

If the ancestor type is a composite type that is not an array type, the formal type inherits components from
the ancestor type (including discriminants if a new discriminant_part is not specified), as for a derived type
defined by a derived_type_definition (see 3.4 and 7.3.1).

Replace paragraph 21: [AI95-00233-01]

For a formal derived type, the predefined operators and inherited user-defined subprograms are determined
by the ancestor type, and are implicitly declared at the earliest place, if any, within the immediate scope of
the formal type, where the corresponding primitive subprogram of the ancestor is visible (see 7.3.1). In an
instance, the copy of such an implicit declaration declares a view of the corresponding primitive subprogram
of the ancestor of the formal derived type, even if this primitive has been overridden for the actual type.
When the ancestor of the formal derived type is itself a formal type, the copy of the implicit declaration
declares a view of the corresponding copied operation of the ancestor. In the case of a formal private
extension, however, the tag of the formal type is that of the actual type, so if the tag in a call is statically
determined to be that of the formal type, the body executed will be that corresponding to the actual type.

by:

For a formal derived type, the predefined operators and inherited user-defined subprograms are determined
by the ancestor type, and are implicitly declared at the earliest place, if any, immediately within the
declarative region in which the formal type is declared, where the corresponding primitive subprogram of the
ancestor is visible (see 7.3.1). In an instance, the copy of such an implicit declaration declares a view of the
corresponding primitive subprogram of the ancestor of the formal derived type, even if this primitive has
been overridden for the actual type. When the ancestor of the formal derived type is itself a formal type, the
copy of the implicit declaration declares a view of the corresponding copied operation of the ancestor. In the
case of a formal private extension, however, the tag of the formal type is that of the actual type, so if the tag
in a call is statically determined to be that of the formal type, the body executed will be that corresponding to
the actual type.

ISO/IEC 8652:1995/WD.1:2004

85

12.5.4 Formal Access Types

Replace paragraph 4: [AI95-00231-01]

If and only if the general_access_modifier constant applies to the formal, the actual shall be an access-to-
constant type. If the general_access_modifier all applies to the formal, then the actual shall be a general
access-to-variable type (see 3.10).

by:

If and only if the general_access_modifier constant applies to the formal, the actual shall be an access-to-
constant type. If the general_access_modifier all applies to the formal, then the actual shall be a general
access-to-variable type (see 3.10). If and only if the formal subtype excludes null, the actual subtype shall
exclude null.

12.5.5 Formal Interface Types

Insert new clause: [AI95-00251-01; AI95-00345-01]

The class determined for a formal interface type is the class of all interface types.

Syntax

formal_interface_type_definition ::= interface_type_definition

Legality Rules

The actual type shall be an interface type.

The actual type shall be a descendant of every ancestor of the formal type.

The actual type shall be a limited, task, protected, or synchronized interface if and only if the formal type is
also, respectively, a limited, task, protected, or synchronized interface.

12.6 Formal Subprograms

Replace paragraph 3: [AI95-00348-01]

subprogram_default ::= default_name | <>

by:

subprogram_default ::= default_name | <> | null

Insert after paragraph 4: [AI95-00348-01]

default_name ::= name

the new paragraph:

A subprogram_default of null shall not be specified for a formal function.

Replace paragraph 9: [AI95-00345-01]

A formal_subprogram_declaration declares a generic formal subprogram. The types of the formal
parameters and result, if any, of the formal subprogram are those determined by the subtype_marks given
in the formal_subprogram_declaration; however, independent of the particular subtypes that are denoted
by the subtype_marks, the nominal subtypes of the formal parameters and result, if any, are defined to be
nonstatic, and unconstrained if of an array type (no applicable index constraint is provided in a call on a
formal subprogram). In an instance, a formal_subprogram_declaration declares a view of the actual. The
profile of this view takes its subtypes and calling convention from the original profile of the actual entity,
while taking the formal parameter names and default_expressions from the profile given in the
formal_subprogram_declaration. The view is a function or procedure, never an entry.

ISO/IEC 8652:1995/WD.1:2004

86

by:

A formal_subprogram_declaration declares a generic formal subprogram. The types of the formal
parameters and result, if any, of the formal subprogram are those determined by the subtype_marks given
in the formal_subprogram_declaration; however, independent of the particular subtypes that are denoted
by the subtype_marks, the nominal subtypes of the formal parameters and result, if any, are defined to be
nonstatic, and unconstrained if of an array type (no applicable index constraint is provided in a call on a
formal subprogram). In an instance, a formal_subprogram_declaration declares a view of the actual. The
profile of this view takes its subtypes and calling convention from the original profile of the actual entity,
while taking the formal parameter names and default_expressions from the profile given in the
formal_subprogram_declaration.

Insert after paragraph 10: [AI95-00348-01]

If a generic unit has a subprogram_default specified by a box, and the corresponding actual parameter is
omitted, then it is equivalent to an explicit actual parameter that is a usage name identical to the defining
name of the formal.

the new paragraph:

If a generic unit has a subprogram_default specified by the reserved word null, and the corresponding
actual parameter is omitted, then it is equivalent to an explicit actual parameter that is a null procedure
having the profile given in the formal_subprogram_declaration.

Insert after paragraph 16: [AI95-00348-01]

18 The actual subprogram cannot be abstract (see 3.9.3).

the new paragraph:

19 A null procedure as a subprogram default has convention Intrinsic (see 6.3.1).

12.7 Formal Packages

Replace paragraph 3: [AI95-00317-01]

formal_package_actual_part ::=
 (<>) | [generic_actual_part]

by:

formal_package_actual_part ::=
 (<>)
 | [generic_actual_part]
 | ([generic_association {, generic_association},] others => <>)

Any positional generic_associations shall precede any named generic_associations.

Replace paragraph 5: [AI95-00317-01]

The actual shall be an instance of the template. If the formal_package_actual_part is (<>), then the actual
may be any instance of the template; otherwise, each actual parameter of the actual instance shall match the
corresponding actual parameter of the formal package (whether the actual parameter is given explicitly or by
default), as follows:

by:

The actual shall be an instance of the template. If the formal_package_actual_part is (<>) or (others =>
<>), then the actual may be any instance of the template; otherwise, certain of the actual parameters of the
actual instance shall match the corresponding actual parameter of the formal package, determined as
follows:

• If the formal_package_actual_part includes generic_associations as well as "others => <>",
then only the actual parameters specified explicitly in these generic_associations are required to
match;

ISO/IEC 8652:1995/WD.1:2004

87

• Otherwise, all actual parameters shall match, whether the actual parameter is given explicitly or by
default.

The rules for matching of actual parameters between the actual instance and the formal package are as
follows:

Replace paragraph 10: [AI95-00317-01]

The visible part of a formal package includes the first list of basic_declarative_items of the
package_specification. In addition, if the formal_package_actual_part is (<>), it also includes the
generic_formal_part of the template for the formal package.

by:

The visible part of a formal package includes the first list of basic_declarative_items of the
package_specification. In addition, for each actual parameter that is not required to match, a copy of the
declaration of the corresponding formal parameter of the template is included in the visible part of the formal
package. If the copied declaration is for a formal type, copies of the implicit declarations of the primitive
subprograms of the formal type are also included in the visible part of the formal package.

For the purposes of matching, if the actual instance A is itself a formal package, then the actual parameters
of A are those specified explicitly or implicitly in the formal_package_actual_part for A, plus, for those
not specified, the copies of the formal parameters of the template included in the visible part of A.

ISO/IEC 8652:1995/WD.1:2004

88

Section 13: Representation Issues

13.1 Representation Items

Replace paragraph 11: [AI95-00326-01]

Operational and representation aspects of a generic formal parameter are the same as those of the actual.
Operational and representation aspects of a partial view are the same as those of the full view. A type-related
representation item is not allowed for a descendant of a generic formal untagged type.

by:

Operational and representation aspects of a generic formal parameter are the same as those of the actual.
Operational and representation aspects are the same for all views of a type. A type-related representation
item is not allowed for a descendant of a generic formal untagged type.

13.3 Representation Attributes

Insert after paragraph 8: [AI95-00133-01]

A storage element is an addressable element of storage in the machine. A word is the largest amount of
storage that can be conveniently and efficiently manipulated by the hardware, given the implementation's
run-time model. A word consists of an integral number of storage elements.

the new paragraph:

A machine scalar is an amount of storage that can be conveniently and efficiently loaded, stored, or operated
upon by the hardware. Machine scalars consist of an integral number of storage elements. The set of
machine scalars is implementation-dependent, but must include at least the storage element and the word.
Machine scalars are used to interpret component_clauses when the nondefault bit ordering applies. The set of
machine scalars is implementation defined.

Replace paragraph 25: [AI95-00051-01]

Alignment may be specified for first subtypes and stand-alone objects via an
attribute_definition_clause; the expression of such a clause shall be static, and its value
nonnegative. If the Alignment of a subtype is specified, then the Alignment of an object of the
subtype is at least as strict, unless the object's Alignment is also specified. The Alignment of an
object created by an allocator is that of the designated subtype.

by:

Alignment may be specified for first subtypes and stand-alone objects via an
attribute_definition_clause; the expression of such a clause shall be static, and its value
nonnegative. The Alignment of an object is at least as strict as the alignment of its subtype, unless
the object's Alignment is specified. The Alignment of an object created by an allocator is that of the
designated subtype.

Delete paragraph 26: [AI95-00247-01]

If an Alignment is specified for a composite subtype or object, this Alignment shall be equal to the
least common multiple of any specified Alignments of the subcomponent subtypes, or an integer
multiple thereof.

Replace paragraph 28: [AI95-00051-01]

If the Alignment is specified for an object that is not allocated under control of the implementation,
execution is erroneous if the object is not aligned according to the Alignment.

ISO/IEC 8652:1995/WD.1:2004

89

by:

Program execution is erroneous if an object that is not allocated under control of the implementation is not
aligned according to its Alignment.

Replace paragraph 30: [AI95-00051-01]

• An implementation should support specified Alignments that are factors and multiples of the
number of storage elements per word, subject to the following:

by:

• An implementation need not support a nonconfirming Alignment clause specifying an Alignment
which is neither zero nor a power of two.

Replace paragraph 31: [AI95-00051-01]

• An implementation need not support specified Alignments for combinations of Sizes and
Alignments that cannot be easily loaded and stored by available machine instructions.

by:

• An implementation need not support an Alignment clause for a signed integer type specifying an
Alignment greater than the largest Alignment value that would be chosen by default by the
implementation for any signed integer type. Corresponding advice applies for modular integer
types, fixed point types, enumeration types, record types, and array types.

• For floating point types, access types, protected types, and task types, an implementation need not
support a nonconfirming Alignment clause.

Replace paragraph 32: [AI95-00051-01]

• An implementation need not support specified Alignments that are greater than the maximum
Alignment the implementation ever returns by default.

by:

• An implementation need not support a nonconfirming Alignment clause which could enable the
creation of an elementary object which cannot be easily loaded and stored by available machine
instructions.

Replace paragraph 42: [AI95-00051-01]

The recommended level of support for the Size attribute of objects is:

by:

The recommended level of support for the Size attribute of objects is the same as for subtypes (see below).

Delete paragraph 43: [AI95-00051-01]

• A Size clause should be supported for an object if the specified Size is at least as large as its
subtype's Size, and corresponds to a size in storage elements that is a multiple of the object's
Alignment (if the Alignment is nonzero).

Replace paragraph 50: [AI95-00051-01]

If the Size of a subtype is specified, and allows for efficient independent addressability (see 9.10) on the
target architecture, then the Size of the following objects of the subtype should equal the Size of the subtype:

by:

If the Size of a subtype allows for efficient independent addressability (see 9.10) on the target architecture,
then the Size of the following objects of the subtype should equal the Size of the subtype:

ISO/IEC 8652:1995/WD.1:2004

90

Insert after paragraph 56: [AI95-00051-01]

• For a subtype implemented with levels of indirection, the Size should include the size of the
pointers, but not the size of what they point at.

the new paragraphs:

• An implementation need not support a Size clause for a signed integer type specifying a Size greater
than the largest Size value that would be chosen by default (i.e. in the absence of a Size clause) for
any signed integer type. Corresponding advice applies for modular integer types, fixed point types,
and enumeration types.

• For floating point types, access types, record types, array types, protected types, and task types, an
implementation need not support a nonconfirming Size clause.

13.5.1 Record Representation Clauses

Insert after paragraph 10: [AI95-00133-01]

The position, first_bit, and last_bit shall be static expressions. The value of position and first_bit shall be
nonnegative. The value of last_bit shall be no less than first_bit - 1.

the new paragraphs:

If the nondefault bit ordering applies to the type, then either:

• the value of last_bit shall be less than the size of the largest machine scalar; or

• the value of first_bit shall be zero and the value of last_bit + 1 shall be a multiple of
System.Storage_Unit.

Replace paragraph 13: [AI95-00133-01]

A record_representation_clause (without the mod_clause) specifies the layout. The storage place
attributes (see 13.5.2) are taken from the values of the position, first_bit, and last_bit expressions after
normalizing those values so that first_bit is less than Storage_Unit.

by:

A record_representation_clause (without the mod_clause) specifies the layout.

If the default bit ordering applies to the type, the position, first_bit and last_bit of each component_clause
directly specify the position and size of the corresponding component.

If the nondefault bit ordering applies to the type then the layout is determined as follows:

• the component_clauses for which the value of last_bit is greater than or equal to the size of the
largest machine scalar directly specify the position and size of the corresponding component;

• for the other component_clauses, all the components having the same value of position are
considered to be part of a single machine scalar, located at that position; this machine scalar has a
size which is the smallest machine scalar size larger than the largest last_bit for all
component_clauses at that position; the first_bit and last_bit of each component_clause are
then interpreted as bit offsets in this machine scalar.

Insert after paragraph 17: [AI95-00133-01]

The recommended level of support for record_representation_clauses is:

the new paragraph:

• An implementation should support machine scalars that correspond to all the integer, floating point,
and address formats supported by the machine.

ISO/IEC 8652:1995/WD.1:2004

91

13.5.2 Storage Place Attributes

Replace paragraph 2: [AI95-00133-01]

R.C'Position
 Denotes the same value as R.C'Address - R'Address. The value of this attribute is of the type

universal_integer.

by:

R.C'Position
 If the nondefault bit ordering applies to the composite type, and if a component_clause specifies

the placement of C, denotes the value given for the position of the component_clause; otherwise,
denotes the same value as R.C'Address - R'Address. The value of this attribute is of the type
universal_integer.

Replace paragraph 3: [AI95-00133-01]

R.C'First_Bit
 Denotes the offset, from the start of the first of the storage elements occupied by C, of the first bit

occupied by C. This offset is measured in bits. The first bit of a storage element is numbered zero.
The value of this attribute is of the type universal_integer.

by:

R.C'First_Bit
 If the nondefault bit ordering applies to the composite type, and if a component_clause specifies

the placement of C, denotes the value given for the first_bit of the component_clause; otherwise,
denotes the offset, from the start of the first of the storage elements occupied by C, of the first bit
occupied by C. This offset is measured in bits. The first bit of a storage element is numbered zero.
The value of this attribute is of the type universal_integer.

Replace paragraph 4: [AI95-00133-01]

R.C'Last_Bit
 Denotes the offset, from the start of the first of the storage elements occupied by C, of the last bit

occupied by C. This offset is measured in bits. The value of this attribute is of the type
universal_integer.

by:

R.C'Last_Bit
 If the nondefault bit ordering applies to the composite type, and if a component_clause specifies

the placement of C, denotes the value given for the last_bit of the component_clause; otherwise,
denotes the offset, from the start of the first of the storage elements occupied by C, of the last bit
occupied by C. This offset is measured in bits. The value of this attribute is of the type
universal_integer.

13.5.3 Bit Ordering

Replace paragraph 8: [AI95-00133-01]

• If Word_Size = Storage_Unit, then the implementation should support the nondefault bit ordering
in addition to the default bit ordering.

by:

• The implementation should support the nondefault bit ordering in addition to the default bit
ordering.

NOTES

ISO/IEC 8652:1995/WD.1:2004

92

13 Bit_Order clauses make it possible to write record_representation_clauses that can be ported between
machines having different bit ordering. They don't guarantee transparent exchange of data between such
machines.

13.7 The Package System

Replace paragraph 3: [AI95-00362-01]

package System is
 pragma Preelaborate(System);

by:

package System is
 pragma Pure(System);

Replace paragraph 12: [AI95-00161-01]

 type Address is implementation-defined;
 Null_Address : constant Address;

by:

 type Address is implementation-defined;
 pragma Preelaborable_Initialization(Address);
 Null_Address : constant Address;

In paragraph 15 replace: [AI95-00221-01]

 Default_Bit_Order : constant Bit_Order;

by:

 Default_Bit_Order : constant Bit_Order := implementation-defined;

Replace paragraph 35: [AI95-00221-01]

See 13.5.3 for an explanation of Bit_Order and Default_Bit_Order.

by:

See 13.5.3 for an explanation of Bit_Order and Default_Bit_Order. Default_Bit_Order shall be a static
constant.

Replace paragraph 36: [AI95-00362-01]

An implementation may add additional implementation-defined declarations to package System and its
children. However, it is usually better for the implementation to provide additional functionality via
implementation-defined children of System. Package System may be declared pure.

by:

An implementation may add additional implementation-defined declarations to package System and its
children. However, it is usually better for the implementation to provide additional functionality via
implementation-defined children of System.

13.7.1 The Package System.Storage_Elements

Replace paragraph 3: [AI95-00362-01]

package System.Storage_Elements is
 pragma Preelaborate(System.Storage_Elements);

by:

package System.Storage_Elements is
 pragma Pure(System.Storage_Elements);

ISO/IEC 8652:1995/WD.1:2004

93

Delete paragraph 15: [AI95-00362-01]

Package System.Storage_Elements may be declared pure.

13.9.1 Data Validity

Replace paragraph 12: [AI95-00167-01]

A call to an imported function or an instance of Unchecked_Conversion is erroneous if the result is scalar,
and the result object has an invalid representation.

by:

A call to an imported function or an instance of Unchecked_Conversion is erroneous if the result is scalar,
the result object has an invalid representation, and the result is used other than as the expression of an
assignment_statement or an object_declaration, or as the prefix of a Valid attribute. If such a result
object is used as the source of an assignment, and the assigned value is an invalid representation for the
target of the assignment, then any use of the target object prior to a further assignment to the target object,
other than as the prefix of a Valid attribute reference, is erroneous.

13.11 Storage Management

Replace paragraph 6: [AI95-00161-01]

 type Root_Storage_Pool is
 abstract new Ada.Controlled.Limited_Controlled with private;

by:

 type Root_Storage_Pool is
 abstract new Ada.Controlled.Limited_Controlled with private;
 pragma Preelaborable_Initialization(Root_Storage_Pool);

Replace paragraph 25: [AI95-00230-01]

A storage pool for an anonymous access type should be created at the point of an allocator for the type, and
be reclaimed when the designated object becomes inaccessible.

by:

The storage pool used for an allocator of an anonymous access type should be determined as follows:

• If the allocator is initializing an access discriminant of an object of a limited type, and the
discriminant is itself a subcomponent of an object being created by an outer allocator, then the
storage pool used for the outer allocator should also be used for the allocator initializing the access
discriminant;

• Otherwise, the storage pool should be created at the point of the allocator, and be reclaimed when
the allocated object becomes inaccessible.

13.11.1 The Max_Size_In_Storage_Elements Attribute

Replace paragraph 3: [AI95-00256-01]

Denotes the maximum value for Size_In_Storage_Elements that will be requested via Allocate for an access
type whose designated subtype is S. The value of this attribute is of type universal_integer.

by:

Denotes the maximum value for Size_In_Storage_Elements that could be requested by the implementation
via Allocate for an access type whose designated subtype is S. The value of this attribute is of type
universal_integer.

ISO/IEC 8652:1995/WD.1:2004

94

13.12 Pragma Restrictions

Replace paragraph 4: [AI95-00381-01]

restriction ::= restriction_identifier
 | restriction_parameter_identifier => expression

by:

restriction ::= restriction_identifier
 | restriction_parameter_identifier => restriction_parameter_argument

restriction_parameter_argument ::= name | expression

Insert after paragraph 7: [AI95-00257-01; AI95-00368-01]

The set of restrictions is implementation defined.

the new paragraphs:

The following restriction_identifiers are language-defined (additional restrictions are defined in the
Specialized Needs Annexes):

No_Implementation_Attributes
 There are no implementation-defined attributes. This restriction applies only to the current

compilation or environment, not the entire partition.

No_Implementation_Pragmas
 There are no implementation-defined pragmas or pragma arguments. This restriction applies only

to the current compilation or environment, not the entire partition.

No_Obsolescent_Features
 There is no use of language features defined in Annex J. It is implementation-defined if uses of the

renamings of J.1 are detected by this restriction. This restriction applies only to the current
compilation or environment, not the entire partition.

13.12.1 Restriction No_Dependence

Insert new clause: [AI95-00381-01]

Static Semantics

The following restriction_parameter_identifier is language defined:

No_Dependence
 Specifies a language-defined library unit on which there are no semantic dependences.

Name Resolution Rules

The restriction_parameter_argument of a No_Dependence restriction shall be a name that corresponds to
the full expanded name of a language-defined library unit.

Post-Compilation Rules

No compilation unit included in the partition shall depend semantically on the library unit identified by the
name.

13.13.1 The Package Streams

Replace paragraph 3: [AI95-00161-01]

 type Root_Stream_Type is abstract tagged limited private;

by:

 type Root_Stream_Type is abstract tagged limited private;

ISO/IEC 8652:1995/WD.1:2004

95

 pragma Preelaborable_Initialization(Root_Stream_Type);

Replace paragraph 8: [AI95-00227-01]

The Read operation transfers Item'Length stream elements from the specified stream to fill the array Item.
The index of the last stream element transferred is returned in Last. Last is less than Item'Last only if the end
of the stream is reached.

by:

The Read operation transfers stream elements from the specified stream to fill the array Item. Elements are
transferred until Item'Length elements have been transferred, or until the end of the stream is reached. If any
elements are transferred, the index of the last stream element transferred is returned in Last. Otherwise,
Item'First - 1 is returned in Last. Last is less than Item'Last only if the end of the stream is reached.

Insert after paragraph 10: [AI95-00227-01]

See A.12.1, ``The Package Streams.Stream_IO'' for an example of extending type Root_Stream_Type.

the new paragraph:

If the end of stream has been reached, and Item'First is Stream_Element_Offset'First, Read will raise
Constraint_Error.

13.13.2 Stream-Oriented Attributes

Insert before paragraph 2: [AI95-00270-01]

For every subtype S of a specific type T, the following attributes are defined.

the new paragraphs:

For every subtype S of an elementary type T, the following operational attribute is defined:

S'Stream_Size
 Denotes the number of bits occupied in a stream by items of subtype S. Hence, the number of stream

elements required per item of elementary type T is:

 T'Stream_Size / Ada.Streams.Stream_Element'Size

The value of this attribute is of type universal_integer and is a multiple of Stream_Element'Size.

Stream_Size may be specified for first subtypes via an attribute_definition_clause; the expression of
such a clause shall be static, non-negative, and a multiple of Stream_Element'Size.

Implementation Advice

The recommended level of support for the Stream_Size attribute is: A Stream_Size clause should be
supported for an elementary type T if the specified Stream_Size is a multiple of Stream_Element'Size and is
no less than the size of the first subtype of T, and no greater than the size of the largest type of the same
elementary class (signed integer, modular integer, floating point, ordinary fixed point, decimal fixed point,
or access).

Replace paragraph 9: [AI95-00195-01; AI95-00270-01]

For elementary types, the representation in terms of stream elements is implementation defined. For
composite types, the Write or Read attribute for each component is called in canonical order, which is last
dimension varying fastest for an array, and positional aggregate order for a record. Bounds are not included
in the stream if T is an array type. If T is a discriminated type, discriminants are included only if they have
defaults. If T is a tagged type, the tag is not included. For type extensions, the Write or Read attribute for the
parent type is called, followed by the Write or Read attribute of each component of the extension part, in
canonical order. For a limited type extension, if the attribute of any ancestor type of T has been directly
specified and the attribute of any ancestor type of the type of any of the extension components which are of a
limited type has not been specified, the attribute of T shall be directly specified.

ISO/IEC 8652:1995/WD.1:2004

96

by:

For elementary types, the representation in terms of stream elements is implementation defined. For
composite types, the Write or Read attribute for each component is called in canonical order, which is last
dimension varying fastest for an array, and positional aggregate order for a record. Bounds are not included
in the stream if T is an array type. If T is a discriminated type, discriminants are included only if they have
defaults. If T is a tagged type, the tag is not included. For type extensions, the Write or Read attribute for the
parent type is called, followed by the Write or Read attribute of each component of the extension part, in
canonical order. For a limited type extension, if the attribute of the parent type of T is available anywhere
within the immediate scope of T, and the attribute of the type of any of the extension components which are
of a limited type, L, is not available at the freezing point of T, then the attribute of T shall be directly
specified.

Constraint_Error is raised by the predefined Write attribute if the value of the elementary item is outside the
range of values representable using Stream_Size bits. For a signed integer type, an enumeration type, or a
fixed-point type, the range is unsigned only if the integer code for the first subtype low bound is non-
negative, and a (symmetric) signed range that covers all values of the first subtype would require more than
Stream_Size bits; otherwise the range is signed.

Replace paragraph 17: [AI95-00270-01]

If a stream element is the same size as a storage element, then the normal in-memory representation should
be used by Read and Write for scalar objects. Otherwise, Read and Write should use the smallest number of
stream elements needed to represent all values in the base range of the scalar type.

by:

By default, the predefined stream-oriented attributes for an elementary type should only read or write the
minimum number of stream elements required by the first subtype of the type, rounded up to the nearest
factor or multiple of the word size that is also a multiple of the stream element size.

Replace paragraph 27: [AI95-00195-01]

S'Output then calls S'Write to write the value of Item to the stream. S'Input then creates an object (with the
bounds or discriminants, if any, taken from the stream), initializes it with S'Read, and returns the value of
the object.

by:

S'Output then calls S'Write to write the value of Item to the stream. S'Input then creates an object (with the
bounds or discriminants, if any, taken from the stream), passes it to S'Read, and returns the value of the
object. Normal default initialization and finalization take place for this object (see 3.3.1, 7.6, 7.6.1).

Replace paragraph 31: [AI95-00344-01]

First writes the external tag of Item to Stream (by calling
String'Output(Tags.External_Tag(Item'Tag) -- see 3.9) and then dispatches to the subprogram
denoted by the Output attribute of the specific type identified by the tag.

by:

First writes the external tag of Item to Stream (by calling
String'Output(Tags.External_Tag(Item'Tag) -- see 3.9) and then dispatches to the subprogram
denoted by the Output attribute of the specific type identified by the tag. Tag_Error is raised if the
tag of Item identifies a type declared at an accessibility level deeper than that of S.

Replace paragraph 34: [AI95-00279-01; AI95-00344-01]

First reads the external tag from Stream and determines the corresponding internal tag (by calling
Tags.Internal_Tag(String'Input(Stream)) -- see 3.9) and then dispatches to the subprogram denoted
by the Input attribute of the specific type identified by the internal tag; returns that result.

ISO/IEC 8652:1995/WD.1:2004

97

by:

First reads the external tag from Stream and determines the corresponding internal tag (by calling
Tags.Descendant_Tag(String'Input(Stream), S'Tag) which might raise Tag_Error -- see 3.9) and
then dispatches to the subprogram denoted by the Input attribute of the specific type identified by
the internal tag; returns that result. If the specific type identified by the internal tag is not covered
by T'Class or is abstract, Constraint_Error is raised.

Replace paragraph 35: [AI95-00195-01]

In the default implementation of Read and Input for a composite type, for each scalar component that is a
discriminant or whose component_declaration includes a default_expression, a check is made that the
value returned by Read for the component belongs to its subtype. Constraint_Error is raised if this check
fails. For other scalar components, no check is made. For each component that is of an access type, if the
implementation can detect that the value returned by Read for the component is not a value of its subtype,
Constraint_Error is raised. If the value is not a value of its subtype and this error is not detected, the
component has an abnormal value, and erroneous execution can result (see 13.9.1).

by:

In the default implementation of Read and Input for a composite type, for each scalar component that is a
discriminant or whose component_declaration includes a default_expression, a check is made that the
value returned by Read for the component belongs to its subtype. Constraint_Error is raised if this check
fails. For other scalar components, no check is made. For each component that is of an access type, if the
implementation can detect that the value returned by Read for the component is not a value of its subtype,
Constraint_Error is raised. If the value is not a value of its subtype and this error is not detected, the
component has an abnormal value, and erroneous execution can result (see 13.9.1). In the default
implementation of Read for a composite type with defaulted discriminants, if the actual parameter of Read is
constrained, a check is made that the discriminants read from the stream are equal to those of the actual
parameter. Constraint_Error is raised if this check fails.

It is unspecified at which point and in which order these checks are performed. In particular, if
Constraint_Error is raised due to the failure of one of these checks, it is unspecified how many stream
elements have been read from the stream.

Insert after paragraph 36: [AI95-00279-01; AI95-00344-01]

The stream-oriented attributes may be specified for any type via an attribute_definition_clause. All
nonlimited types have default implementations for these operations. An attribute_reference for one of these
attributes is illegal if the type is limited, unless the attribute has been specified by an
attribute_definition_clause or (for a type extension) the attribute has been specified for an ancestor type.
For an attribute_definition_clause specifying one of these attributes, the subtype of the Item parameter
shall be the base subtype if scalar, and the first subtype otherwise. The same rule applies to the result of the
Input function.

the new paragraph:

Erroneous Execution

If the internal tag returned by Descendant_Tag to T'Class'Input identifies a specific type whose tag has not
been created, or does not exist in the partition at the time of the call, execution is erroneous.

Insert after paragraph 36.1: [AI95-00195-01]

For every subtype S of a language-defined nonlimited specific type T, the output generated by S'Output or
S'Write shall be readable by S'Input or S'Read, respectively. This rule applies across partitions if the
implementation conforms to the Distributed Systems Annex.

the new paragraphs:

If Constraint_Error is raised during a call to Read because of failure of one the above checks, the
implementation must ensure that the discriminants of the actual parameter of Read are not modified.

Implementation Permissions

ISO/IEC 8652:1995/WD.1:2004

98

The number of calls performed by the predefined implementation of the stream- oriented attributes on the
Read and Write operations of the stream type is unspecified. An implementation may take advantage of this
permission to perform internal buffering. However, all the calls on the Read and Write operations of the
stream type needed to implement an explicit invocation of a stream-oriented attribute must take place before
this invocation returns. An explicit invocation is one appearing explicitly in the program text, possibly
through a generic instantiation (see 12.3).

Insert after paragraph 38: [AI95-00279-01]

32 User-specified attributes of S'Class are not inherited by other class-wide types descended from S.

the new paragraph:

33 If the prefix subtype S of function S'Class'Input is a library-level subtype, then reading a value of a type
which has not yet been frozen with the S'Class'Input function will always raise Tag_Error; execution cannot be
erroneous.

13.14 Freezing Rules

Insert after paragraph 7: [AI95-00251-01]

• The declaration of a record extension causes freezing of the parent subtype.

the new paragraph:

• The declaration of a specific descendant of an interface type freezes the interface type.

Insert after paragraph 15: [AI95-00341-01]

• At the place where a subtype is frozen, its type is frozen. At the place where a type is frozen, any
expressions or names within the full type definition cause freezing; the first subtype, and any
component subtypes, index subtypes, and parent subtype of the type are frozen as well. For a specific
tagged type, the corresponding class-wide type is frozen as well. For a class-wide type, the
corresponding specific type is frozen as well.

the new paragraph:

• At the place where a specific tagged type is frozen, the primitive subprograms of the type are frozen.

Insert after paragraph 19: [AI95-00279-01]

An operational or representation item that directly specifies an aspect of an entity shall appear before the
entity is frozen (see 13.1).

the new paragraph:

Dynamic Semantics

The tag (see 3.9) of a tagged type T is created at the point where T is frozen.

ISO/IEC 8652:1995/WD.1:2004

99

Annex A: Predefined Language Environment

A.1 The Package Standard

Replace paragraph 36: [AI95-00285-01]

 -- The predefined operators for the type Character are the same as for
 -- any enumeration type.

 -- The declaration of type Wide_Character is based on the standard ISO 10646 BMP character set.
 -- The first 256 positions have the same contents as type Character. See 3.5.2.

 type Wide_Character is (nul, soh ... FFFE, FFFF);

 package ASCII is ... end ASCII; --Obsolescent; see J.5

by:

 -- The predefined operators for the type Character are the same as for
 -- any enumeration type.

 -- The declaration of type Wide_Character is based on the standard ISO 10646 BMP character set.
 -- The first 256 positions have the same contents as type Character. See 3.5.2.

 type Wide_Character is (nul, soh ... FFFE, FFFF);

 -- The declaration of type Wide_Wide_Character is based on the full
 -- ISO/IEC 10646:2003 character set. The first 2 ** 16 positions have the
 -- same contents as type Wide_Character. See 3.5.2.

 type Wide_Wide_Character is (nul, soh ... FFFE, FFFF, ...);

 package ASCII is ... end ASCII; --Obsolescent; see J.5

Insert after paragraph 42: [AI95-00285-01]

 -- The predefined operators for this type correspond to those for String

the new paragraphs:

 type Wide_Wide_String is array (Positive range <>) of
Wide_Wide_Character;
 pragma Pack (Wide_Wide_String);

 -- The predefined operators for this type correspond to those for String.

Replace paragraph 49: [AI95-00285-01]

In each of the types Character and Wide_Character, the character literals for the space character (position
32) and the non-breaking space character (position 160) correspond to different values. Unless indicated
otherwise, each occurrence of the character literal ' ' in this International Standard refers to the space
character. Similarly, the character literals for hyphen (position 45) and soft hyphen (position 173)
correspond to different values. Unless indicated otherwise, each occurrence of the character literal '-' in this
International Standard refers to the hyphen character.

by:

In each of the types Character, Wide_Character, and Wide_Wide_Character, the character literals for the
space character (position 32) and the non-breaking space character (position 160) correspond to different
values. Unless indicated otherwise, each occurrence of the character literal ' ' in this International Standard
refers to the space character. Similarly, the character literals for hyphen (position 45) and soft hyphen
(position 173) correspond to different values. Unless indicated otherwise, each occurrence of the character
literal '-' in this International Standard refers to the hyphen character.

ISO/IEC 8652:1995/WD.1:2004

100

A.3 Character Handling

Replace paragraph 1: [AI95-00285-01]

This clause presents the packages related to character processing: an empty pure package Characters and
child packages Characters.Handling and Characters.Latin_1. The package Characters.Handling provides
classification and conversion functions for Character data, and some simple functions for dealing with
Wide_Character data. The child package Characters.Latin_1 declares a set of constants initialized to values
of type Character.

by:

This clause presents the packages related to character processing: an empty pure package Characters and
child packages Characters.Handling and Characters.Latin_1. The package Characters.Handling provides
classification and conversion functions for Character data, and some simple functions for dealing with
Wide_Character and Wide_Wide_Character data. The child package Characters.Latin_1 declares a set of
constants initialized to values of type Character.

A.3.2 The Package Characters.Handling

Replace paragraph 2: [AI95-00362-01]

package Ada.Characters.Handling is
 pragma Preelaborate(Handling);

by:

package Ada.Characters.Handling is
 pragma Pure(Handling);

Replace paragraph 13: [AI95-00285-01]

 --Classifications of and conversions between Wide_Character and Character.

by:

 --Classifications of and conversions between Wide_Wide_Character, Wide_Character, and Character.

Insert after paragraph 14: [AI95-00285-01]

 function Is_Character (Item : in Wide_Character) return Boolean;
 function Is_String (Item : in Wide_String) return Boolean;

the new paragraph:

 function Is_Character (Item : in Wide_Wide_Character) return Boolean;
 function Is_String (Item : in Wide_Wide_String) return Boolean;
 function Is_Wide_Character (Item : in Wide_Wide_Character) return Boolean;
 function Is_Wide_String (Item : in Wide_Wide_String) return Boolean;

Insert after paragraph 16: [AI95-00285-01]

 function To_String (Item : in Wide_String;
 Substitute : in Character := ' ')
 return String;

the new paragraph:

 function To_Character (Item : in Wide_Wide_Character;
 Substitute : in Character := ' ') return Character;
 function To_String (Item : in Wide_Wide_String;
 Substitute : in Character := ' ') return String;

Insert after paragraph 18: [AI95-00285-01]

 function To_Wide_String (Item : in String) return Wide_String;

ISO/IEC 8652:1995/WD.1:2004

101

the new paragraphs:

 function To_Wide_Character (Item : in Wide_Wide_Character;
 Substitute : in Wide_Character := ' ')
 return Wide_Character;

 function To_Wide_String (Item : in Wide_Wide_String;
 Substitute : in Wide_Character := ' ')
 return Wide_String;

 function To_Wide_Wide_Character (Item : in Character)
 return Wide_Wide_Character;

 function To_Wide_Wide_String (Item : in String)
 return Wide_Wide_String;

 function To_Wide_Wide_Character (Item : in Wide_Character)
 return Wide_Wide_Character;

 function To_Wide_Wide_String (Item : in Wide_String)
 return Wide_Wide_String;

Replace paragraph 42: [AI95-00285-01]

The following set of functions test Wide_Character values for membership in Character, or convert between
corresponding characters of Wide_Character and Character.

by:

The following functions test Wide_Wide_Character or Wide_Character values for membership in
Wide_Character or Character, or convert between corresponding characters of Wide_Wide_Character,
Wide_Character, and Character.

Replace paragraph 43: [AI95-00285-01]

Is_Character
 Returns True if Wide_Character'Pos(Item) <= Character'Pos(Character'Last).

by:

function Is_Character (Item : in Wide_Character) return Boolean;

Returns True if Wide_Character'Pos(Item) <= Character'Pos(Character'Last).

function Is_Character (Item : in Wide_Wide_Character) return Boolean;

Returns True if Wide_Wide_Character'Pos(Item) <= Character'Pos(Character'Last).

function Is_Wide_Character (Item : in Wide_Wide_Character) return Boolean;

Returns True if Wide_Wide_Character'Pos(Item) <= Wide_Character'Pos(Wide_Character'Last).

Replace paragraph 44: [AI95-00285-01]

Is_String
 Returns True if Is_Character(Item(I)) is True for each I in Item'Range.

by:

function Is_String (Item : in Wide_String) return Boolean;
function Is_String (Item : in Wide_Wide_String) return Boolean;

Returns True if Is_Character(Item(I)) is True for each I in Item'Range.

function Is_Wide_String (Item : in Wide_Wide_String) return Boolean;

Returns True if Is_Wide_Character(Item(I)) is True for each I in Item'Range.

ISO/IEC 8652:1995/WD.1:2004

102

Replace paragraph 45: [AI95-00285-01]

To_Character
 Returns the Character corresponding to Item if Is_Character(Item), and returns the Substitute

Character otherwise.

by:

function To_Character (Item : in Wide_Character;
 Substitute : in Character := ' ') return Character;
function To_Character (Item : in Wide_Wide_Character;
 Substitute : in Character := ' ') return Character;

Returns the Character corresponding to Item if Is_Character(Item), and returns the Substitute
Character otherwise.

function To_Wide_Character (Item : in Character) return Wide_Character;

Returns the Wide_Character X such that Character'Pos(Item) = Wide_Character'Pos (X).

function To_Wide_Character (Item : in Wide_Wide_Character;
 Substitute : in Wide_Character := ' ')
 return Wide_Character;

Returns the Wide_Character corresponding to Item if Is_Wide_Character(Item), and returns the
Substitute Wide_Character otherwise.

function To_Wide_Wide_Character (Item : in Character) return
 Wide_Wide_Character;

Returns the Wide_Wide_Character X such that Character'Pos(Item) = Wide_Wide_Character'Pos
(X).

function To_Wide_Wide_Character (Item : in Wide_Character)
 return Wide_Wide_Character;

Returns the Wide_Wide_Character X such that Wide_Character'Pos(Item) =
Wide_Wide_Character'Pos (X).

Replace paragraph 46: [AI95-00285-01]

To_String
 Returns the String whose range is 1..Item'Length and each of whose elements is given by

To_Character of the corresponding element in Item.

by:

function To_String (Item : in Wide_String;
 Substitute : in Character := ' ') return String;
function To_String (Item : in Wide_Wide_String;
 Substitute : in Character := ' ') return String;

Returns the String whose range is 1..Item'Length and each of whose elements is given by
To_Character of the corresponding element in Item.

function To_Wide_String (Item : in String) return Wide_String;

Returns the Wide_String whose range is 1..Item'Length and each of whose elements is given by
To_Wide_Character of the corresponding element in Item.

function To_Wide_String (Item : in Wide_Wide_String;
 Substitute : in Wide_Character := ' ')
 return Wide_String;

Returns the Wide_String whose range is 1..Item'Length and each of whose elements is given by
To_Wide_Character of the corresponding element in Item with the given Substitute
Wide_Character.

function To_Wide_Wide_String (Item : in String) return Wide_Wide_String;
function To_Wide_Wide_String (Item : in Wide_String) return Wide_Wide_String;

ISO/IEC 8652:1995/WD.1:2004

103

Returns the Wide_Wide_String whose range is 1..Item'Length and each of whose elements is given
by To_Wide_Wide_Character of the corresponding element in Item.

Delete paragraph 47: [AI95-00285-01]

To_Wide_Character
 Returns the Wide_Character X such that Character'Pos(Item) = Wide_Character'Pos(X).

Delete paragraph 48: [AI95-00285-01]

To_Wide_String Returns the Wide_String whose range is 1..Item'Length and each of whose elements is
given by To_Wide_Character of the corresponding element in Item.

Delete paragraph 49: [AI95-00285-01]

If an implementation provides a localized definition of Character or Wide_Character, then the effects of the
subprograms in Characters.Handling should reflect the localizations. See also 3.5.2.

A.4 String Handling

Replace paragraph 1: [AI95-00285-01]

This clause presents the specifications of the package Strings and several child packages, which provide
facilities for dealing with string data. Fixed-length, bounded-length, and unbounded-length strings are
supported, for both String and Wide_String. The string-handling subprograms include searches for pattern
strings and for characters in program-specified sets, translation (via a character-to-character mapping), and
transformation (replacing, inserting, overwriting, and deleting of substrings).

by:

This clause presents the specifications of the package Strings and several child packages, which provide
facilities for dealing with string data. Fixed-length, bounded-length, and unbounded-length strings are
supported, for String, Wide_String, and Wide_Wide_String. The string-handling subprograms include
searches for pattern strings and for characters in program-specified sets, translation (via a character-to-
character mapping), and transformation (replacing, inserting, overwriting, and deleting of substrings).

A.4.1 The Package Strings

Replace paragraph 4: [AI95-00285-01]

 Space : constant Character := ' ';
 Wide_Space : constant Wide_Character := ' ';

by:

 Space : constant Character := ' ';
 Wide_Space : constant Wide_Character := ' ';
 Wide_Wide_Space : constant Wide_Wide_Character := ' ';

A.4.2 The Package Strings.Maps

Replace paragraph 3: [AI95-00362-01]

package Ada.Strings.Maps is
 pragma Preelaborate(Maps);

by:

package Ada.Strings.Maps is
 pragma Pure(Maps);

ISO/IEC 8652:1995/WD.1:2004

104

Replace paragraph 4: [AI95-00161-01]

 -- Representation for a set of character values:
 type Character_Set is private;

by:

 -- Representation for a set of character values:
 type Character_Set is private;
 pragma Preelaborable_Initialization(Character_Set);

Replace paragraph 20: [AI95-00161-01]

 -- Representation for a character to character mapping:
 type Character_Mapping is private;

by:

 -- Representation for a character to character mapping:
 type Character_Mapping is private;
 pragma Preelaborable_Initialization(Character_Mapping);

A.4.3 Fixed-Length String Handling

Insert after paragraph 8: [AI95-00301-01]

-- Search subprograms

the new paragraphs:

 function Index (Source : in String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping := Maps.Identity)
 return Natural;

 function Index (Source : in String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in String;
 Set : in Maps.Character_Set;
 From : in Positive;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

 function Index_Non_Blank (Source : in String;
 From : in Positive;
 Going : in Direction := Forward)
 return Natural;

Insert after paragraph 56: [AI95-00301-01]

• Otherwise, Length_Error is propagated.

the new paragraphs:

function Index (Source : in String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping := Maps.Identity)
 return Natural;

ISO/IEC 8652:1995/WD.1:2004

105

function Index (Source : in String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

Each Index function searches, starting from From, for a slice of Source, with length Pattern'Length,
that matches Pattern with respect to Mapping; the parameter Going indicates the direction of the
lookup. If Going = Forward, then Index returns the smallest index I which is greater than or equal
to From such that the slice of Source starting at I matches Pattern. If Going = Backward, then Index
returns the largest index I such that the slice of Source starting at I matches Pattern and has an
upper bound less than or equal to From. If there is no such slice, then 0 is returned. If Pattern is the
null string then Pattern_Error is propagated.

Replace paragraph 58: [AI95-00301-01]

Each Index function searches for a slice of Source, with length Pattern'Length, that matches Pattern
with respect to Mapping; the parameter Going indicates the direction of the lookup. If Going =
Forward, then Index returns the smallest index I such that the slice of Source starting at I matches
Pattern. If Going = Backward, then Index returns the largest index I such that the slice of Source
starting at I matches Pattern. If there is no such slice, then 0 is returned. If Pattern is the null string
then Pattern_Error is propagated.

by:

If Going = Forward, returns

 Index (Source, Pattern, Source'First, Forward, Mapping);

otherwise returns

 Index (Source, Pattern, Source'Last, Backward, Mapping);

function Index (Source : in String;
 Set : in Maps.Character_Set;
 From : in Positive;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

Index searches for the first or last occurrence of any of a set of characters (when Test=Inside), or
any of the complement of a set of characters (when Test=Outside). It returns the smallest index I >=
From (if Going=Forward) or the largest index I <= From (if Going=Backward) such that Source(I)
satisfies the Test condition with respect to Set; it returns 0 if there is no such Character in Source.

Replace paragraph 60: [AI95-00301-01]

Index searches for the first or last occurrence of any of a set of characters (when Test=Inside), or
any of the complement of a set of characters (when Test=Outside). It returns the smallest index I (if
Going=Forward) or the largest index I (if Going=Backward) such that Source(I) satisfies the Test
condition with respect to Set; it returns 0 if there is no such Character in Source.

by:

If Going = Forward, returns

 Index (Source, Set, Source'First, Test, Forward);

otherwise returns

 Index (Source, Set, Source'Last, Test, Backward);

function Index_Non_Blank (Source : in String;
 From : in Positive;
 Going : in Direction := Forward)

ISO/IEC 8652:1995/WD.1:2004

106

 return Natural;

Returns Index (Source, Maps.To_Set(Space), From, Outside, Going);

A.4.4 Bounded-Length String Handling

Insert after paragraph 12: [AI95-00301-01]

function To_String (Source : in Bounded_String) return String;

the new paragraphs:

 procedure Set_Bounded_String
 (Target : out Bounded_String;
 Source : in String;
 Drop : in Truncation := Error);

Insert after paragraph 28: [AI95-00301-01]

 function Slice (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural)
 return String;

the new paragraphs:

 function Bounded_Slice
 (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural;
 Drop : in Truncation := Error)
 return Bounded_String;

 procedure Bounded_Slice
 (Source : in Bounded_String;
 Target : out Bounded_String;
 Low : in Positive;
 High : in Natural;
 Drop : in Truncation := Error);

Replace paragraph 43: [AI95-00301-01]

 -- Search functions

by:

 -- Search subprograms

 function Index (Source : in Bounded_String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping := Maps.Identity)
 return Natural;

 function Index (Source : in Bounded_String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in Bounded_String;
 Set : in Maps.Character_Set;
 From : in Positive;
 Test : in Membership := Inside;
 Going : in Direction := Forward)

ISO/IEC 8652:1995/WD.1:2004

107

 return Natural;

 function Index_Non_Blank (Source : in Bounded_String;
 From : in Positive;
 Going : in Direction := Forward)
 return Natural;

Insert after paragraph 92: [AI95-00301-01]

To_String returns the String value with lower bound 1 represented by Source. If B is a Bounded_String, then
B = To_Bounded_String(To_String(B)).

the new paragraphs:

procedure Set_Bounded_String
 (Target : out Bounded_String;
 Source : in String);
 Drop : in Truncation := Error);

Equivalent to Target := To_Bounded_String (Source, Drop);

Replace paragraph 101: [AI95-00238-01; AI95-00301-01]

Returns the slice at positions Low through High in the string represented by Source; propagates
Index_Error if Low > Length(Source)+1 or High > Length(Source).

by:

Returns the slice at positions Low through High in the string represented by Source; propagates
Index_Error if Low > Length(Source)+1 or High > Length(Source). The bounds of the returned
string are Low and High.

function Bounded_Slice
 (Source : in Bounded_String;
 Low : in Positive;
 High : in Natural;
 Drop : in Truncation := Error)
 return Bounded_String;

Returns the slice at positions Low through High in the string represented by Source as a bounded
string; propagates Index_Error if Low > Length(Source)+1 or High > Length(Source).

procedure Bounded_Slice
 (Source : in Bounded_String;
 Target : out Bounded_String;
 Low : in Positive;
 High : in Natural;
 Drop : in Truncation := Error);

Equivalent to Target := Bounded_Slice (Soruce, Low, High, Drop);

A.4.5 Unbounded-Length String Handling

Replace paragraph 4: [AI95-00161-01]

 type Unbounded_String is private;

by:

 type Unbounded_String is private;
 pragma Preelaborable_Initialization(Unbounded_String);

Insert after paragraph 11: [AI95-00301-01]

 function To_String (Source : in Unbounded_String) return String;

the new paragraphs:

 procedure Set_Unbounded_String

ISO/IEC 8652:1995/WD.1:2004

108

 (Target : out Unbounded_String;
 Source : in String;
 Drop : in Truncation := Error);

Insert after paragraph 22: [AI95-00301-01]

 function Slice (Source : in Unbounded_String;
 Low : in Positive;
 High : in Natural)
 return String;

the new paragraphs:

 function Unbounded_Slice
 (Source : in Unbounded_String;
 Low : in Positive;
 High : in Natural;
 Drop : in Truncation := Error)
 return Unbounded_String;

 procedure Unbounded_Slice
 (Source : in Unbounded_String;
 Target : out Unbounded_String;
 Low : in Positive;
 High : in Natural;
 Drop : in Truncation := Error);

Insert after paragraph 38: [AI95-00301-01]

-- Search subprograms

the new paragraphs:

 function Index (Source : in Unbounded_String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping := Maps.Identity)
 return Natural;

 function Index (Source : in Unbounded_String;
 Pattern : in String;
 From : in Positive;
 Going : in Direction := Forward;
 Mapping : in Maps.Character_Mapping_Function)
 return Natural;

 function Index (Source : in Unbounded_String;
 Set : in Maps.Character_Set;
 From : in Positive;
 Test : in Membership := Inside;
 Going : in Direction := Forward)
 return Natural;

 function Index_Non_Blank (Source : in Unbounded_String;
 From : in Positive;
 Going : in Direction := Forward)
 return Natural;

Insert after paragraph 72: [AI95-00360-01]

private
 ... -- not specified by the language
end Ada.Strings.Unbounded;

the new paragraph:

The type Unbounded_String needs finalization (see 7.6).

ISO/IEC 8652:1995/WD.1:2004

109

Insert after paragraph 79: [AI95-00301-01]

• If U is an Unbounded_String, then To_Unbounded_String(To_String(U)) = U.

the new paragraph:

The procedure Set_Unbounded_String sets Target to an Unbounded_String that represents Source.

Insert after paragraph 82: [AI95-00301-01]

The Element, Replace_Element, and Slice subprograms have the same effect as the corresponding bounded-
length string subprograms.

the new paragraph:

The function Unbounded_Slice returns the slice at positions Low through High in the string represented by
Source as an Unbounded_String. The procedure Unbounded_Slice sets Target to the Unbounded_String
representing the slice at positions Low through High in the string represented by Source. Both routines
propagate Index_Error if Low > Length(Source)+1 or High > Length(Source).

A.4.6 String-Handling Sets and Mappings

Replace paragraph 3: [AI95-00362-01]

package Ada.Strings.Maps.Constants is
 pragma Preelaborate(Constants);

by:

package Ada.Strings.Maps.Constants is
 pragma Pure(Constants);

A.4.7 Wide_String Handling

Replace paragraph 4: [AI95-00161-01]

 -- Representation for a set of Wide_Character values:
 type Wide_Character_Set is private;

by:

 -- Representation for a set of Wide_Character values:
 type Wide_Character_Set is private;
 pragma Preelaborable_Initialization(Wide_Character_Set);

Replace paragraph 20: [AI95-00161-01]

 -- Representation for a Wide_Character to Wide_Character mapping:
 type Wide_Character_Mapping is private;

by:

 -- Representation for a Wide_Character to Wide_Character mapping:
 type Wide_Character_Mapping is private;
 pragma Preelaborable_Initialization(Wide_Character_Mapping);

Replace paragraph 46: [AI95-00285-01]

 Character_Set : constant Wide_Maps.Wide_Character_Set;
 -- Contains each Wide_Character value WC such that Characters.Is_Character(WC) is True

by:

 Character_Set : constant Wide_Maps.Wide_Character_Set;
 -- Contains each Wide_Character value WC such that Characters.Handling.Is_Character(WC) is True

ISO/IEC 8652:1995/WD.1:2004

110

A.4.8 Wide_Wide_String Handling

Insert new clause: [AI95-00285-01]

Facilities for handling strings of Wide_Wide_Character elements are found in the packages
Strings.Wide_Wide_Maps, Strings.Wide_Wide_Fixed, Strings.Wide_Wide_Bounded,
Strings.Wide_Wide_Unbounded, and Strings.Wide_Wide_Maps.Wide_Wide_Constants. They provide the
same string-handling operations as the corresponding packages for strings of Character elements.

Static Semantics

The package Strings.Wide_Wide_Maps has the following declaration.

package Ada.Strings.Wide_Wide_Maps is
 pragma Preelaborate(Wide_Wide_Maps);

 -- Representation for a set of Wide_Wide_Character values:
 type Wide_Wide_Character_Set is private;
 pragma Preelaborable_Initialization(Wide_Wide_Character_Set);

 Null_Set : constant Wide_Wide_Character_Set;

 type Wide_Wide_Character_Range is
 record
 Low : Wide_Wide_Character;
 High : Wide_Wide_Character;
 end record;
 -- Represents Wide_Wide_Character range Low..High

 type Wide_Wide_Character_Ranges is array (Positive range <>)
 of Wide_Wide_Character_Range;

 function To_Set (Ranges : in Wide_Wide_Character_Ranges)
 return Wide_Wide_Character_Set;

 function To_Set (Span : in Wide_Wide_Character_Range)
 return Wide_Wide_Character_Set;

 function To_Ranges (Set : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Ranges;

 function "=" (Left, Right : in Wide_Wide_Character_Set) return Boolean;

 function "not" (Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;
 function "and" (Left, Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;
 function "or" (Left, Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;
 function "xor" (Left, Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;
 function "-" (Left, Right : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Set;

 function Is_In (Element : in Wide_Wide_Character;
 Set : in Wide_Wide_Character_Set)
 return Boolean;

 function Is_Subset (Elements : in Wide_Wide_Character_Set;
 Set : in Wide_Wide_Character_Set)
 return Boolean;

 function "<=" (Left : in Wide_Wide_Character_Set;
 Right : in Wide_Wide_Character_Set)
 return Boolean renames Is_Subset;

ISO/IEC 8652:1995/WD.1:2004

111

 -- Alternative representation for a set of Wide_Wide_Character values:
 subtype Wide_Wide_Character_Sequence is Wide_Wide_String;

 function To_Set (Sequence : in Wide_Wide_Character_Sequence)
 return Wide_Wide_Character_Set;

 function To_Set (Singleton : in Wide_Wide_Character)
 return Wide_Wide_Character_Set;

 function To_Sequence (Set : in Wide_Wide_Character_Set)
 return Wide_Wide_Character_Sequence;

 -- Representation for a Wide_Wide_Character to Wide_Wide_Character
 -- mapping:
 type Wide_Wide_Character_Mapping is private;
 pragma Preelaborable_Initialization(Wide_Wide_Character_Mapping);

 function Value (Map : in Wide_Wide_Character_Mapping;
 Element : in Wide_Wide_Character)
 return Wide_Wide_Character;

 Identity : constant Wide_Wide_Character_Mapping;

 function To_Mapping (From, To : in Wide_Wide_Character_Sequence)
 return Wide_Wide_Character_Mapping;

 function To_Domain (Map : in Wide_Wide_Character_Mapping)
 return Wide_Wide_Character_Sequence;

 function To_Range (Map : in Wide_Wide_Character_Mapping)
 return Wide_Wide_Character_Sequence;

 type Wide_Wide_Character_Mapping_Function is
 access function (From : in Wide_Wide_Character)
 return Wide_Wide_Character;

private
 ... -- not specified by the language
end Ada.Strings.Wide_Wide_Maps;

The context clause for each of the packages Strings.Wide_Wide_Fixed, Strings.Wide_Wide_Bounded, and
Strings.Wide_Wide_Unbounded identifies Strings.Wide_Wide_Maps instead of Strings.Maps.

For each of the packages Strings.Fixed, Strings.Bounded, Strings.Unbounded, and Strings.Maps.Constants
the corresponding wide wide string package has the same contents except that

• Wide_Wide_Space replaces Space

• Wide_Wide_Character replaces Character

• Wide_Wide_String replaces String

• Wide_Wide_Character_Set replaces Character_Set

• Wide_Wide_Character_Mapping replaces Character_Mapping

• Wide_Wide_Character_Mapping_Function replaces Character_Mapping_Function

• Wide_Wide_Maps replaces Maps

• Bounded_Wide_Wide_String replaces Bounded_String

• Null_Bounded_Wide_Wide_String replaces Null_Bounded_String

• To_Bounded_Wide_Wide_String replaces To_Bounded_String

• To_Wide_Wide_String replaces To_String

ISO/IEC 8652:1995/WD.1:2004

112

• Unbounded_Wide_Wide_String replaces Unbounded_String

• Null_Unbounded_Wide_Wide_String replaces Null_Unbounded_String

• Wide_Wide_String_Access replaces String_Access

• To_Unbounded_Wide_Wide_String replaces To_Unbounded_String

The following additional declarations is present in Strings.Wide_Wide_Maps.Wide_Wide_Constants:

 Character_Set : constant Wide_Wide_Maps.Wide_Wide_Character_Set;
 -- Contains each Wide_Wide_Character value WC such that
 -- Characters.Handling.Is_Character(WC) is True
 Wide_Character_Set : constant Wide_Wide_Maps.Wide_Wide_Character_Set;
 -- Contains each Wide_Wide_Character value WWC such that
 -- Characters.Handling.Is_Wide_Character(WWC) is True

NOTES

14 If a null Wide_Wide_Character_Mapping_Function is passed to any of the Wide_Wide_String handling
subprograms, Constraint_Error is propagated.

A.5.2 Random Number Generation

Insert after paragraph 15: [AI95-00360-01]

private
 ... -- not specified by the language
end Ada.Numerics.Float_Random;

the new paragraph:

The type Generator needs finalization (see 7.6).

Insert after paragraph 27: [AI95-00360-01]

private
 ... -- not specified by the language
end Ada.Numerics.Discrete_Random;

the new paragraph:

The type Generator needs finalization (see 7.6) in every instantiation of Discrete_Random.

A.5.3 Attributes of Floating Point Types

Insert after paragraph 41: [AI95-00267-01]

The function yields the integral value nearest to X, rounding toward the even integer if X lies
exactly halfway between two integers. A zero result has the sign of X when S'Signed_Zeros is True.

the new paragraphs:

S'Machine_Rounding
 S'Machine_Rounding denotes a function with the following specification:

 function S'Machine_Rounding (X : T)
 return T

The function yields the integral value nearest to X. If X lies exactly halfway between two integers,
one of those integers is returned, but which of them is returned is unspecified. A zero result has the
sign of X when S'Signed_Zeros is True. This function provides access to the rounding behavior
which is most efficient on the target processor.

ISO/IEC 8652:1995/WD.1:2004

113

A.6 Input-Output

Replace paragraph 1: [AI95-00285-01]

Input-output is provided through language-defined packages, each of which is a child of the root package
Ada. The generic packages Sequential_IO and Direct_IO define input-output operations applicable to files
containing elements of a given type. The generic package Storage_IO supports reading from and writing to
an in-memory buffer. Additional operations for text input-output are supplied in the packages Text_IO and
Wide_Text_IO. Heterogeneous input-output is provided through the child packages Streams.Stream_IO and
Text_IO.Text_Streams (see also 13.13). The package IO_Exceptions defines the exceptions needed by the
predefined input-output packages.

by:

Input-output is provided through language-defined packages, each of which is a child of the root package
Ada. The generic packages Sequential_IO and Direct_IO define input-output operations applicable to files
containing elements of a given type. The generic package Storage_IO supports reading from and writing to
an in-memory buffer. Additional operations for text input-output are supplied in the packages Text_IO,
Wide_Text_IO, and Wide_Wide_Text_IO. Heterogeneous input-output is provided through the child
packages Streams.Stream_IO and Text_IO.Text_Streams (see also 13.13). The package IO_Exceptions
defines the exceptions needed by the predefined input-output packages.

A.7 External Files and File Objects

Replace paragraph 4: [AI95-00285-01]

Input-output for direct access files is likewise defined by a generic package called Direct_IO. Input-output in
human-readable form is defined by the (nongeneric) packages Text_IO for Character and String data, and
Wide_Text_IO for Wide_Character and Wide_String data. Input-output for files containing streams of
elements representing values of possibly different types is defined by means of the (nongeneric) package
Streams.Stream_IO.

by:

Input-output for direct access files is likewise defined by a generic package called Direct_IO. Input-output in
human-readable form is defined by the (nongeneric) packages Text_IO for Character and String data,
Wide_Text_IO for Wide_Character and Wide_String data, and Wide_Wide_Text_IO for
Wide_Wide_Character and Wide_Wide_String data. Input-output for files containing streams of elements
representing values of possibly different types is defined by means of the (nongeneric) package
Streams.Stream_IO.

Replace paragraph 10: [AI95-00285-01]

type File_Mode is (In_File, Out_File, Append_File);
-- for Sequential_IO, Text_IO, Wide_Text_IO, and Stream_IO

by:

type File_Mode is (In_File, Out_File, Append_File);
-- for Sequential_IO, Text_IO, Wide_Text_IO, Wide_Wide_Text_IO, and Stream_IO

Replace paragraph 13: [AI95-00285-01]

Several file management operations are common to Sequential_IO, Direct_IO, Text_IO, and Wide_Text_IO.
These operations are described in subclause A.8.2 for sequential and direct files. Any additional effects
concerning text input-output are described in subclause A.10.2.

by:

Several file management operations are common to Sequential_IO, Direct_IO, Text_IO, Wide_Text_IO, and
Wide_Wide_Text_IO. These operations are described in subclause A.8.2 for sequential and direct files. Any
additional effects concerning text input-output are described in subclause A.10.2.

ISO/IEC 8652:1995/WD.1:2004

114

Replace paragraph 15: [AI95-00285-01]

18 Each instantiation of the generic packages Sequential_IO and Direct_IO declares a different type
File_Type. In the case of Text_IO, Wide_Text_IO, and Streams.Stream_IO, the corresponding type File_Type
is unique.

Replace paragraph 15: [AI95-00285-01]

18 Each instantiation of the generic packages Sequential_IO and Direct_IO declares a different type
File_Type. In the case of Text_IO, Wide_Text_IO, Wide_Wide_Text_IO, and Streams.Stream_IO, the
corresponding type File_Type is unique.

A.8 Sequential and Direct Files

Replace paragraph 1: [AI95-00283-01]

Two kinds of access to external files are defined in this subclause: sequential access and direct access. The
corresponding file types and the associated operations are provided by the generic packages Sequential_IO
and Direct_IO. A file object to be used for sequential access is called a sequential file, and one to be used for
direct access is called a direct file. Access to stream files is described in A.12.1.

by:

Two kinds of access to external files are defined in this subclause: sequential access and direct access. The
corresponding file types and the associated operations are provided by the generic packages Sequential_IO
and Direct_IO. A file object to be used for sequential access is called a sequential file, and one to be used for
direct access is called a direct file. Access to stream files is described in A.12.1.

A.8.1 The Generic Package Sequential_IO

Insert after paragraph 16: [AI95-00360-01]

private
 ... -- not specified by the language
end Ada.Sequential_IO;

the new paragraph:

The type File_Type needs finalization (see 7.6) in every instantiation of Sequential_IO.

A.8.2 File Management

Replace paragraph 3: [AI95-00283-01]

Establishes a new external file, with the given name and form, and associates this external file with the given
file. The given file is left open. The current mode of the given file is set to the given access mode. The
default access mode is the mode Out_File for sequential and text input-output; it is the mode Inout_File for
direct input-output. For direct access, the size of the created file is implementation defined.

by:

Establishes a new external file, with the given name and form, and associates this external file with the given
file. The given file is left open. The current mode of the given file is set to the given access mode. The
default access mode is the mode Out_File for sequential, stream, and text input-output; it is the mode
Inout_File for direct input-output. For direct access, the size of the created file is implementation defined.

Replace paragraph 22: [AI95-00248-01]

Returns a string which uniquely identifies the external file currently associated with the given file
(and may thus be used in an Open operation). If an external environment allows alternative
specifications of the name (for example, abbreviations), the string returned by the function should
correspond to a full specification of the name.

ISO/IEC 8652:1995/WD.1:2004

115

by:

Returns a string which uniquely identifies the external file currently associated with the given file
(and may thus be used in an Open operation).

A.8.4 The Generic Package Direct_IO

Insert after paragraph 19: [AI95-00360-01]

private
 ... -- not specified by the language
end Ada.Direct_IO;

the new paragraph:

The type File_Type needs finalization (see 7.6) in every instantiation of Direct_IO.

A.10.1 The Package Text_IO

Insert after paragraph 48: [AI95-00301-01]

 procedure Put(File : in File_Type; Item : in String);
 procedure Put(Item : in String);

the new paragraphs:

 function Get_Line(File : in File_Type) return String;
 function Get_Line return String;

Insert after paragraph 85: [AI95-00360-01]

 Status_Error : exception renames IO_Exceptions.Status_Error;
 Mode_Error : exception renames IO_Exceptions.Mode_Error;
 Name_Error : exception renames IO_Exceptions.Name_Error;
 Use_Error : exception renames IO_Exceptions.Use_Error;
 Device_Error : exception renames IO_Exceptions.Device_Error;
 End_Error : exception renames IO_Exceptions.End_Error;
 Data_Error : exception renames IO_Exceptions.Data_Error;
 Layout_Error : exception renames IO_Exceptions.Layout_Error;
private
 ... -- not specified by the language
end Ada.Text_IO;

the new paragraph:

The type File_Type needs finalization (see 7.6).

A.10.6 Get and Put Procedures

In paragraph 5 replace: [AI95-00223-01]

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any Get procedure
for an enumeration type begins by skipping any leading blanks, or line or page terminators. Get procedures
for numeric or enumeration types start by skipping leading blanks, where a blank is defined as a space or a
horizontal tabulation character. Next, characters are input only so long as the sequence input is an initial
sequence of an identifier or of a character literal (in particular, input ceases when a line terminator is
encountered). The character or line terminator that causes input to cease remains available for subsequent
input.

by:

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any Get procedure
for an enumeration type begins by skipping any leading blanks, or line or page terminators. A blank is

ISO/IEC 8652:1995/WD.1:2004

116

defined as a space or a horizontal tabulation character. Next, characters are input only so long as the
sequence input is an initial sequence of an identifier or of a character literal (in particular, input ceases when
a line terminator is encountered). The character or line terminator that causes input to cease remains
available for subsequent input.

A.10.7 Input-Output of Characters and Strings

Replace paragraph 13: [AI95-00301-01]

For an item of type String, the following procedures are provided:

by:

For an item of type String, the following subprograms are provided:

Insert after paragraph 17: [AI95-00301-01]

Determines the length of the given string and attempts that number of Put operations for successive
characters of the string (in particular, no operation is performed if the string is null).

the new paragraphs:

function Get_Line(File : in File_Type) return String;
function Get_Line return String;

Returns a result string constructed by reading successive characters from the specified input file,
and assigning them to successive characters of the result string. The result string has a lower bound
of 1 and an upper bound of the number of characters read. Reading stops when the end of the line is
met; Skip_Line is then (in effect) called with a spacing of 1.

The exception End_Error is propagated if an attempt is made to skip a file terminator.

A.10.11 Input-Output for Unbounded Strings

Insert new clause: [AI95-00301-01]

The package Text_IO.Unbounded_IO provides input-output in human-readable form for
Unbounded_Strings.

Static Semantics

The library package Text_IO.Unbounded_IO has the following declaration:

with Ada.Strings.Unbounded;
package Ada.Text_IO.Unbounded_IO is

 procedure Put
 (File : in File_Type;
 Item : in Strings.Unbounded.Unbounded_String);

 procedure Put
 (Item : in Strings.Unbounded.Unbounded_String);

 procedure Put_Line
 (File : in Text_IO.File_Type;
 Item : in Strings.Unbounded.Unbounded_String);

 procedure Put_Line
 (Item : in Strings.Unbounded.Unbounded_String);

 function Get_Line
 (File : in File_Type)
 return Strings.Unbounded.Unbounded_String;

 function Get_Line

ISO/IEC 8652:1995/WD.1:2004

117

 return Strings.Unbounded.Unbounded_String;

 procedure Get_Line
 (File : in File_Type; Item : out Strings.Unbounded.Unbounded_String);

 procedure Get_Line
 (Item : out Strings.Unbounded.Unbounded_String);

end Ada.Text_IO.Unbounded_IO;

For an item of type Unbounded_String, the following subprograms are provided:

procedure Put
 (File : in File_Type;
 Item : in Strings.Unbounded.Unbounded_String);

Equivalent to Text_IO.Put (File, Strings.Unbounded.To_String(Item));

procedure Put
 (Item : in Strings.Unbounded.Unbounded_String);

Equivalent to Text_IO.Put (Strings.Unbounded.To_String(Item));

procedure Put_Line
 (File : in Text_IO.File_Type;
 Item : in Strings.Unbounded.Unbounded_String);

Equivalent to Text_IO.Put_Line (File, Strings.Unbounded.To_String(Item));

procedure Put_Line
 (Item : in Strings.Unbounded.Unbounded_String);

Equivalent to Text_IO.Put_Line (Strings.Unbounded.To_String(Item));

function Get_Line
 (File : in File_Type)
 return Strings.Unbounded.Unbounded_String;

Returns Strings.Unbounded.To_Unbounded_String(Text_IO.Get_Line(File));

function Get_Line
 return Strings.Unbounded.Unbounded_String;

Returns Strings.Unbounded.To_Unbounded_String(Text_IO.Get_Line);

procedure Get_Line
 (File : in File_Type; Item : out Strings.Unbounded.Unbounded_String);

Equivalent to Item := Get_Line (File);

procedure Get_Line
 (Item : out Strings.Unbounded.Unbounded_String);

Equivalent to Item := Get_Line;

A.11 Wide Text Input-Output and Wide Wide Text Input-Output

Replace the title: [AI95-00285-01]

Wide Text Input-Output

by:

Wide Text Input-Output and Wide Wide Text Input-Output

Replace paragraph 1: [AI95-00285-01]

The package Wide_Text_IO provides facilities for input and output in human-readable form. Each file is
read or written sequentially, as a sequence of wide characters grouped into lines, and as a sequence of lines
grouped into pages.

ISO/IEC 8652:1995/WD.1:2004

118

by:

The packages Wide_Text_IO and Wide_Wide_Text_IO provide facilities for input and output in human-
readable form. Each file is read or written sequentially, as a sequence of wide characters (or wide wide
characters) grouped into lines, and as a sequence of lines grouped into pages.

Replace paragraph 2: [AI95-00285-01]

The specification of package Wide_Text_IO is the same as that for Text_IO, except that in each Get,
Look_Ahead, Get_Immediate, Get_Line, Put, and Put_Line procedure, any occurrence of Character is
replaced by Wide_Character, and any occurrence of String is replaced by Wide_String.

by:

The specification of package Wide_Text_IO is the same as that for Text_IO, except that in each Get,
Look_Ahead, Get_Immediate, Get_Line, Put, and Put_Line procedure, any occurrence of Character is
replaced by Wide_Character, and any occurrence of String is replaced by Wide_String. Nongeneric
equivalents of Wide_Text_IO.Integer_IO and Wide_Text_IO.Float_IO are provided (as for Text_IO) for
each predefined numeric type, with names such as Ada.Integer_Wide_Text_IO,
Ada.Long_Integer_Wide_Text_IO, Ada.Float_Wide_Text_IO, Ada.Long_Float_Wide_Text_IO.

Replace paragraph 3: [AI95-00285-01; AI95-00301-01]

Nongeneric equivalents of Wide_Text_IO.Integer_IO and Wide_Text_IO.Float_IO are provided (as for
Text_IO) for each predefined numeric type, with names such as Ada.Integer_Wide_Text_IO,
Ada.Long_Integer_Wide_Text_IO, Ada.Float_Wide_Text_IO, Ada.Long_Float_Wide_Text_IO.

by:

The specification of package Wide_Wide_Text_IO is the same as that for Text_IO, except that in each Get,
Look_Ahead, Get_Immediate, Get_Line, Put, and Put_Line procedure, any occurrence of Character is
replaced by Wide_Wide_Character, and any occurrence of String is replaced by Wide_Wide_String.
Nongeneric equivalents of Wide_Wide_Text_IO.Integer_IO and Wide_Wide_Text_IO.Float_IO are provided
(as for Text_IO) for each predefined numeric type, with names such as Ada.Integer_Wide_Wide_Text_IO,
Ada.Long_Integer_Wide_Wide_Text_IO, Ada.Float_Wide_Wide_Text_IO,
Ada.Long_Float_Wide_Wide_Text_IO.

The specification of package Wide_Text_IO.Wide_Unbounded_IO is the same as that for
Text_IO.Unbounded_IO, except that any occurrence of Unbounded_String is replaced by
Wide_Unbounded_String, and any occurrence of package Unbounded is replaced by Wide_Unbounded. The
specification of package Wide_Wide_Text_IO.Wide_Unbounded_IO is the same as that for
Text_IO.Unbounded_IO, except that any occurrence of Unbounded_String is replaced by
Wide_Wide_Unbounded_String, and any occurrence of package Unbounded is replaced by
Wide_Wide_Unbounded.

A.12 Stream Input-Output

Replace paragraph 1: [AI95-00285-01]

The packages Streams.Stream_IO, Text_IO.Text_Streams, and Wide_Text_IO.Text_Streams provide
stream-oriented operations on files.

by:

The packages Streams.Stream_IO, Text_IO.Text_Streams, Wide_Text_IO.Text_Streams, and
Wide_Wide_Text_IO.Text_Streams provide stream-oriented operations on files.

A.12.1 The Package Streams.Stream_IO

Insert after paragraph 27: [AI95-00360-01]

private

ISO/IEC 8652:1995/WD.1:2004

119

 ... -- not specified by the language
end Ada.Streams.Stream_IO;

>

the new paragraph:

The type File_Type needs finalization (see 7.6).

Replace paragraph 28: [AI95-00283-01]

The subprograms Create, Open, Close, Delete, Reset, Mode, Name, Form, Is_Open, and End_of_File have
the same effect as the corresponding subprograms in Sequential_IO (see A.8.2).

by:

The subprograms given in subclause A.8.2 for the control of external files (Create, Open, Close, Delete,
Reset, Mode, Name, Form, and Is_Open) are available for stream files.

The End_of_File function:

• Propagates Mode_Error if the mode of the file is not In_File;

• If positioning is supported for the given external file, the function returns True if the current index
exceeds the size of the external file; otherwise it returns False;

• If positioning is not supported for the given external file, the function returns True if no more
elements can be read from the given file; otherwise it returns False.

Replace paragraph 28.1: [AI95-00085-01]

The Set_Mode procedure changes the mode of the file. If the new mode is Append_File, the file is positioned
to its end; otherwise, the position in the file is unchanged.

by:

The Set_Mode procedure sets the mode of the file. If the new mode is Append_File, the file is positioned to
its end; otherwise, the position in the file is unchanged.

Replace paragraph 30: [AI95-00256-01]

The procedures Read and Write are equivalent to the corresponding operations in the package Streams. Read
propagates Mode_Error if the mode of File is not In_File. Write propagates Mode_Error if the mode of File
is not Out_File or Append_File. The Read procedure with a Positive_Count parameter starts reading at the
specified index. The Write procedure with a Positive_Count parameter starts writing at the specified index.

by:

The procedures Read and Write are equivalent to the corresponding operations in the package Streams. Read
propagates Mode_Error if the mode of File is not In_File. Write propagates Mode_Error if the mode of File
is not Out_File or Append_File. The Read procedure with a Positive_Count parameter starts reading at the
specified index. The Write procedure with a Positive_Count parameter starts writing at the specified index.
For a file that supports positioning, Read without a Positive_Count parameter starts reading at the current
index, and Write without a Positive_Count parameter starts writing at the current index.

A.12.4 The Package Wide_Wide_Text_IO.Text_Streams

Insert new clause: [AI95-00285-01]

The package Wide_Wide_Text_IO.Text_Streams provides a function for treating a wide wide text file as a
stream.

Static Semantics

The library package Wide_Wide_Text_IO.Text_Streams has the following declaration:

with Ada.Streams;

ISO/IEC 8652:1995/WD.1:2004

120

package Ada.Wide_Wide_Text_IO.Text_Streams is
 type Stream_Access is access all Streams.Root_Stream_Type'Class;
 function Stream (File : in File_Type) return Stream_Access;
end Ada.Wide_Wide_Text_IO.Text_Streams;

The Stream function has the same effect as the corresponding function in Streams.Stream_IO.

A.16 The Package Directories

Insert new clause: [AI95-00248-01]

The package Ada.Directories provides operations for manipulating files and directories, and their names.

Static Semantics

The library package Ada.Directories has the following declaration:

with Ada.IO_Exceptions;
with Ada.Calendar;
package Ada.Directories is

 -- Directory and file operations:

 function Current_Directory return String;
 procedure Set_Directory (Directory : in String);

 procedure Create_Directory (New_Directory : in String;
 Form : in String := "");

 procedure Delete_Directory (Directory : in String);

 procedure Create_Path (New_Directory : in String;
 Form : in String := "");

 procedure Delete_Tree (Directory : in String);

 procedure Delete_File (Name : in String);

 procedure Rename (Old_Name, New_Name : in String);

 procedure Copy_File (Source_Name, Target_Name : in String;
 Form : in String := "");

 -- File and directory name operations:

 function Full_Name (Name : in String) return String;

 function Simple_Name (Name : in String) return String;

 function Containing_Directory (Name : in String) return String;

 function Extension (Name : in String) return String;

 function Base_Name (Name : in String) return String;

 function Compose (Containing_Directory : in String := "";
 Name : in String;
 Extension : in String := "") return String;

 -- File and directory queries:

 type File_Kind is (Directory, Ordinary_File, Special_File);

 type File_Size is range 0 .. implementation-defined;

 function Exists (Name : in String) return Boolean;

ISO/IEC 8652:1995/WD.1:2004

121

 function Kind (Name : in String) return File_Kind;

 function Size (Name : in String) return File_Size;

 function Modification_Time (Name : in String) return Ada.Calendar.Time;

 -- Directory searching:

 type Directory_Entry_Type is limited private;

 type Filter_Type is array (File_Kind) of Boolean;

 type Search_Type is limited private;

 procedure Start_Search (Search : in out Search_Type;
 Directory : in String;
 Pattern : in String;
 Filter : in Filter_Type := (others => True));

 procedure End_Search (Search : in out Search_Type);

 function More_Entries (Search : in Search_Type) return Boolean;

 procedure Get_Next_Entry (Search : in out Search_Type;
 Directory_Entry : out Directory_Entry_Type);

 -- Operations on Directory Entries:

 function Simple_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

 function Full_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

 function Kind (Directory_Entry : in Directory_Entry_Type)
 return File_Kind;

 function Size (Directory_Entry : in Directory_Entry_Type)
 return File_Size;

 function Modification_Time (Directory_Entry : in Directory_Entry_Type)
 return Ada.Calendar.Time;

 Status_Error : exception renames Ada.IO_Exceptions.Status_Error;
 Name_Error : exception renames Ada.IO_Exceptions.Name_Error;
 Use_Error : exception renames Ada.IO_Exceptions.Use_Error;
 Device_Error : exception renames Ada.IO_Exceptions.Device_Error;

private
 -- Not specified by the language.
end Ada.Directories;

External files may be classified as directories, special files, or ordinary files. A directory is an external file
that is a container for files on the target system. A special file is an external file that cannot be created or
read by a predefined Ada Input-Output package. External files that are not special files or directories are
called ordinary files.

A file name is a string identifying an external file. Similarly, a directory name is a string identifying a
directory. The interpretation of file names and directory names is implementation-defined.

The full name of an external file is a full specification of the name of the file. If the external environment
allows alternative specifications of the name (for example, abbreviations), the full name should not use such
alternatives. A full name typically will include the names of all of directories that contain the item. The
simple name of an external file is the name of the item, not including any containing directory names. Unless

ISO/IEC 8652:1995/WD.1:2004

122

otherwise specified, a file name or directory name parameter to a predefined Ada input-output subprogram
can be a full name, a simple name, or any other form of name supported by the implementation.

The default directory is the directory that is used if a directory or file name is not a full name (that is, when
the name does not fully identify all of the containing directories).

A directory entry is a single item in a directory, identifying a single external file (including directories and
special files).

For each function that returns a string, the lower bound of the returned value is 1.

The following file and directory operations are provided:

function Current_Directory return String;

Returns the full directory name for the current default directory. The name returned shall be suitable
for a future call to Set_Directory. The exception Use_Error is propagated if a default directory is not
supported by the external environment.

procedure Set_Directory (Directory : in String);

Sets the current default directory. The exception Name_Error is propagated if the string given as
Directory does not identify an existing directory. The exception Use_Error is propagated if the
external environment does not support making Directory (in the absence of Name_Error) a default
directory.

procedure Create_Directory (New_Directory : in String;
 Form : in String := "");

Creates a directory with name New_Directory. The Form parameter can be used to give system-
dependent characteristics of the directory; the interpretation of the Form parameter is
implementation-defined. A null string for Form specifies the use of the default options of the
implementation of the new directory. The exception Name_Error is propagated if the string given as
New_Directory does not allow the identification of a directory. The exception Use_Error is
propagated if the external environment does not support the creation of a directory with the given
name (in the absence of Name_Error) and form.

procedure Delete_Directory (Directory : in String);

Deletes an existing empty directory with name Directory. The exception Name_Error is propagated
if the string given as Directory does not identify an existing directory. The exception Use_Error is
propagated if the external environment does not support the deletion of the directory (or some
portion of its contents) with the given name (in the absence of Name_Error).

procedure Create_Path (New_Directory : in String;
 Form : in String := "");

Creates zero or more directories with name New_Directory. Each non-existent directory named by
New_Directory is created. For example, on a typical Unix system, Create_Path ("/usr/me/my");
would create directory "me" in directory "usr", then create directory "my" in directory "me". The
Form can be used to give system-dependent characteristics of the directory; the interpretation of the
Form parameter is implementation-defined. A null string for Form specifies the use of the default
options of the implementation of the new directory. The exception Name_Error is propagated if the
string given as New_Directory does not allow the identification of any directory. The exception
Use_Error is propagated if the external environment does not support the creation of any directories
with the given name (in the absence of Name_Error) and form.

procedure Delete_Tree (Directory : in String);

Deletes an existing directory with name Directory. The directory and all of its contents (possibly
including other directories) are deleted. The exception Name_Error is propagated if the string given
as Directory does not identify an existing directory. The exception Use_Error is propagated if the
external environment does not support the deletion of the directory or some portion of its contents

ISO/IEC 8652:1995/WD.1:2004

123

with the given name (in the absence of Name_Error). If Use_Error is propagated, it is unspecified if
a portion of the contents of the directory are deleted.

procedure Delete_File (Name : in String);

Deletes an existing ordinary or special file with Name. The exception Name_Error is propagated if
the string given as Name does not identify an existing ordinary or special external file. The
exception Use_Error is propagated if the external environment does not support the deletion of the
file with the given name (in the absence of Name_Error).

procedure Rename (Old_Name, New_Name : in String);

Renames an existing external file (including directories) with Old_Name to New_Name. The
exception Name_Error is propagated if the string given as Old_Name does not identify an existing
external file. The exception Use_Error is propagated if the external environment does not support
the renaming of the file with the given name (in the absence of Name_Error). In particular,
Use_Error is propagated if a file or directory already exists with New_Name.

procedure Copy_File (Source_Name, Target_Name : in String;
 Form : in String);

Copies the contents of the existing external file with Source_Name to Target_Name. The resulting
external file is a duplicate of the source external file. The Form can be used to give system-
dependent characteristics of the resulting external file; the interpretation of the Form parameter is
implementation-defined. Exception Name_Error is propagated if the string given as Source_Name
does not identify an existing external ordinary or special file or if the string given as Target_Name
does not allow the identification of an external file. The exception Use_Error is propagated if the
external environment does not support the creating of the file with the name given by Target_Name
and form given by Form, or copying of the file with the name given by Source_Name (in the
absence of Name_Error).

The following file and directory name operations are provided:

function Full_Name (Name : in String) return String;

Returns the full name corresponding to the file name specified by Name. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
external file (including directories and special files).

function Simple_Name (Name : in String) return String;

Returns the simple name portion of the file name specified by Name. The exception Name_Error is
propagated if the string given as Name does not allow the identification of an external file
(including directories and special files).

function Containing_Directory (Name : in String) return String;

Returns the name of the containing directory of the external file (including directories) identified by
Name. (If more than one directory can contain Name, the directory name returned is
implementation-defined.) The exception Name_Error is propagated if the string given as Name does
not allow the identification of an external file. The exception Use_Error is propagated if the
external file does not have a containing directory.

function Extension (Name : in String) return String;

Returns the extension name corresponding to Name. The extension name is a portion of a simple
name (not including any separator characters), typically used to identify the file class. If the external
environment does not have extension names, then the null string is returned. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
external file.

function Base_Name (Name : in String) return String;

Returns the base name corresponding to Name. The base name is the remainder of a simple name
after removing any extension and extension separators. The exception Name_Error is propagated if

ISO/IEC 8652:1995/WD.1:2004

124

the string given as Name does not allow the identification of an external file (including directories
and special files).

function Compose (Containing_Directory : in String := "";
 Name : in String;
 Extension : in String := "") return String;

Returns the name of the external file with the specified Containing_Directory, Name, and
Extension. If Extension is the null string, then Name is interpreted as a simple name; otherwise
Name is interpreted as a base name. The exception Name_Error is propagated if the string given as
Containing_Directory is not null and does not allow the identification of a directory, or if the string
given as Extension is not null and is not a possible extension, or if the string given as Name is not a
possible simple name (if Extension is null) or base name (if Extension is non-null).

The following file and directory queries and types are provided:

type File_Kind is (Directory, Ordinary_File, Special_File);

The type File_Kind represents the kind of file represented by an external file or directory.

type File_Size is range 0 .. implementation-defined;

The type File_Size represents the size of an external file.

function Exists (Name : in String) return Boolean;

Returns True if external file represented by Name exists, and False otherwise. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
external file (including directories and special files).

function Kind (Name : in String) return File_Kind;

Returns the kind of external file represented by Name. The exception Name_Error is propagated if
the string given as Name does not allow the identification of an existing external file.

function Size (Name : in String) return File_Size;

Returns the size of the external file represented by Name. The size of an external file is the number
of stream elements contained in the file. If the external file is discontiguous (not all elements exist),
the result is implementation-defined. If the external file is not an ordinary file, the result is
implementation-defined. The exception Name_Error is propagated if the string given as Name does
not allow the identification of an existing external file. The exception Constraint_Error is
propagated if the file size is not a value of type File_Size.

function Modification_Time (Name : in String) return Ada.Calendar.Time;

Returns the time that the external file represented by Name was most recently modified. If the
external file is not an ordinary file, the result is implementation-defined. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an
existing external file. The exception Use_Error is propagated if the external environment does not
support the reading the modification time of the file with the name given by Name (in the absence
of Name_Error).

The following directory searching operations and types are provided:

type Directory_Entry_Type is limited private;

The type Directory_Entry_Type represents a single item in a directory. These items can only be
created by the Get_Next_Entry procedure in this package. Information about the item can be
obtained from the functions declared in this package. A default initialized object of this type is
invalid; objects returned from Get_Next_Entry are valid.

type Filter_Type is array (File_Kind) of Boolean;

The type Filter_Type specifies which directory entries are provided from a search operation. If the
Directory component is True, directory entries representing directories are provided. If the

ISO/IEC 8652:1995/WD.1:2004

125

Ordinary_File component is True, directory entries representing ordinary files are provided. If the
Special_File component is True, directory entries representing special files are provided.

type Search_Type is limited private;

The type Search_Type contains the state of a directory search. A default-initialized Search_Type
object has no entries available (More_Entries returns False).

procedure Start_Search (Search : in out Search_Type;
 Directory : in String;
 Pattern : in String;
 Filter : in Filter_Type := (others => True));

Starts a search in the directory entry in the directory named by Directory for entries matching
Pattern. Pattern represents a file name matching pattern. If Pattern is null, all items in the directory
are matched; otherwise, the interpretation of Pattern is implementation-defined. Only items which
match Filter will be returned. After a successful call on Start_Search, the object Search may have
entries available, but it may have no entries available if no files or directories match Pattern and
Filter. The exception Name_Error is propagated if the string given by Directory does not identify an
existing directory, or if Pattern does not allow the identification of any possible external file or
directory. The exception Use_Error is propagated if the external environment does not support the
searching of the directory with the given name (in the absence of Name_Error).

procedure End_Search (Search : in out Search_Type);

Ends the search represented by Search. After a successful call on End_Search, the object Search will
have no entries available.

function More_Entries (Search : in Search_Type) return Boolean;

Returns True if more entries are available to be returned by a call to Get_Next_Entry for the
specified search object, and False otherwise.

procedure Get_Next_Entry (Search : in out Search_Type;
 Directory_Entry : out Directory_Entry_Type);

Returns the next Directory_Entry for the search described by Search that matches the pattern and
filter. If no further matches are available, Status_Error is raised. It is implementation-defined as to
whether the results returned by this routine are altered if the contents of the directory are altered
while the Search object is valid (for example, by another program). The exception Use_Error is
propagated if the external environment does not support continued searching of the directory
represented by Search.

function Simple_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

Returns the simple external name of the external file (including directories) represented by
Directory_Entry. The format of the name returned is implementation-defined. The exception
Status_Error is propagated if Directory_Entry is invalid.

function Full_Name (Directory_Entry : in Directory_Entry_Type) return String;

Returns the full external name of the external file (including directories) represented by
Directory_Entry. The format of the name returned is implementation-defined. The exception
Status_Error is propagated if Directory_Entry is invalid.

function Kind (Directory_Entry : in Directory_Entry_Type) return File_Kind;

Returns the kind of external file represented by Directory_Entry. The exception Status_Error is
propagated if Directory_Entry is invalid.

function Size (Directory_Entry : in Directory_Entry_Type) return File_Size;

Returns the size of the external file represented by Directory_Entry. The size of an external file is
the number of stream elements contained in the file. If the external file is discontiguous (not all
elements exist), the result is implementation-defined. If the external file represented by

ISO/IEC 8652:1995/WD.1:2004

126

Directory_Entry is not an ordinary file, the result is implementation-defined. The exception
Status_Error is propagated if Directory_Entry is invalid. The exception Constraint_Error is
propagated if the file size is not a value of type File_Size.

function Modification_Time (Directory_Entry : in Directory_Entry_Type)
 return Ada.Calendar.Time;

Returns the time that the external file represented by Directory_Entry was most recently modified. If
the external file represented by Directory_Entry is not an ordinary file, the result is implementation-
defined. The exception Status_Error is propagated if Directory_Entry is invalid. The exception
Use_Error is propagated if the external environment does not support the reading the modification
time of the file represented by Directory_Entry.

Implementation Requirements

For Copy_File, if Source_Name identifies an existing external ordinary file created by a predefined Ada
Input-Output package, and Target_Name and Form can be used in the Create operation of that Input-Output
package with mode Out_File without raising an exception, then Copy_File shall not propagate Use_Error.

Implementation Advice

If other information about a file is available (such as the owner or creation date) in a directory entry, the
implementation should provide functions in a child package Ada.Directories.Information to retrieve it.

Start_Search should raise Use_Error if Pattern is malformed, but not if it could represent a file in the
directory but does not actually do so.

For Rename, if both New_Name and Old_Name are simple names, then Rename should not propagate
Use_Error.

NOTES

37 The file name operations Containing_Directory, Full_Name, Simple_Name, Base_Name, Extension, and
Compose operate on file names, not external files. The files identified by these operations do not need to exist.
Name_Error is raised only if the file name is malformed and cannot possibly identify a file.

38 Using access types, values of Search_Type and Directory_Entry_Type can be saved and queried later.
However, another task or application can modify or delete the file represented by a Directory_Entry_Type
value or the directory represented by a Search_Type value; such a value can only give the information valid at
the time it is created. Therefore, long-term storage of these values is not recommended.

39 If the target system does not support directories inside of directories, Is_Directory will always return False,
and Containing_Directory will always raise Use_Error.

40 If the target system does not support creation or deletion of directories, Create_Directory, Create_Path,
Delete_Directory, and Delete_Tree will always propagate Use_Error.

ISO/IEC 8652:1995/WD.1:2004

127

Annex B: Interface to Other Languages

B.1 Interfacing Pragmas

Insert after paragraph 38: [AI95-00320-01]

Notwithstanding what this International Standard says elsewhere, the elaboration of a declaration denoted by
the local_name of a pragma Import does not create the entity. Such an elaboration has no other effect than
to allow the defining name to denote the external entity.

the new paragraph:

Erroneous Execution

It is the programmer's responsibility to ensure that the use of interfacing pragmas does not violate Ada
semantics; otherwise, program execution is erroneous.

B.2 The Package Interfaces

Insert after paragraph 10: [AI95-00204-01]

• Floating point types corresponding to each floating point format fully supported by the hardware.

the new paragraph:

Support for interfacing to any foreign language is optional. However, an implementation shall not provide
any attribute, library unit, or pragma having the same name as an attribute, library unit, or pragma
(respectively) specified in the following clauses of this Annex unless the provided construct is either as
specified in those clauses or is more limited in capability than that required by those clauses. A program that
attempts to use an unsupported capability of this Annex shall either be identified by the implementation
before run time or shall raise an exception at run time.

Insert after paragraph 11: [AI95-00204-01]

An implementation may provide implementation-defined library units that are children of Interfaces, and
may add declarations to the visible part of Interfaces in addition to the ones defined above.

the new paragraph:

A child package of package Interfaces with the name of a convention may be provided independently of
whether the convention is supported by the pragma Convention and vice versa. Such a child package should
contain any declarations that would be useful for interfacing to the language (implementation) represented by
the convention. Any declarations useful for interfacing to any language on the given hardware architecture
should be provided directly in Interfaces.

Delete paragraph 12: [AI95-00204-01]

For each implementation-defined convention identifier, there should be a child package of package Interfaces
with the corresponding name. This package should contain any declarations that would be useful for
interfacing to the language (implementation) represented by the convention. Any declarations useful for
interfacing to any language on the given hardware architecture should be provided directly in Interfaces.

B.3 Interfacing with C and C++

Replace the title: [AI95-00376-01]

Interfacing with C

by:

Interfacing with C and C++

ISO/IEC 8652:1995/WD.1:2004

128

Replace paragraph 1: [AI95-00376-01]

The facilities relevant to interfacing with the C language are the package Interfaces.C and its children;
support for the Import, Export, and Convention pragmas with convention_identifier C; and support for the
Convention pragma with convention_identifier C_Pass_By_Copy.

by:

The facilities relevant to interfacing with the C language and the corresponding subset of the C++ language
are the package Interfaces.C and its children; support for the Import, Export, and Convention pragmas with
convention_identifier C; and support for the Convention pragma with convention_identifier
C_Pass_By_Copy.

Replace paragraph 2: [AI95-00376-01]

The package Interfaces.C contains the basic types, constants and subprograms that allow an Ada program to
pass scalars and strings to C functions.

by:

The package Interfaces.C contains the basic types, constants and subprograms that allow an Ada program to
pass scalars and strings to C and C++ functions.

Insert after paragraph 39: [AI95-00285-01]

 procedure To_Ada (Item : in wchar_array;
 Target : out Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

the new paragraphs:

 -- ISO/IEC 10646:2003 compatible types defined by SC22/WG14 document N1010.

 type char16_t is <implementation-defined character type>;

 char16_nul : constant char16_t := <implementation-defined;

 function To_C (Item : in Wide_Character) return char16_t;
 function To_Ada (Item : in char16_t) return Wide_Character;

 type char16_array is array (size_t range <>) of aliased char16_t;

 pragma Pack(char16_array);

 function Is_Nul_Terminated (Item : in char16_array) return Boolean;
 function To_C (Item : in Wide_String;
 Append_Nul : in Boolean := True)
 return char16_array;

 function To_Ada (Item : in char16_array;
 Trim_Nul : in Boolean := True)
 return Wide_String;

 procedure To_C (Item : in Wide_String;
 Target : out char16_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

 procedure To_Ada (Item : in char16_array;
 Target : out Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

 type char32_t is <implementation-defined character type>;

 char32_nul : constant char32_t := <implementation-defined;

ISO/IEC 8652:1995/WD.1:2004

129

 function To_C (Item : in Wide_Wide_Character) return char32_t;
 function To_Ada (Item : in char32_t) return Wide_Wide_Character;

 type char32_array is array (size_t range <>) of aliased char32_t;

 pragma Pack(char32_array);

 function Is_Nul_Terminated (Item : in char32_array) return Boolean;
 function To_C (Item : in Wide_Wide_String;
 Append_Nul : in Boolean := True)
 return char32_array;

 function To_Ada (Item : in char32_array;
 Trim_Nul : in Boolean := True)
 return Wide_Wide_String;

 procedure To_C (Item : in Wide_Wide_String;
 Target : out char32_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

 procedure To_Ada (Item : in char32_array;
 Target : out Wide_Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

Replace paragraph 43: [AI95-00285-01]

The types int, short, long, unsigned, ptrdiff_t, size_t, double, char, and wchar_t correspond respectively to
the C types having the same names. The types signed_char, unsigned_short, unsigned_long, unsigned_char,
C_float, and long_double correspond respectively to the C types signed char, unsigned short, unsigned long,
unsigned char, float, and long double.

by:

The types int, short, long, unsigned, ptrdiff_t, size_t, double, char, wchar_t, char16_t, and char32_t
correspond respectively to the C types having the same names. The types signed_char, unsigned_short,
unsigned_long, unsigned_char, C_float, and long_double correspond respectively to the C types signed char,
unsigned short, unsigned long, unsigned char, float, and long double.

Replace paragraph 50: [AI95-00258-01]

The result of To_C is a char_array value of length Item'Length (if Append_Nul is False) or
Item'Length+1 (if Append_Nul is True). The lower bound is 0. For each component Item(I), the
corresponding component in the result is To_C applied to Item(I). The value nul is appended if
Append_Nul is True.

by:

The result of To_C is a char_array value of length Item'Length (if Append_Nul is False) or
Item'Length+1 (if Append_Nul is True). The lower bound is 0. For each component Item(I), the
corresponding component in the result is To_C applied to Item(I). The value nul is appended if
Append_Nul is True. If Append_Nul is False and Item'Length is 0, then To_C propagates
Constraint_Error.

Insert after paragraph 60: [AI95-00285-01]

The To_C and To_Ada subprograms that convert between Wide_String and wchar_array have
analogous effects to the To_C and To_Ada subprograms that convert between String and
char_array, except that wide_nul is used instead of nul.

the new paragraphs:

function Is_Nul_Terminated (Item : in char16_array) return Boolean;

ISO/IEC 8652:1995/WD.1:2004

130

The result of Is_Nul_Terminated is True if Item contains char16_nul, and is False otherwise.

function To_C (Item : in Wide_Character) return char16_t;
function To_Ada (Item : in char16_t) return Wide_Character;

To_C and To_Ada provide the mappings between the Ada and C 16-bit character types.

function To_C (Item : in Wide_String;
 Append_Nul : in Boolean := True)
 return char16_array;

function To_Ada (Item : in char16_array;
 Trim_Nul : in Boolean := True)
 return Wide_String;

procedure To_C (Item : in Wide_String;
 Target : out char16_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

procedure To_Ada (Item : in char16_array;
 Target : out Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

The To_C and To_Ada subprograms that convert between Wide_String and char16_array have
analogous effects to the To_C and To_Ada subprograms that convert between String and
char_array, except that char16_nul is used instead of nul.

function Is_Nul_Terminated (Item : in char32_array) return Boolean;

The result of Is_Nul_Terminated is True if Item contains char16_nul, and is False otherwise.

function To_C (Item : in Wide_Wide_Character) return char32_t;
function To_Ada (Item : in char32_t) return Wide_Wide_Character;

To_C and To_Ada provide the mappings between the Ada and C 32-bit character types.

function To_C (Item : in Wide_Wide_String;
 Append_Nul : in Boolean := True)
 return char32_array;

function To_Ada (Item : in char32_array;
 Trim_Nul : in Boolean := True)
 return Wide_Wide_String;

procedure To_C (Item : in Wide_Wide_String;
 Target : out char32_array;
 Count : out size_t;
 Append_Nul : in Boolean := True);

procedure To_Ada (Item : in char32_array;
 Target : out Wide_Wide_String;
 Count : out Natural;
 Trim_Nul : in Boolean := True);

The To_C and To_Ada subprograms that convert between Wide_Wide_String and char32_array
have analogous effects to the To_C and To_Ada subprograms that convert between String and
char_array, except that char32_nul is used instead of nul.

Replace paragraph 60.2: [AI95-00216-01]

The eligibility rules in B.1 do not apply to convention C_Pass_By_Copy. Instead, a type T is eligible for
convention C_Pass_By_Copy if T is a record type that has no discriminants and that only has components
with statically constrained subtypes, and each component is C-compatible.

ISO/IEC 8652:1995/WD.1:2004

131

by:

The eligibility rules in B.1 do not apply to convention C_Pass_By_Copy. Instead, a type T is eligible for
convention C_Pass_By_Copy if T is an unchecked union type or if T is a record type that has no
discriminants and that only has components with statically constrained subtypes, and each component is C-
compatible.

B.3.1 The Package Interfaces.C.Strings

Replace paragraph 5: [AI95-00161-01]

 type Chars_Ptr is private;

by:

 type Chars_Ptr is private;
 pragma Preelaborable_Initialization(Chars_Ptr);

Replace paragraph 6: [AI95-00276-01]

type chars_ptr_array is array (size_t range <>) of chars_ptr;

by:

type chars_ptr_array is array (size_t range <>) of aliased chars_ptr;

Replace paragraph 50: [AI95-00242-01]

Equivalent to Update(Item, Offset, To_C(Str), Check).

by:

Equivalent to Update(Item, Offset, To_C(Str, Append_Nul => False), Check).

B.3.3 Pragma Unchecked_Union

Insert new clause: [AI95-00216-01]

A pragma Unchecked_Union specifies an interface correspondence between a given discriminated type and
some C union. The pragma specifies that the associated type shall be given a representation that leaves no
space for its discriminant(s).

Syntax

The form of a pragma Unchecked_Union is as follows:

pragma Unchecked_Union (first_subtype_local_name);

Legality Rules

Unchecked_Union is a representation pragma, specifying the unchecked union aspect of representation.

The first_subtype_local_name of a pragma Unchecked_Union shall denote an unconstrained discriminated
record subtype having a variant_part.

A type to which a pragma Unchecked_Union applies is called an unchecked union type. A subtype of an
unchecked union type is defined to be an unchecked union subtype. An object of an unchecked union type is
defined to be an unchecked union object.

All component subtypes of an unchecked union type shall be C-compatible.

If a component subtype of an unchecked union type is subject to a per-object constraint, then the component
subtype shall be an unchecked union subtype.

Any name that denotes a discriminant of an object of an unchecked union type shall occur within the
declarative region of the type.

ISO/IEC 8652:1995/WD.1:2004

132

A component declared in a variant_part of an unchecked union type shall not have a controlled, protected,
or task part.

The completion of an incomplete or private type declaration having a known_discriminant_part shall not
be an unchecked union type.

An unchecked union subtype shall not be passed as a generic actual parameter if the corresponding formal
type has a known_discriminant_part or is a formal derived type that is not an unchecked union type.

An unchecked union subtype shall only be passed as a generic actual parameter if the corresponding formal
type does not have a known_discriminant_part, or is a formal derived type that is an unchecked union type.

Static Semantics

An unchecked union type is eligible for convention C.

Discriminant_Check is suppressed for an unchecked union type.

All objects of an unchecked union type have the same size.

Discriminants of objects of an unchecked union type are of size zero.

Dynamic Semantics

A view of an unchecked union object (including a type conversion or function call) has inferable
discriminants if it has a constrained nominal subtype, unless the object is a component of an enclosing
unchecked union object that is subject to a per-object constraint and the enclosing object lacks inferable
discriminants.

An expression of an unchecked union type has inferable discriminants if it is either a name of an object with
inferable discriminants or a qualified expression whose subtype_mark denotes a constrained subtype.

Program_Error is raised in the following cases:

• Evaluation of the predefined equality operator for an unchecked union type if either of the operands
lacks inferable discriminants.

• Evaluation of the predefined equality operator for a type which has a subcomponent of an
unchecked union type whose nominal subtype is unconstrained.

• Evaluation of a membership test if the subtype_mark denotes a constrained unchecked union
subtype and the expression lacks inferable discriminants.

• Conversion from a derived unchecked union type to an unconstrained non-unchecked-union type if
the operand of the conversion lacks inferable discriminants.

• Execution of the default implementation of the Write or Read attribute of an unchecked union type.

• Execution of the default implementation of the Output or Input attribute of an unchecked union type
if the type lacks default discriminant values.

Implementation Permissions

An implementation may require that pragma Controlled be specified for the type of an access subcomponent
of an unchecked union type.

NOTES

15 The use of an unchecked union to obtain the effect of an unchecked conversion results in erroneous
execution (see 11.5). Execution of the following example is erroneous even if Float'Size = Integer'Size:

 type T (Flag : Boolean := False) is
 record
 case Flag is
 when False =>
 F1 : Float := 0.0;
 when True =>
 F2 : Integer := 0;
 end case;

ISO/IEC 8652:1995/WD.1:2004

133

 end record;
 pragma Unchecked_Union (T);

 X : T;
 Y : Integer := X.F2; -- erroneous

ISO/IEC 8652:1995/WD.1:2004

134

Annex C: Systems Programming

C.3.1 Protected Procedure Handlers

Replace paragraph 8: [AI95-00253-01]

The Interrupt_Handler pragma is only allowed immediately within a protected_definition. The
corresponding protected_type_declaration shall be a library level declaration. In addition, any
object_declaration of such a type shall be a library level declaration.

by:

The Interrupt_Handler pragma is only allowed immediately within a protected_definition where the
corresponding subprogram is declared. The corresponding protected_type_declaration or
single_protected_declaration shall be a library level declaration. In addition, any object_declaration of
such a type shall be a library level declaration.

C.4 Preelaboration Requirements

Insert after paragraph 4: [AI95-00161-01]

• Any subtype_mark denotes a statically constrained subtype, with statically constrained
subcomponents, if any;

the new paragraph:

• No subtype_mark denotes a controlled type, a private type, a private extension, a generic formal
private type, a generic formal derived type, or a descendant of such a type;

C.5 Pragma Discard_Names

Replace paragraph 7: [AI95-00285-01]

If the pragma applies to an enumeration type, then the semantics of the Wide_Image and Wide_Value
attributes are implementation defined for that type; the semantics of Image and Value are still defined in
terms of Wide_Image and Wide_Value. In addition, the semantics of Text_IO.Enumeration_IO are
implementation defined. If the pragma applies to a tagged type, then the semantics of the
Tags.Expanded_Name function are implementation defined for that type. If the pragma applies to an
exception, then the semantics of the Exceptions.Exception_Name function are implementation defined for
that exception.

by:

If the pragma applies to an enumeration type, then the semantics of the Wide_Wide_Image and
Wide_Wide_Value attributes are implementation defined for that type; the semantics of Image, Wide_Image,
Value, and Wide_Value are still defined in terms of Wide_Wide_Image and Wide_Wide_Value. In addition,
the semantics of Text_IO.Enumeration_IO are implementation defined. If the pragma applies to a tagged
type, then the semantics of the Tags.Expanded_Name function are implementation defined for that type. If
the pragma applies to an exception, then the semantics of the Exceptions.Exception_Name function are
implementation defined for that exception.

C.6 Shared Variable Control

Replace paragraph 7: [AI95-00272-01]

An atomic type is one to which a pragma Atomic applies. An atomic object (including a component) is one
to which a pragma Atomic applies, or a component of an array to which a pragma Atomic_Components
applies, or any object of an atomic type.

ISO/IEC 8652:1995/WD.1:2004

135

by:

An atomic type is one to which a pragma Atomic applies. An atomic object (including a component) is one
to which a pragma Atomic applies, or a component of an array to which a pragma Atomic_Components
applies, or any object of an atomic type, other than objects obtained by evaluating a slice.

Insert after paragraph 21: [AI95-00259-01]

If a pragma Pack applies to a type any of whose subcomponents are atomic, the implementation shall not
pack the atomic subcomponents more tightly than that for which it can support indivisible reads and updates.

the new paragraphs:

Implementation Advice

A load or store of a volatile object whose size is a multiple of System.Storage_Unit and whose alignment is
nonzero, should be implemented by accessing exactly the bits of the object and no others.

A load or store of an atomic object should, where possible, be implemented by a single load or store
instruction.

C.7.1 The Package Task_Identification

Replace paragraph 2: [AI95-00362-01]

package Ada.Task_Identification is
 type Task_ID is private;
 Null_Task_ID : constant Task_ID;
 function "=" (Left, Right : Task_ID) return Boolean;

by:

package Ada.Task_Identification is
 pragma Preelaborate(Task_Identification);
 type Task_ID is private;
 pragma Preelaborable_Initialization (Task_Id);
 Null_Task_ID : constant Task_ID;
 function "=" (Left, Right : Task_ID) return Boolean;

C.7.3 Task Termination Procedures

Insert new clause: [AI95-00266-02]

This clause specifies a package for associating protected procedures with a task. One such procedure is
invoked when the task is about to terminate.

Static Semantics

The following language-defined library package exists:

with System;
with Ada.Task_Identification;
with Ada.Exceptions;
package Ada.Task_Termination is
 type Cause_Of_Termination is (Normal, Abnormal, Unhandled_Exception);

 type Handler is access protected procedure(
 Cause : in Cause_Of_Termination;
 T : in Ada.Task_Identification.Task_Id;
 X : in Ada.Exceptions.Exception_Occurrence);

 procedure Set_Dependents_Fallback_Handler(New_Handler: in Handler);
 function Current_Task_Fallback_Handler return Handler;

 procedure Set_Specific_Handler(
 T : in Ada.Task_Identification.Task_Id;

ISO/IEC 8652:1995/WD.1:2004

136

 New_Handler : in Handler);
 function Specific_Handler(T : Ada.Task_Identification.Task_Id)
 return Handler;
end Ada.Task_Termination;

Dynamic Semantics

A call of Set_Dependents_Fallback_Handler sets the fall-back handler for all dependent tasks. If a fall-back
handler had previously been set it is replaced. A call with a null access parameter is equivalent to removing
the fall-back handler. A call of Current_Task_Fallback_Handler returns the fall-back handler that is
currently in effect for the calling task. If no fall-back handler has been set it returns null.

A call of Set_Specific_Handler sets a specific handler for the task identified by T. If a specific handler had
previously been set it is replaced. A call with a null access parameter is equivalent to removing the specific
handler. A call of Specific_Handler returns the specific handler if one has been set, otherwise the handler
returned is null.

As part of the finalization of a task_body, after performing the actions specified in 7.6 for finalization of a
master, the task specific handler, if not null, is called. If there is no such specific handler, a fall-back handler
is determined by recursively searching for a non null fall-back handler in the tasks upon which it depends. If
such a fall-back handler is determined it is executed; otherwise no handler is executed.

If the task completed due to completing the last statement of the task body, or as a result of waiting on a
terminate alternative then Cause is set to Normal and X is set to Null_Occurrence. If completion is due to
abort then Cause is set to Abnormal and X is set to Null_Occurrence. If completion is due to an unhandled
exception then Cause is set to Unhandled_Exception and the associated exception occurrence is passed.

For all the operations defined in this package, Tasking_Error is raised if the task identified by T has already
terminated. Program_Error is raised if the value of T is Null_Task_ID.

An exception propagated from a handler that is invoked as part of a task's termination has no effect.

ISO/IEC 8652:1995/WD.1:2004

137

Annex D: Real-Time Systems

D.2 Priority Scheduling

Replace paragraph 1: [AI95-00321-01]

This clause describes the rules that determine which task is selected for execution when more than one task
is ready (see 9.2). The rules have two parts: the task dispatching model (see D.2.1), and a specific task
dispatching policy (see D.2.2).]

by:

This clause describes the rules that determine which task is selected for execution when more than one task
is ready (see 9).

D.2.1 The Task Dispatching Model

Replace paragraph 1: [AI95-00321-01; AI95-00355-01]

The task dispatching model specifies preemptive scheduling, based on conceptual priority-ordered ready
queues.

by:

The task dispatching model specifies task scheduling, based on conceptual priority-ordered ready queues.

Static Semantics

The following language-defined library package exists:

package Ada.Dispatching is
 pragma Pure(Dispatching);
 Dispatching_Policy_Error : exception;
end Ada.Dispatching;

Dispatching serves as the parent of other language-defined library units concerned with dispatching.

Replace paragraph 2: [AI95-00321-01]

A task runs (that is, it becomes a running task) only when it is ready (see 9.2) and the execution resources
required by that task are available. Processors are allocated to tasks based on each task's active priority.

by:

A task can become a running task only if it is ready (see 9) and the execution resources required by that task
are available. Processors are allocated to tasks based on each task's active priority.

Replace paragraph 4: [AI95-00321-01]

Task dispatching is the process by which one ready task is selected for execution on a processor. This
selection is done at certain points during the execution of a task called task dispatching points. A task
reaches a task dispatching point whenever it becomes blocked, and whenever it becomes ready. In addition,
the completion of an accept_statement (see 9.5.2), and task termination are task dispatching points for the
executing task. Other task dispatching points are defined throughout this Annex.

by:

Task dispatching is the process by which one ready task is selected for execution on a processor. This
selection is done at certain points during the execution of a task called task dispatching points. A task
reaches a task dispatching point whenever it becomes blocked, and when it terminates. Other task
dispatching points are defined throughout this Annex for specific policies.

ISO/IEC 8652:1995/WD.1:2004

138

Replace paragraph 5: [AI95-00321-01]

Task dispatching policies are specified in terms of conceptual ready queues, task states, and task preemption.
A ready queue is an ordered list of ready tasks. The first position in a queue is called the head of the queue,
and the last position is called the tail of the queue. A task is ready if it is in a ready queue, or if it is running.
Each processor has one ready queue for each priority value. At any instant, each ready queue of a processor
contains exactly the set of tasks of that priority that are ready for execution on that processor, but are not
running on any processor; that is, those tasks that are ready, are not running on any processor, and can be
executed using that processor and other available resources. A task can be on the ready queues of more than
one processor.

by:

Task dispatching policies are specified in terms of conceptual ready queues and task states. A ready queue is
an ordered list of ready tasks. The first position in a queue is called the head of the queue, and the last
position is called the tail of the queue. A task is ready if it is in a ready queue, or if it is running. Each
processor has one ready queue for each priority value. At any instant, each ready queue of a processor
contains exactly the set of tasks of that priority that are ready for execution on that processor, but are not
running on any processor; that is, those tasks that are ready, are not running on any processor, and can be
executed using that processor and other available resources. A task can be on the ready queues of more than
one processor.

Replace paragraph 6: [AI95-00321-01]

Each processor also has one running task, which is the task currently being executed by that processor.
Whenever a task running on a processor reaches a task dispatching point, one task is selected to run on that
processor. The task selected is the one at the head of the highest priority nonempty ready queue; this task is
then removed from all ready queues to which it belongs.

by:

Each processor also has one running task, which is the task currently being executed by that processor.
Whenever a task running on a processor reaches a task dispatching point it goes back to one or more ready
queues; a task (possibly the same task) is then selected to run on that processor. The task selected is the one
at the head of the highest priority nonempty ready queue; this task is then removed from all ready queues to
which it belongs.

Delete paragraph 7: [AI95-00321-01]

A preemptible resource is a resource that while allocated to one task can be allocated (temporarily) to
another instead. Processors are preemptible resources. Access to a protected object (see 9.5.1) is a
nonpreemptible resource. {preempted task} When a higher-priority task is dispatched to the processor, and
the previously running task is placed on the appropriate ready queue, the latter task is said to be preempted.

Delete paragraph 8: [AI95-00321-01]

A new running task is also selected whenever there is a nonempty ready queue with a higher priority than
the priority of the running task, or when the task dispatching policy requires a running task to go back to a
ready queue. These are also task dispatching points.

Replace paragraph 9: [AI95-00321-01]

An implementation is allowed to define additional resources as execution resources, and to define the
corresponding allocation policies for them. Such resources may have an implementation defined effect on
task dispatching (see D.2.2).

by:

An implementation is allowed to define additional resources as execution resources, and to define the
corresponding allocation policies for them. Such resources may have an implementation-defined effect on
task dispatching.

ISO/IEC 8652:1995/WD.1:2004

139

Insert after paragraph 10: [AI95-00321-01]

An implementation may place implementation-defined restrictions on tasks whose active priority is in the
Interrupt_Priority range.

the new paragraph:

For optimization purposes, an implementation may alter the points at which task dispatching occurs, in an
implementation-defined manner. However, a delay_statement always corresponds to at least one task
dispatching point.

Insert after paragraph 16: [AI95-00321-01]

12 The priority of a task is determined by rules specified in this subclause, and under D.1, ``Task Priorities'',
D.3, `` Priority Ceiling Locking'', and D.5, ``Dynamic Priorities''.

the new paragraph:

13 The setting of a task's base priority as a result of a call to Set_Priority does not always take effect
immediately when Set_Priority is called. The effect of setting the task's base priority is deferred while the
affected task performs a protected action.

D.2.2 Pragmas Task_Dispatching_Policy and Priority_Specific_Dispatching

Replace the title: [AI95-00321-01; AI95-00355-01]

The Standard Task Dispatching Policy

by:

Pragmas Task_Dispatching_Policy and Priority_Specific_Dispatching

Insert before paragraph 1: [AI95-00355-01]

Syntax

The form of a pragma Task_Dispatching_Policy is as follows:

the new paragraph:

This clause allows a single task dispatching policy to be defined for all priorities, or the range of priorities to
be split into subranges that are assigned distinct dispatching policies.

Insert after paragraph 2: [AI95-00355-01]

pragma Task_Dispatching_Policy (policy_identifier);

the new paragraphs:

The form of a pragma Priority_Specific_Dispatching is as follows:

pragma Priority_Specific_Dispatching (policy_identifier, first_priority_expression,
last_priority_expression);

Name Resolution Rules

The expected type for first_priority_expression and last_priority_expression is Integer.

Replace paragraph 3: [AI95-00321-01; AI95-00355-01]

The policy_identifier shall either be FIFO_Within_Priorities or an implementation-defined identifier.

by:

The policy_identifier used in a pragma Task_Dispatching_Policy shall be the name of a task dispatching
policy.

The policy_identifier policy_identifier used in a pragma Priority_Specific_Dispatching shall be the name of
a task dispatching policy.

ISO/IEC 8652:1995/WD.1:2004

140

Both first_priority_expression and last_priority_expression shall be static expressions in the range of
System.Any_Priority; last_priority_expression shall have a value greater than or equal to
first_priority_expression.

Static Semantics

Pragma Task_Dispatching_Policy specifies the task dispatching policy.

Pragma Priority_Specific_Dispatching specifies the task dispatching policy for the specified range of
priorities. Tasks within the range of priorities specified in a Priority_Specific_Dispatching pragma are
dispatched according to the specified dispatching policy.

If a partition contains one or more Priority_Specific_Dispatching pragmas the dispatching policy for
priorities not covered by any Priority_Specific_Dispatching pragmas is FIFO_Within_Priorities.

Replace paragraph 4: [AI95-00333-01; AI95-00355-01]

A Task_Dispatching_Policy pragma is a configuration pragma.

by:

A Task_Dispatching_Policy pragma is a configuration pragma. A Priority_Specific_Dispatching pragma is a
configuration pragma.

The priority ranges specified in more than one Priority_Specific_Dispatching pragma within the same
partition shall not be overlapping.

If a partition contains one or more Priority_Specific_Dispatching pragmas it shall not contain a
Task_Dispatching_Policy pragma.

Delete paragraph 5: [AI95-00321-01; AI95-00333-01]

If the FIFO_Within_Priorities policy is specified for a partition, then the Ceiling_Locking policy (see D.3)
shall also be specified for the partition.

Replace paragraph 6: [AI95-00355-01]

A task dispatching policy specifies the details of task dispatching that are not covered by the basic task
dispatching model. These rules govern when tasks are inserted into and deleted from the ready queues, and
whether a task is inserted at the head or the tail of the queue for its active priority. The task dispatching
policy is specified by a Task_Dispatching_Policy configuration pragma. If no such pragma appears in any of
the program units comprising a partition, the task dispatching policy for that partition is unspecified.

by:

A task dispatching policy specifies the details of task dispatching that are not covered by the basic task
dispatching model. These rules govern when tasks are inserted into and deleted from the ready queues. A
single task dispatching policy is specified by a Task_Dispatching_Policy pragma. Pragma
Priority_Specific_Dispatching assigns distinct dispatching policies to ranges of System.Any_Priority.

If neither pragma appears in any of the program units comprising a partition, the task dispatching policy for
that partition is unspecified.

If a partition contains one or more Priority_Specific_Dispatching pragmas a task dispatching point occurs
for the currently running task of a processor whenever there is a non-empty ready queue for that processor
with a higher priority than the priority of the running task.

A task that has its base priority changed may move from one dispatching policy to another. It is immediately
dispatched according to the new policy.

Delete paragraph 7: [AI95-00321-01]

The language defines only one task dispatching policy, FIFO_Within_Priorities; when this policy is in effect,
modifications to the ready queues occur only as follows:

ISO/IEC 8652:1995/WD.1:2004

141

Delete paragraph 8: [AI95-00321-01]

• When a blocked task becomes ready, it is added at the tail of the ready queue for its active priority.

Delete paragraph 9: [AI95-00321-01]

• When the active priority of a ready task that is not running changes, or the setting of its base
priority takes effect, the task is removed from the ready queue for its old active priority and is added
at the tail of the ready queue for its new active priority, except in the case where the active priority
is lowered due to the loss of inherited priority, in which case the task is added at the head of the
ready queue for its new active priority.

Delete paragraph 10: [AI95-00321-01]

• When the setting of the base priority of a running task takes effect, the task is added to the tail of
the ready queue for its active priority.

Delete paragraph 11: [AI95-00321-01]

• When a task executes a delay_statement that does not result in blocking, it is added to the tail of
the ready queue for its active priority.

Delete paragraph 12: [AI95-00321-01]

Each of the events specified above is a task dispatching point (see D.2.1).

Replace paragraph 13: [AI95-00321-01; AI95-00333-01; AI95-00355-01]

In addition, when a task is preempted, it is added at the head of the ready queue for its active priority.

by:

Implementation Requirements

An implementation shall allow specifying both one or more Priority_Specific_Dispatching pragmas and the
locking policy (see D.3) as Ceiling_Locking for a single partition.

Delete paragraph 14: [AI95-00321-01]

Priority inversion is the duration for which a task remains at the head of the highest priority ready queue
while the processor executes a lower priority task. The implementation shall document:

Delete paragraph 15: [AI95-00321-01]

• The maximum priority inversion a user task can experience due to activity of the implementation
(on behalf of lower priority tasks), and

Delete paragraph 16: [AI95-00321-01]

• whether execution of a task can be preempted by the implementation processing of delay expirations
for lower priority tasks, and if so, for how long.

Replace paragraph 17: [AI95-00256-01; AI95-00321-01; AI95-00355-01]

Implementations are allowed to define other task dispatching policies, but need not support more than one
such policy per partition.

by:

Implementations are allowed to define other task dispatching policies, but need not support more than one
task dispatching policy per partition.

An implementation need not support pragma Priority_Specific_Dispatching if it is infeasible to support it in
the target environment.

ISO/IEC 8652:1995/WD.1:2004

142

Delete paragraph 18: [AI95-00321-01]

For optimization purposes, an implementation may alter the points at which task dispatching occurs, in an
implementation defined manner. However, a delay_statement always corresponds to at least one task
dispatching point.

Delete paragraph 19: [AI95-00321-01]

13 If the active priority of a running task is lowered due to loss of inherited priority (as it is on completion of a
protected operation) and there is a ready task of the same active priority that is not running, the running task
continues to run (provided that there is no higher priority task).

Delete paragraph 20: [AI95-00321-01]

14 The setting of a task's base priority as a result of a call to Set_Priority does not always take effect
immediately when Set_Priority is called. The effect of setting the task's base priority is deferred while the
affected task performs a protected action.

Delete paragraph 21: [AI95-00321-01]

15 Setting the base priority of a ready task causes the task to move to the end of the queue for its active
priority, regardless of whether the active priority of the task actually changes.

D.2.3 Preemptive Dispatching

Insert new clause: [AI95-00321-01; AI95-00333-01; AI95-00355-01]

This clause defines a preemptive task dispatching policy.

Static Semantics

The policy_identifier FIFO_Within_Priorities is a task dispatching policy.

Dynamic Semantics

When FIFO_Within_Priorities is in effect, modifications to the ready queues occur only as follows:

• When a blocked task becomes ready, it is added at the tail of the ready queue for its active priority.

• When the active priority of a ready task that is not running changes, or the setting of its base
priority takes effect, the task is removed from the ready queue for its old active priority and is added
at the tail of the ready queue for its new active priority, except in the case where the active priority
is lowered due to the loss of inherited priority, in which case the task is added at the head of the
ready queue for its new active priority.

• When the setting of the base priority of a running task takes effect, the task is added to the tail of
the ready queue for its active priority.

• When a task executes a delay_statement that does not result in blocking, it is added to the tail of
the ready queue for its active priority.

Each of the events specified above is a task dispatching point (see D.2.1).

A task dispatching point occurs for the currently running task of a processor whenever there is a nonempty
ready queue for that processor with a higher priority than the priority of the running task. The currently
running task is said to be preempted and it is added at the head of the ready queue for its active priority.

Implementation Requirements

An implementation shall allow specifying both the task dispatching policy as FIFO_Within_Priorities and
the locking policy (see D.3) as Ceiling_Locking for a single partition.

Documentation Requirements

Priority inversion is the duration for which a task remains at the head of the highest priority nonempty ready
queue while the processor executes a lower priority task. The implementation shall document:

ISO/IEC 8652:1995/WD.1:2004

143

• The maximum priority inversion a user task can experience due to activity of the implementation
(on behalf of lower priority tasks), and

• whether execution of a task can be preempted by the implementation processing of delay expirations
for lower priority tasks, and if so, for how long.

NOTES

14 If the active priority of a running task is lowered due to loss of inherited priority (as it is on completion of a
protected operation) and there is a ready task of the same active priority that is not running, the running task
continues to run (provided that there is no higher priority task).

15 Setting the base priority of a ready task causes the task to move to the tail of the queue for its active
priority, regardless of whether the active priority of the task actually changes.

D.2.4 Non-Preemptive Dispatching

Insert new clause: [AI95-00298-01; AI95-00333-01; AI95-00355-01]

This clause defines a non-preemptive task dispatching policy.

Static Semantics

The policy_identifier Non_Preemptive_FIFO_Within_Priorities is a task dispatching policy.

Legality Rules

Non_Preemptive_FIFO_Within_Priorities shall not be specified as the policy_identifier of pragma
Priority_Specific_Dispatching (see D.2.2).

Dynamic Semantics

When Non_Preemptive_FIFO_Within_Priorities is in effect, modifications to the ready queues occur only as
follows:

• When a blocked task becomes ready, it is added at the tail of the ready queue for its active priority.

• When the active priority of a ready task that is not running changes, or the setting of its base
priority takes effect, the task is removed from the ready queue for its old active priority and is added
at the tail of the ready queue for its new active priority.

• When a task executes a delay_statement that does not result in blocking, it is added to the tail of the
ready queue for its active priority. This is a task dispatching point (see D.2.1).

Implementation Requirements

An implementation shall allow specifying both the task dispatching policy as
Non_Preemptive_FIFO_Within_Priorities and the locking policy (see D.3) as Ceiling_Locking for a single
partition.

Implementation Permissions

Since implementations are allowed to round all ceiling priorities in subrange System.Priority to
System.Priority'Last (see D.3), an implementation may allow a task to execute within a protected object
without raising its active priority provided the protected object does not contain pragma Interrupt_Priority,
Interrupt_Handler or Attach_Handler.

D.2.5 Round Robin Dispatching

Insert new clause: [AI95-00333-01; AI95-00355-01]

This clause defines the task dispatching policy Round_Robin_Within_Priorities and the package
Round_Robin_Dispatching.

Static Semantics

The policy_identifier Round_Robin_Within_Priorities is a task dispatching policy.

ISO/IEC 8652:1995/WD.1:2004

144

The following language-defined library package exists:

with System;
with Ada.Real_Time;
package Ada.Dispatching.Round_Robin_Dispatching is
 Default_Quantum : constant Ada.Real_Time.Time_Span :=
 implementation-defined;
 procedure Set_Quantum (Pri : in System.Priority;
 Quantum : in Ada.Real_Time.Time_Span);
 procedure Set_Quantum (Low, High : in System.Priority;
 Quantum : in Ada.Real_Time.Time_Span);
 function Actual_Quantum (Pri : System.Priority) return
Ada.Real_Time.Time_Span;
 function Is_Round_Robin (Pri : System.Priority) return Boolean;
end Ada.Dispatching.Round_Robin_Dispatching;

When task dispatching policy Round_Robin_Within_Priorities is the single policy in effect for a partition,
each task with priority in the range of System.Interrupt_Priority are dispatched according to policy
FIFO_Within_Priorities.

Dynamic Semantics

The procedure Set_Quantum sets the required quantum value for the priority level Pri in the first procedure,
and priorities in the range Low..High in the second procedure. If no quantum is set for a Round Robin
priority level, Default_Quantum is used.

The function Actual_Quantum returns the actual quantum used by the implementation for the priority level
Pri.

The function Is_Round_Robin returns True if priority Pri is covered by task dispatching policy
Round_Robin_Within_Priorities; otherwise it returns False.

A call of Actual_Quantum or Set_Quantum with a priority that is not covered by policy
Round_Robin_Within_Priorities raises exception Ada.Dispatching.Dispatching_Policy_Error.

For Round_Robin_Within_Priorities, the dispatching rules for FIFO_Within_Priorities apply with the
following additional rules:

• When a task is added or moved to the tail of the ready queue for its base priority, it has an
execution time budget equal to the quantum for that priority level. This will also occur when a
blocked task becomes executable again.

• When a task is preempted (by a higher priority task) and is added to the head of the ready queue
for its priority level, it retains its remaining budget.

• While a task is executing, its budget is decreased by the amount of execution time it uses. The
accuracy of this accounting is the same as that for execution time clocks (see D.14).

• A task that has its base priority set to a Round Robin priority is moved to the tail of the ready
queue for its new priority level.

• When a task has exhausted its budget and is without an inherited priority (and is not executing
within a protected operation), it is moved to the tail of the ready queue for its priority level. This is
a task dispatching point.

Implementation Requirements

An implementation shall allow specifying both the task dispatching policy as
Round_Robin_Within_Priorities and the locking policy (see D.3) as Ceiling_Locking for a single partition.

Documentation Requirements

An implementation shall document the range of quanta supported, or the distinct values supported.

An implementation shall document the accuracy with which it detects the exhaustion of the budget of a task.

NOTES

ISO/IEC 8652:1995/WD.1:2004

145

17 Due to implementation constraints, the quantum value returned by Actual_Quantum might not be identical
to that set with Set_Quantum.

18 A task that executes continuously with an inherited priority will not be subject to round robin dispatching.

D.3 Priority Ceiling Locking

Insert after paragraph 13: [AI95-00327-01]

• When a task calls a protected operation, a check is made that its active priority is not higher than
the ceiling of the corresponding protected object; Program_Error is raised if this check fails.

the new paragraphs:

Bounded (Run-Time) Errors

Following any change of priority, it is a bounded error for the active priority of any task with a call queued
on an entry of a protected object to be higher than the ceiling priority of the protected object. In this case one
of the following applies:

• at any time prior to executing the entry body Program_Error is raised in the calling task;

• when the entry is open the entry body is executed at the ceiling priority of the protected object;

• when the entry is open the entry body is executed at the ceiling priority of the protected object and
then Program_Error is raised in the calling task; or

• when the entry is open the entry body is executed at the ceiling priority of the protected object that
was in effect when the entry call was queued.

Replace paragraph 15: [AI95-00256-01]

Implementations are allowed to define other locking policies, but need not support more than one such policy
per partition.

by:

Implementations are allowed to define other locking policies, but need not support more than one locking
policy per partition.

D.4 Entry Queuing Policies

Replace paragraph 15: [AI95-00256-01]

Implementations are allowed to define other queuing policies, but need not support more than one such
policy per partition.

by:

Implementations are allowed to define other queuing policies, but need not support more than one queuing
policy per partition.

D.5 Dynamic Priorities

Insert before paragraph 1: [AI95-00327-01]

This clause specifies how the base priority of a task can be modified or queried at run time.

the new paragraphs:

This clause describes how the priority of an entity can be queried or modified at run time.

D.5.1 Dynamic Priorities for Tasks

[This changes the subclause of all of the existing text.]

ISO/IEC 8652:1995/WD.1:2004

146

Replace paragraph 3: [AI95-00362-01]

with System;
with Ada.Task_Identification; -- See C.7.1
package Ada.Dynamic_Priorities is

by:

with System;
with Ada.Task_Identification; -- See C.7.1
package Ada.Dynamic_Priorities is
 pragma Preelaborate(Dynamic_Priorities);

Delete paragraph 11: [AI95-00327-01]

If a task is blocked on a protected entry call, and the call is queued, it is a bounded error to raise its base
priority above the ceiling priority of the corresponding protected object. When an entry call is cancelled, it is
a bounded error if the priority of the calling task is higher than the ceiling priority of the corresponding
protected object. In either of these cases, either Program_Error is raised in the task that called the entry, or
its priority is temporarily lowered, or both, or neither.

D.5.2 Dynamic Priorities for Protected Objects

Insert new clause: [AI95-00327-01]

This clause specifies how the priority of a protected object can be modified or queried at run time.

Static Semantics

The following attribute of a protected object is defined:

P'Priority

Denotes a non-aliased component of the enclosing protected object P. This component is of type
System.Any_Priority and its value is the priority of P. Reference to this attribute shall appear only inside the
body of P.>

The initial value of this attribute is set by pragmas Priority or Interrupt_Priority, and can be changed by an
assignment.

Dynamic Semantics

If the Locking_Policy Ceiling_Locking is in effect then the ceiling priority of a protected object P is set to the
value of P'Priority at the end of each protected action of P.

Metrics

The implementation shall document the following metric:

• The difference in execution time of calls to the following procedures in protected object P,

 protected P is
 procedure Do_Not_Set_Ceiling (Pr : System.Any_Priority);
 procedure Set_Ceiling (Pr : System.Any_Priority);
 private
 null;
 end P;

 protected body P is
 procedure Do_Not_Set_Ceiling (Pr : System.Any_Priority) is
 begin
 null;
 end;
 procedure Set_Ceiling (Pr : System.Any_Priority) is
 begin
 P'Priority := Pr;

ISO/IEC 8652:1995/WD.1:2004

147

 end;
 end P;

NOTES

38 The value of P'Priority following an assignment to the attribute immediately reflects the new value even
though its impact on the ceiling priority of P is postponed until completion of the protected action in which it is
executed.

D.7 Tasking Restrictions

Replace paragraph 4: [AI95-00360-01]

No_Nested_Finalization
 Objects with controlled, protected, or task parts and access types that designate such objects, shall

be declared only at library level.

by:

No_Nested_Finalization
 Objects of a type that needs finalization (see 7.6) and access types that designate a type that needs

finalization (see 7.6) shall be declared only at library level.

Replace paragraph 9: [AI95-00327-01]

No_Dynamic_Priorities
 There are no semantic dependences on the package Dynamic_Priorities.

by:

No_Dynamic_Priorities
 There are no semantic dependences on the package Dynamic_Priorities, and no occurrences of

attribute 'Priority.

Insert after paragraph 10: [AI95-00305-01; AI95-00353-01]

No_Asynchronous_Control
 There are no semantic dependences on the package Asynchronous_Task_Control.

the new paragraphs:

No_Calendar
 There are no semantic dependencies on package Ada.Calendar.

No_Dynamic_Attachment
 There is no call to any of the operations defined in package Ada.Interrupts (Is_Reserved,

Is_Attached, Current_Handler, Attach_Handler, Exchange_Handler, Detach_Handler, and
Reference).

No_Local_Protected_Objects
 Protected objects shall be declared only at library level.

No_Protected_Type_Allocators
 There are no allocators for protected types or types containing protected type components.

No_Relative_Delay
 There are no delay_relative_statements.

No_Requeue_Statements
 There are no requeue_statements.

No_Select_Statements
 There are no select_statements.

No_Synchronous_Control

ISO/IEC 8652:1995/WD.1:2004

148

 There are no semantic dependences on the package Synchronous_Task_Control.

No_Task_Attributes_Package
 There are no semantic dependencies on package Ada.Task_Attributes.

Simple_Barriers
 The Boolean expression in an entry barrier shall be either a static Boolean expression or a Boolean

component of the enclosing protected object.

Replace paragraph 15: [AI95-00305-01]

This paragraph was deleted

by:

No_Task_Termination
 All tasks are non-terminating. It is implementation-defined what happens if a task attempts to

terminate.

Insert after paragraph 19: [AI95-00305-01]

Max_Tasks
 Specifies the maximum number of task creations that may be executed over the lifetime of a

partition, not counting the creation of the environment task. A value of zero prevents any task
creation and, if a program contains a task creation, it is illegal. If an implementation chooses to
detect a violation of this restriction, Storage_Error should be raised; otherwise, the behavior is
implementation defined.

the new paragraph:

Max_Entry_Queue_Length
 Max_Entry_Queue_Length defines the maximum number of calls that are queued on an entry.

Violation of this restriction results in the raising of Program_Error at the point of the call.

D.10 Synchronous Task Control

Replace paragraph 3: [AI95-00362-01]

package Ada.Synchronous_Task_Control is

by:

package Ada.Synchronous_Task_Control is
 pragma Preelaborate(Synchronous_Task_Control);

D.11 Asynchronous Task Control

Replace paragraph 3: [AI95-00362-01]

with Ada.Task_Identification;
package Ada.Asynchronous_Task_Control is
 procedure Hold(T : in Ada.Task_Identification.Task_ID);
 procedure Continue(T : in Ada.Task_Identification.Task_ID);
 function Is_Held(T : Ada.Task_Identification.Task_ID)
 return Boolean;
end Ada.Asynchronous_Task_Control;

by:

with Ada.Task_Identification;
package Ada.Asynchronous_Task_Control is
 pragma Preelaborate(Asynchronous_Task_Control);
 procedure Hold(T : in Ada.Task_Identification.Task_ID);
 procedure Continue(T : in Ada.Task_Identification.Task_ID);
 function Is_Held(T : Ada.Task_Identification.Task_ID)

ISO/IEC 8652:1995/WD.1:2004

149

 return Boolean;
end Ada.Asynchronous_Task_Control;

D.13 Run-time Profiles and the Ravenscar Profile

Insert new clause: [AI95-00249-01; AI95-00297-01]

This clause specifies a mechanism for defining run-time profiles. It also defines one such profile, Ravenscar.

Syntax

The form of a pragma Profile is as follows:

pragma Profile (profile_identifier [profile_argument_associations]);

profile_argument_associations ::= pragma_argument_association, {pragma_argument_association}

Legality Rules

The profile_identifier shall be either Ravenscar or an implementation-defined identifier. For
profile_identifier Ravenscar, there shall be no profile_argument_associations. For other
profile_identifiers, the semantics of any profile_argument_associations are implementation-defined.

Static Semantics

A profile is equivalent to the set of configuration pragmas that is defined for each profile_identifier. The
profile_identifier Ravenscar is equivalent to the following set of pragmas:

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (
 Max_Entry_Queue_Length => 1,
 Max_Protected_Entries => 1,
 Max_Task_Entries => 0,
 No_Abort_Statements,
 No_Asynchronous_Control,
 No_Calendar,
 No_Dynamic_Attachment,
 No_Dynamic_Priorities,
 No_Implicit_Heap_Allocations,
 No_Local_Timing_Events,
 No_Local_Protected_Objects,
 No_Protected_Type_Allocators,
 No_Relative_Delay,
 No_Requeue_Statements,
 No_Select_Statements,
 No_Task_Allocators,
 No_Task_Attributes_Package,
 No_Task_Hierarchy,
 No_Task_Termination,
 Simple_Barriers);

Post-Compilation Rules

A pragma Profile is a configuration pragma. There may be more than one pragma Profile for a partition.

NOTES

37 The effect of the Max_Entry_Queue_Length => 1 restriction applies only to protected entry queues due to
the accompanying restriction of Max_Task_Entries => 0.

D.14 Execution Time

Insert new clause: [AI95-00307-01]

This clause specifies an execution-time clock package.

Static Semantics

ISO/IEC 8652:1995/WD.1:2004

150

The following language-defined library package exists:

with Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Execution_Time is

 type CPU_Time is private;
 CPU_Time_First : constant CPU_Time;
 CPU_Time_Last : constant CPU_Time;
 CPU_Time_Unit : constant := implementation-defined-real-number;
 CPU_Tick : constant Time_Span;

 function Clock
 (T : Ada.Task_Identification.Task_ID
 := Ada.Task_Identification.Current_Task)
 return CPU_Time;

 function "+" (Left : CPU_Time; Right : Time_Span) return CPU_Time;
 function "+" (Left : Time_Span; Right : CPU_Time) return CPU_Time;
 function "-" (Left : CPU_Time; Right : Time_Span) return CPU_Time;
 function "-" (Left : CPU_Time; Right : CPU_Time) return Time_Span;

 function "<" (Left, Right : CPU_Time) return Boolean;
 function "<=" (Left, Right : CPU_Time) return Boolean;
 function ">" (Left, Right : CPU_Time) return Boolean;
 function ">=" (Left, Right : CPU_Time) return Boolean;

 procedure Split
 (T : CPU_Time; SC : out Seconds_Count; TS : out Time_Span);

 function Time_Of (SC : Seconds_Count; TS : Time_Span) return CPU_Time;

private
 ... -- not specified by the language
end Ada.Execution_Time;

Execution time or CPU time of a given task is defined as the time spent by the system executing that task,
including the time spent executing run-time or system services on behalf of it. The mechanism used to
measure execution time is implementation defined. It is implementation defined which task, if any, is
charged the execution time that is consumed by interrupt handlers and run-time services on behalf of the
system.

The type CPU_Time represents the execution time of a task. The set of values of the type CPU_Time
corresponds one-to-one with an implementation-defined range of mathematical integers.

The CPU_Time value I represents the half-open execution-time interval that starts with I*CPU_Time_Unit
and is limited by (I+1)*CPU_Time_Unit, where CPU_Time_Unit is an implementation-defined real number.
For each task, the execution time value is set to zero at some unspecified point between the task creation and
the start of the task's activation.

CPU_Time_First and CPU_Time_Last are the smallest and largest values of the Time type, respectively.

Dynamic Semantics

CPU_Time_Unit is the smallest amount of execution time representable by the CPU_Time type; it is
expressed in seconds. A CPU clock tick is an execution time interval during which the clock value (as
observed by calling the Clock function) remains constant. CPU_Tick is the average length of such intervals.

The effects of the operators on CPU_Time and Time_Span are as for the operators defined for integer types.

The function Clock returns the amount of execution time of the task associated with the execution-time clock
of the task represented by T.

The effects of the Split and Time_Of operations are defined as follows, treating values of type CPU_Time,
Time_Span, and Seconds_Count as mathematical integers. The effect of Split (T, SC, TS) is to set SC and
TS to values such that T*CPU_Time_Unit = SC*1.0 + TS*CPU_Time_Unit, and 0.0 <=

ISO/IEC 8652:1995/WD.1:2004

151

TS*CPU_Time_Unit < 1.0. The value returned by Time_Of(SC,TS) is the execution-time value T such that
T*CPU_Time_Unit=SC*1.0 + TS*CPU_Time_Unit.

For all the operations and types defined in this package, Tasking_Error is raised if the task identified by T
has terminated. Program_Error is raised if the value of T is Null_Task_ID.

Erroneous Execution

If a value of Task_ID is passed as a parameter to any of the subprograms of this package or used to define an
object declared by a type provided by this package (or any language-defined child package of this package)
and the corresponding task object no longer exists, the execution of the program is erroneous.

Implementation Requirements

The range of CPU_Time values shall be sufficient to uniquely represent the range of execution times from
the task start-up to 50 years of execution time later. CPU_Tick shall be no greater than 1 millisecond.

Documentation Requirements

The implementation shall document the values of CPU_Time_First, CPU_Time_Last, CPU_Time_Unit, and
CPU_Tick.

The implementation shall document the properties of the underlying mechanism used to measure execution
times, such as the range of values supported and any relevant aspects of the underlying hardware or
operating system facilities used.

Metrics

The implementation shall document the following metrics:

• An upper bound on the execution-time duration of a clock tick. This is a value D such that if t1 and
t2 are any execution times of a given task such that t1<t2 and Clock[t1]=Clock[t2] then t2-t1 <= D.

• An upper bound on the size of a clock jump. A clock jump is the difference between two successive
distinct values of an execution -time clock (as observed by calling the Clock function with the same
Task_Id).

• An upper bound on the execution time of a call to the Clock function, in processor clock cycles.

• Upper bounds on the execution times of the operators of the type CPU_Time, in processor clock
cycles.

Implementation Permissions

Implementations targeted to machines with word size smaller than 32 bits need not support the full range
and granularity of the CPU_Time type.

Implementation Advice

When appropriate, implementations should provide configuration mechanisms to change the value of
CPU_Tick.

D.14.1 Execution Time Timers

Insert new clause: [AI95-00307-01]

This clause specifies a child of Execution_Time that provides a facility for calling a handler when a task has
used a defined quantity of CPU time.

Static Semantics

The following language-defined library package exists:

with Ada.Task_Identification;
with System;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Execution_Time.Timers is

ISO/IEC 8652:1995/WD.1:2004

152

 type Timer (T : access Ada.Task_Identification.Task_ID) is
 limited private;

 type Handler is not null access protected procedure (TM : in out Timer);

 Min_Handler_Ceiling : constant System.Any_Priority :=
 implementation-defined;

 procedure Arm (TM: in out Timer; Interval : Time_Span; H : Handler);
 procedure Arm (TM: in out Timer; Abs_Time : CPU_Time; H : Handler);
 procedure Disarm(TM : in out Timer);

 function Timer_Has_Expired(TM : Timer) return Boolean;
 function Time_Remaining(TM : Timer) return Time_Span;

 Timer_Error : exception;
 Timer_Resource_Error : exception;

private
 ... -- not specified by the language
end Ada.Execution_Time.Timers;

The type Timer needs finalization (see 7.6).

Dynamic Semantics

Type Timer represents a software object that is capable of detecting execution time overruns. Each timer is
attached to a specific execution time clock, which is the clock of the task specified by the access discriminant
T. This type has operations for the application tasks to arm or disarm a timer, and to determine whether a
timer has expired or not (Timer_Has_Expired). In addition, when arming the timer, an access to a protected
procedure (type Handler) is passed. This procedure will be called by the implementation when the timer
expires.

The constant Min_Handler_Ceiling is the priority value that will insure that no ceiling violation will occur
when a handler is executed.

When a Timer object is created, or upon the first call to one of its Arm procedures, the resources required to
operate a CPU-time timer based on the associated execution-time clock will be allocated and initialized. The
timer is initialized in the disarmed state. If this operation would exceed the limit of the maximum number of
timers in the system, the Timer_Resource_Error exception is raised.

The Arm procedure that takes a Time_Span parameter loads the associated timer with the relative value
specified by Interval and sets it to the armed state. In this state the timer counts execution time and, when the
CPU clock associated with the timer measures the passage of Interval, it is said to have expired. If the timer
was already armed, it is rearmed.

The Arm procedure that takes a CPU_Time parameter loads the associated timer with the absolute value
specified by Abs_Time and sets it to the armed state. In this state the timer monitors execution time and,
when the CPU clock associated with the timer reaches the value Abs_Time, it is said to have expired. If the
value of Abs_Time had already been reached by the clock at the time of the call, the timer is set to the armed
state and is said to have expired. If the timer was already armed, it is rearmed.

When a Timer expires, the protected procedure Handler is invoked by the system with a parameter equal to
the Timer.

The Disarm procedure sets the timer to the disarmed state. In this state the timer will not expire.

The Time_Has_Expired function returns True if the timer is in the armed state and has expired, and returns
False if the timer is in the armed state but has not yet expired. If the timer is in the disarmed state, the
Timer_Error exception is raised.

The Time_Remaining function returns, when the timer is in the armed state, the CPU time interval that
remains until the timer will expire, or a value representing zero if the timer has expired. If the timer is in the
disarmed state, the Timer_Error exception is raised.

ISO/IEC 8652:1995/WD.1:2004

153

The Timer_Error exception is raised by Timer_Has_Expired, or Time_Remaining if an attempt is made to
use a timer that is in the disarmed state.

For all the operations and types defined in this package, Tasking_Error is raised if the task identified by T
has terminated. Program_Error is raised if the value of T is Null_Task_ID.

Implementation Requirements

For a given Timer object, the implementation shall perform the operations declared in this package
atomically with respect to any of these operations on the same Timer object.

When an object of type Timer is finalized, the system resources used by the timer shall be deallocated.

Implementation Permissions

Implementations may limit the number of timers that can be defined for each task. If this limit is exceeded
the Timer_Resource_Error exception is raised.

D.14.2 Group Execution Time Budgets

Insert new clause: [AI95-00354-01]

This clause specifies a group execution time control package.

Static Semantics

The following language-defined library package exists:

with System;
with Ada.Task_Identification;
package Ada.Execution_Time.Group_Budgets is
 type Group_Budget is limited private;

 type Handler is not null access
 protected procedure(GB : in out Group_Budget);

 type Task_Array is array(Positive range <>) of
 Ada.Task_Identification.Task_ID;

 Min_Handler_Ceiling : constant System.Any_Priority :=
 implementation-defined;

 procedure Add_Task(GB: in out Group_Budget;
 T : Ada.Task_Identification.Task_ID);
 procedure Remove_Task(GB: in out Group_Budget;
 T : Ada.Task_Identification.Task_ID);
 function Is_Member(GB: Group_Budget;
 T : Ada.Task_Identification.Task_ID) return Boolean;
 function Is_A_Group_Member(
 T : Ada.Task_Identification.Task_ID) return Boolean;
 function Members(GB: Group_Budget) return Task_Array;

 procedure Replenish (GB: in out Group_Budget; To : Time_Span);
 procedure Add(GB: in out Group_Budget; Interval : Time_Span);
 function Budget_Has_Expired(GB: Group_Budget) return Boolean;
 function Budget_Remaining(GB: Group_Budget) return Time_Span;

 procedure Set_Handler(GB: in out Group_Budget; H : Handler);
 function Current_Handler(GB: Group_Budget) return Handler;
 procedure Cancel_Handler(GB: in out Group_Budget;
 Cancelled : out Boolean);

 Group_Budget_Error : exception;
private
 -- not specified by the language
end Ada.Execution_Time.Group_Budgets;

ISO/IEC 8652:1995/WD.1:2004

154

The type Group_Budget represents a CPU budget to be used by a group of tasks. This type needs finalization
(see 7.6).

An object of type Group_Budget is said to be set if it has a registered Handler. An object is said to be cleared
if it has no Handler. All Group_Budget objects are initially cleared.

Dynamic Semantics

Tasks of any priority are added to a group by calling Add_Task. Tasks are members of at most one group.
Group_Budget_Error is raised by a call to Add_Task if the task is already a member of any group.

Tasks are removed from a group by calling Remove_Task. An attempt to remove a task that has not been
added to the group will cause Group_Budget_Error to be raised.

The Is_Member function will return True if the task parameter is a member of the specified group. The
Is_A_Group_Member function returns True if the task is a member of any group. Both return False
otherwise.

The Members function returns the task IDs of the members of the group.

When a call to Replenish is made, the Group_Budget is loaded with the Time_Span value passed as a
parameter. Any execution of the group of tasks results in the Group_Budget counting down. When the
budget is exhausted (goes to Time_Span_Zero) the handler, if set, is called; the tasks continue to execute. A
Group_Budget is initially loaded with zero budget.

A call to Budget_Remaining returns the remaining budget. If the budget is exhausted it will return
Time_Span_Zero. This is the minimum value for the budget. A call to Budget_Has_Expired will return True
if the budget is exhausted (equal to Time_Span_Zero), otherwise it returns False.

A Group_Budget can have its budget increased by calling Add. A negative value for the parameter will
reduce the budget, but never below Time_Span_Zero.

A call of Replenish with a non positive value of To will causes exception Group_Budget_Error to be raised.
A call to Add that results in the value of the budget going to Time_Span_Zero will cause the handler, if set,
to be executed.

A call to Set_Handler registers the Handler and returns when GB is set. A call to Set_Handler for a
Group_Budget that is already set, initially clears the Group_Budget then registers the new Handler.

A call to Current_Handler returns with the current Handler. If the Group_Budget denoted by GB is not set,
exception Group_Budget_Error is raised.

A call to Cancel_Handler returns after the Group_Budget denoted by GB is cleared. Cancelled is assigned
True if GB was set prior to it being cleared; otherwise the parameter is assigned False.

The constant Min_Handler_Ceiling is the priority value that will insure that no ceiling violation will occur
when a handler is executed.

The precision of the accounting of task execution time to a Group_Budget is the same as that defined for
execution-time clocks from the parent package.

As part of the finalization of an object of type Group_Budget all member tasks are removed from the group
identified by the object.

If a task is a member of a Group_Budget when it terminates then as part of the finalization of the task it is
removed from the group.

For all the operations and types defined in this package, Tasking_Error is raised if the task identified by T
has terminated. Program_Error is raised if the value of T is Null_Task_ID.

Implementation Requirements

For a given Group_Budget object, the implementation shall perform the operations declared in this package
atomically with respect to any of these operations on the same Group_Budget object.

ISO/IEC 8652:1995/WD.1:2004

155

D.15 Timing Events

Insert new clause: [AI95-00297-01]

This clause introduces a language-defined child package of Ada.Real_Time to allow user-defined protected
procedures to be executed at a specified time without the need to use a task or a delay statement.

Static Semantics

The following language-defined package exists:

package Ada.Real_Time.Timing_Events is
 type Timing_Event is limited private;
 type Timing_Event_Handler
 is access protected procedure(Event : in out Timing_Event);
 procedure Set_Handler(Event : in out Timing_Event;
 At_Time : in Time; Handler: in Timing_Event_Handler);
 procedure Set_Handler(Event : in out Timing_Event;
 In_Time: in Time_Span; Handler: in Timing_Event_Handler);
 function Is_Handler_Set(Event : Timing_Event) return Boolean;
 function Current_Handler(Event : Timing_Event)
 return Timing_Event_Handler;
 procedure Cancel_Handler(Event : in out Timing_Event;
 Cancelled : out Boolean);
 function Time_Of_Event(Event : Timing_Event) return Time;
private
 ... -- not specified by the language
end Ada.Real_Time.Timing_Events;

The type Timing_Event needs finalization (see 7.6).

An object of type Timing_Event is said to be set if it has a registered Timing_Event_Handler. An object is
said to be cleared if it has no registered Timing_Event_Handler. All Timing_Event objects are initially
cleared.

Dynamic Semantics

A call to a Set_Handler procedure returns after the Timing_Event_Handler denoted by Handler is registered.
The first Set_Handler procedure registers the Timing_Event_Handler for execution at time At_Time. The
second Set_Handler procedure registers the Timing_Event_Handler for execution at time
Ada.Real_Time.Clock + In_Time;

A call of either Set_Handler procedure is not a potentially blocking operation.

As soon as possible after the time registered for the event, the Timing_Event_Handler procedure is executed.
The Timing_Event_Handler is only executed if the timing event is set at the time of execution. As the initial
action of the execution of the Timing_Event_Handler the Timing_Event denoted by Event is cleared.

If the Ceiling_Locking policy (see D.3) is in effect when a Set_Handler procedure is called, a check is made
that the ceiling priority of Timing_Event_Handler is Interrupt_Priority'last. If the check fails,
Program_Error is raised.

If a Set_Handler procedure is called with zero or negative In_Time or with At_Time indicating a time in the
past then Timing_Event_Handler is executed immediately by the task executing the Set_Handler call. The
Timing_Event denoted by Event is cleared and the handler is not registered.

An exception propagated from a Timing_Event_Handler invoked by a timing event has no effect.

A call to Is_Handler_Set returns True if Event is set; otherwise it returns False.

A call to Current_Handler returns with the current Timing_Event_Handler. If the Timing_Event denoted by
Event is not set, Current_Handler returns null.

A call to Cancel_Handler returns after the Timing_Event denoted by Event is cleared. Cancelled is assigned
True if Event was set prior to it being cleared; otherwise the parameter is assigned False.

ISO/IEC 8652:1995/WD.1:2004

156

A call to Time_Of_Event returns with the time of Event. If Event is not set, Time_Of_Event returns
Ada.Real_Time.Time_First.

As the final step of finalization of an object of type Timing_Event, the Timing_Event is cleared.

If several timing events are registered for the same time, they are executed in FIFO order of registration.

Metrics

The Implementation shall document the following metric:

• An upper bound on the lateness of the execution of a registered handler. That is, the maximum time
between when a handler is actually executed and the time specified in the registration of that
handler.

Implementation Advice

The protected handler procedure should be executed directly by the real-time clock interrupt mechanism.

NOTES

Since a call to Set_Handling is a not a blocking operation, it can be called from within an object of type
Timing_Event_Handler.

ISO/IEC 8652:1995/WD.1:2004

157

Annex E: Distributed Systems

E.2.2 Remote Types Library Units

Replace paragraph 8: [AI95-00240-01]

• if the full view of a type declared in the visible part of the library unit has a part that is of a non-
remote access type, then that access type, or the type of some part that includes the access type
subcomponent, shall have user-specified Read and Write attributes.

by:

• if the full view of a type declared in the visible part of the library unit has a part that is of a non-
remote access type, then that access type, or the type of some part that includes the access type
subcomponent, shall have Read and Write attributes specified by a visible
attribute_definition_clause.

Replace paragraph 14: [AI95-00240-01]

• The primitive subprograms of the corresponding specific limited private type shall only have access
parameters if they are controlling formal parameters; each non-controlling formal parameter shall
have either a nonlimited type or a type with Read and Write attributes specified via an
attribute_definition_clause;

by:

• The primitive subprograms of the corresponding specific limited private type shall only have access
parameters if they are controlling formal parameters; each non-controlling formal parameter shall
have either a nonlimited type or a type with available Read and Write attributes (see 13.13.2);

E.2.3 Remote Call Interface Library Units

Replace paragraph 14: [AI95-00240-01]

• it shall not be, nor shall its visible part contain, a subprogram (or access-to-subprogram) declaration
whose profile has an access parameter, or a formal parameter of a limited type unless that limited
type has user-specified Read and Write attributes;

by:

• it shall not be, nor shall its visible part contain, a subprogram (or access-to-subprogram) declaration
whose profile has an access parameter, or a formal parameter of a limited type unless that limited
type has available Read and Write attributes (see 13.13.2);

E.5 Partition Communication Subsystem

Replace paragraph 1: [AI95-00273-01]

The Partition Communication Subsystem (PCS) provides facilities for supporting communication between
the active partitions of a distributed program. The package System.RPC is a language-defined interface to
the PCS. An implementation conforming to this Annex shall use the RPC interface to implement remote
subprogram calls.

by:

The Partition Communication Subsystem (PCS) provides facilities for supporting communication between
the active partitions of a distributed program. The package System.RPC is a language-defined interface to
the PCS.

ISO/IEC 8652:1995/WD.1:2004

158

Insert after paragraph 27: [AI95-00273-01]

A body for the package System.RPC need not be supplied by the implementation.

the new paragraph:

An alternative declaration is allowed for package System.RPC as long as it provides a set of operations that
is substantially equivalent to the specification defined in this clause.

ISO/IEC 8652:1995/WD.1:2004

159

Annex F: Information Systems
Replace paragraph 4: [AI95-00285-01]

• the child packages Text_IO.Editing and Wide_Text_IO.Editing, which support formatted and
localized output of decimal data, based on ''picture String'' values.

by:

• the child packages Text_IO.Editing, Wide_Text_IO.Editing,, and Wide_Wide_Text_IO.Editing
which support formatted and localized output of decimal data, based on ''picture String'' values.

F.3 Edited Output for Decimal Types

Replace paragraph 1: [AI95-00285-01]

The child packages Text_IO.Editing and Wide_Text_IO.Editing provide localizable formatted text output,
known as edited output , for decimal types. An edited output string is a function of a numeric value,
program-specifiable locale elements, and a format control value. The numeric value is of some decimal type.
The locale elements are:

by:

The child packages Text_IO.Editing, Wide_Text_IO.Editing, and Wide_Wide_Text_IO.Editing provide
localizable formatted text output, known as edited output, for decimal types. An edited output string is a
function of a numeric value, program-specifiable locale elements, and a format control value. The numeric
value is of some decimal type. The locale elements are:

Replace paragraph 6: [AI95-00285-01]

For Text_IO.Editing the edited output and currency strings are of type String, and the locale characters are
of type Character. For Wide_Text_IO.Editing their types are Wide_String and Wide_Character, respectively.

by:

For Text_IO.Editing the edited output and currency strings are of type String, and the locale characters are
of type Character. For Wide_Text_IO.Editing their types are Wide_String and Wide_Character, respectively.
For Wide_Wide_Text_IO.Editing their types are Wide_Wide_String and Wide_Wide_Character,
respectively.

Replace paragraph 19: [AI95-00285-01]

The generic packages Text_IO.Decimal_IO and Wide_Text_IO.Decimal_IO (see A.10.9, ''Input-Output for
Real Types'') provide text input and non-edited text output for decimal types.

by:

The generic packages Text_IO.Decimal_IO, Wide_Text_IO.Decimal_IO, and
Wide_Wide_Text_IO.Decimal_IO (see A.10.9, ''Input-Output for Real Types'') provide text input and non-
edited text output for decimal types.

Replace paragraph 20: [AI95-00285-01]

2 A picture String is of type Standard.String, both for Text_IO.Editing and Wide_Text_IO.Editing.

by:

2 A picture String is of type Standard.String, for all of Text_IO.Editing, Wide_Text_IO.Editing, and
Wide_Wide_Text_IO.Editing.

ISO/IEC 8652:1995/WD.1:2004

160

F.3.5 The Package Wide_Wide_Text_IO.Editing

Insert new clause: [AI95-00285-01]

Static Semantics

The child package Wide_Wide_Text_IO.Editing has the same contents as Text_IO.Editing, except that:

• each occurrence of Character is replaced by Wide_Wide_Character,

• each occurrence of Text_IO is replaced by Wide_Wide_Text_IO,

• the subtype of Default_Currency is Wide_Wide_String rather than String, and each occurrence of
String in the generic package Decimal_Output is replaced by Wide_Wide_String.

NOTES

6 Each of the functions Wide_Wide_Text_IO.Editing.Valid, To_Picture, and Pic_String has String (versus
Wide_Wide_String) as its parameter or result subtype, since a picture String is not localizable.

ISO/IEC 8652:1995/WD.1:2004

161

Annex G: Numerics

G.1.1 Complex Types

Replace paragraph 4: [AI95-00161-01]

 type Imaginary is private;

by:

 type Imaginary is private;
 pragma Preelaborable_Initialization(Imaginary);

G.1.2 Complex Elementary Functions

Replace paragraph 15: [AI95-00185-01]

The real (resp., imaginary) component of the result of the Arcsin and Arccos (resp., Arctanh)
functions is discontinuous as the parameter X crosses the real axis to the left of -1.0 or the right of
1.0.

by:

The imaginary component of the result of the Arcsin, Arccos, and Arctanh functions is
discontinuous as the parameter X crosses the real axis to the left of -1.0 or the right of 1.0.

Replace paragraph 16: [AI95-00185-01]

The real (resp., imaginary) component of the result of the Arctan (resp., Arcsinh) function is
discontinuous as the parameter X crosses the imaginary axis below -i or above i.

by:

The real component of the result of the Arctan and Arcsinh functions is discontinuous as the
parameter X crosses the imaginary axis below -i or above i.

Replace paragraph 17: [AI95-00185-01]

The real component of the result of the Arccot function is discontinuous as the parameter X crosses
the imaginary axis between -i and i.

by:

The real component of the result of the Arccot function is discontinuous as the parameter X crosses
the imaginary axis below -i or above i.

Replace paragraph 20: [AI95-00185-01]

The computed results of the mathematically multivalued functions are rendered single-valued by the
following conventions, which are meant to imply the principal branch:

by:

The computed results of the mathematically multivalued functions are rendered single-valued by the
following conventions, which are meant to imply that the principal branch is an analytic continuation of the
corresponding real-valued function in Ada.Numerics.Generic_Elementary_Functions. (For Arctan and
Arccot, the single-argument function in question is that obtained from the two-argument version by fixing
the second argument to be its default value.)

ISO/IEC 8652:1995/WD.1:2004

162

G.1.3 Complex Input-Output

Insert before paragraph 10: [AI95-00328-01]

The semantics of the Get and Put procedures are as follows:

the new paragraph:

The library package Complex_Text_IO defines the same subprograms as Text_IO.Complex_IO, except that
the predefined type Float is systematically substituted for Real, and the type
Numerics.Complex_Types.Complex is systematically substituted for Complex throughout. Non-generic
equivalents of Text_IO.Complex_IO corresponding to each of the other predefined floating point types are
defined similarly, with the names Short_Complex_Text_IO, Long_Complex_Text_IO, etc.

G.1.5 The Package Wide_Wide_Text_IO.Complex_IO

Insert new clause: [AI95-00285-01]

Static Semantics

Implementations shall also provide the generic library package Wide_Wide_Text_IO.Complex_IO. Its
declaration is obtained from that of Text_IO.Complex_IO by systematically replacing Text_IO by
Wide_Wide_Text_IO and String by Wide_Wide_String; the description of its behavior is obtained by
additionally replacing references to particular characters (commas, parentheses, etc.) by those for the
corresponding wide wide characters.

G.2.2 Model-Oriented Attributes of Floating Point Types

Replace paragraph 3: [AI95-00256-01]

Yields the number of digits in the mantissa of the canonical form of the model numbers of T (see A.5.3). The
value of this attribute shall be greater than or equal to Ceiling(d * log(10) / log(T'Machine_Radix)) + 1,
where d is the requested decimal precision of T. In addition, it shall be less than or equal to the value of
T'Machine_Mantissa. This attribute yields a value of the type universal_integer.

by:

Yields the number of digits in the mantissa of the canonical form of the model numbers of T (see A.5.3). The
value of this attribute shall be greater than or equal to

ceiling(d * log(10) / log(T'Machine_Radix)) + g

where d is the requested decimal precision of T, and g is 0 if Machine_Radix is a positive power of 10 and 1
otherwise. In addition, it shall be less than or equal to the value of T'Machine_Mantissa. This attribute yields
a value of the type universal_integer.

G.3 Vector and Matrix Manipulation

Insert new clause: [AI95-00296-01]

Types and operations for the manipulation of real vectors and matrices are provided in
Generic_Real_Arrays, which is defined in G.3.1. Types and operations for the manipulation of complex
vectors and matrices are provided in Generic_Complex_Arrays, which is defined in G.3.2. Both of these
library units are generic children of the predefined package Numerics (see A.5). Nongeneric equivalents of
these packages for each of the predefined floating point types are also provided as children of Numerics.

ISO/IEC 8652:1995/WD.1:2004

163

G.3.1 Real Vectors and Matrices

Insert new clause: [AI95-00296-01]

Static Semantics

The generic library package Numerics.Generic_Real_Arrays has the following declaration:

generic
 type Real is digits <>;
package Ada.Numerics.Generic_Real_Arrays is
 pragma Pure(Generic_Real_Arrays);

 -- Types

 type Real_Vector is array (Integer range <>) of Real'Base;
 type Real_Matrix is array (Integer range <>, Integer range <>) of
Real'Base;

 -- Subprograms for Real_Vector types

 -- Real_Vector arithmetic operations

 function "+" (Right : Real_Vector) return Real_Vector;
 function "-" (Right : Real_Vector) return Real_Vector;
 function "abs" (Right : Real_Vector) return Real_Vector;

 function "+" (Left, Right : Real_Vector) return Real_Vector;
 function "-" (Left, Right : Real_Vector) return Real_Vector;

 function "*" (Left, Right : Real_Vector) return Real'Base;

 -- Real_Vector scaling operations

 function "*" (Left : Real'Base; Right : Real_Vector) return Real_Vector;
 function "*" (Left : Real_Vector; Right : Real'Base) return Real_Vector;
 function "/" (Left : Real_Vector; Right : Real'Base) return Real_Vector;

 -- Other Real_Vector operations

 function Unit_Vector (Index : Integer;
 Order : Positive;
 First : Integer := 1) return Real_Vector;

 -- Subprograms for Real_Matrix types

 -- Real_Matrix arithmetic operations

 function "+" (Right : Real_Matrix) return Real_Matrix;
 function "-" (Right : Real_Matrix) return Real_Matrix;
 function "abs" (Right : Real_Matrix) return Real_Matrix;
 function Transpose (X : Real_Matrix) return Real_Matrix;

 function "+" (Left, Right : Real_Matrix) return Real_Matrix;
 function "-" (Left, Right : Real_Matrix) return Real_Matrix;
 function "*" (Left, Right : Real_Matrix) return Real_Matrix;

 function "*" (Left, Right : Real_Vector) return Real_Matrix;

 function "*" (Left : Real_Vector; Right : Real_Matrix) return Real_Vector;
 function "*" (Left : Real_Matrix; Right : Real_Vector) return Real_Vector;

 -- Real_Matrix scaling operations

 function "*" (Left : Real'Base; Right : Real_Matrix) return Real_Matrix;
 function "*" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;

ISO/IEC 8652:1995/WD.1:2004

164

 function "/" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;

 -- Real_Matrix inversion and related operations

 function Solve (A : Real_Matrix; X: Real_Vector) return Real_Vector;
 function Solve (A, X : Real_Matrix) return Real_Matrix;
 function Inverse (A : Real_Matrix) return Real_Matrix;
 function Determinant (A : Real_Matrix) return Real'Base;

 -- Eigenvalues and vectors of a real symmetric matrix

 function Eigenvalues(A : Real_Matrix) return Real_Vector;

 procedure Eigensystem(A : in Real_Matrix;
 Values : out Real_Vector;
 Vectors : out Real_Matrix);

 -- Other Real_Matrix operations

 function Unit_Matrix (Order : Positive;
 First_1, First_2 : Integer := 1)
 return Real_Matrix;

end Ada.Numerics.Generic_Real_Arrays;

The library package Numerics.Real_Arrays is declared pure and defines the same types and subprograms as
Numerics.Generic_Real_Arrays, except that the predefined type Float is systematically substituted for
Real'Base throughout. Nongeneric equivalents for each of the other predefined floating point types are
defined similarly, with the names Numerics.Short_Real_Arrays, Numerics.Long_Real_Arrays, etc.

Two types are defined and exported by Ada.Numerics.Generic_Real_Arrays. The composite type
Real_Vector is provided to represent a vector with components of type Real; it is defined as an
unconstrained, one-dimensional array with an index of type Integer. The composite type Real_Matrix is
provided to represent a matrix with components of type Real; it is defined as an unconstrained, two-
dimensional array with indices of type Integer.

The effect of the various functions is as described below. In most cases the functions are described in terms
of corresponding scalar operations of the type Real; any exception raised by those operations is propagated by
the array operation. Moreover, the accuracy of the result for each individual component is as defined for the
scalar operation unless stated otherwise.

In the case of those operations which are defined to involve an inner product, Constraint_Error may be
raised if an intermediate result is outside the range of Real'Base even though the mathematical final result
would not be.

function "+" (Right : Real_Vector) return Real_Vector;
function "-" (Right : Real_Vector) return Real_Vector;
function "abs" (Right : Real_Vector) return Real_Vector;

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Right. The index range of the result is Right'Range.

function "+" (Left, Right : Real_Vector) return Real_Vector;
function "-" (Left, Right : Real_Vector) return Real_Vector;

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Left and the matching component of Right. The index range of the result is
Left'Range. Constraint_Error is raised if Left'Length is not equal to Right'Length.

function "*" (Left, Right : Real_Vector) return Real'Base;

This operation returns the inner product of Left and Right. Constraint_Error is raised if Left'Length
is not equal to Right'Length. This operation involves an inner product.

function "*" (Left : Real'Base; Right : Real_Vector) return Real_Vector;

ISO/IEC 8652:1995/WD.1:2004

165

This operation returns the result of multiplying each component of Right by the scalar Left using
the "*" operation of the type Real. The index range of the result is Right'Range.

function "*" (Left : Real_Vector; Right : Real'Base) return Real_Vector;
function "/" (Left : Real_Vector; Right : Real'Base) return Real_Vector;

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Left and to the scalar Right. The index range of the result is Left'Range.

function Unit_Vector (Index : Integer;
 Order : Positive;
 First : Integer := 1) return Real_Vector;

This function returns a "unit vector" with Order components and a lower bound of First. All
components are set to 0.0 except for the Index component which is set to 1.0. Constraint_Error is
raised if Index < First, Index > First + Order - 1 or if First + Order - 1 > Integer'Last.

function "+" (Right : Real_Matrix) return Real_Matrix;
function "-" (Right : Real_Matrix) return Real_Matrix;
function "abs" (Right : Real_Matrix) return Real_Matrix;

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Right. The index ranges of the result are those of Right.

function Transpose (X : Real_Matrix) return Real_Matrix;

This function returns the transpose of a matrix X. The first and second index ranges of the result are
X'Range(2) and X'Range(1) respectively.

function "+" (Left, Right : Real_Matrix) return Real_Matrix;
function "-" (Left, Right : Real_Matrix) return Real_Matrix;

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Left and the matching component of Right. The index ranges of the result are those of
Left. Constraint_Error is raised if Left'Length(1) is not equal to Right'Length(1) or Left'Length(2) is
not equal to Right'Length(2).

function "*" (Left, Right : Real_Matrix) return Real_Matrix;

This operation provides the standard mathematical operation for matrix multiplication. The first
and second index ranges of the result are Left'Range(1) and Right'Range(2) respectively.
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length(1). This operation involves
inner products.

function "*" (Left, Right : Real_Vector) return Real_Matrix;

This operation returns the outer product of a (column) vector Left by a (row) vector Right using the
operation "*" of the type Real for computing the individual components. The first and second index
ranges of the matrix result are Left'Range and Right'Range respectively.

function "*" (Left : Real_Vector; Right : Real_Matrix) return Real_Vector;

This operation provides the standard mathematical operation for multiplication of a (row) vector
Left by a matrix Right. The index range of the (row) vector result is Right'Range(2).
Constraint_Error is raised if Left'Length is not equal to Right'Length(1). This operation involves
inner products.

function "*" (Left : Real_Matrix; Right : Real_Vector) return Real_Vector;

This operation provides the standard mathematical operation for multiplication of a matrix Left by a
(column) vector Right. The index range of the (column) vector result is Left'Range(1).
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length. This operation involves
inner products.

function "*" (Left : Real'Base; Right : Real_Matrix) return Real_Matrix;

This operation returns the result of multiplying each component of Right by the scalar Left using
the "*" operation of the type Real. The index ranges of the matrix result are those of Right.

ISO/IEC 8652:1995/WD.1:2004

166

function "*" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;
function "/" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Left and to the scalar Right. The index ranges of the matrix result are those of Left.

function Solve (A : Real_Matrix; X: Real_Vector) return Real_Vector;

This function returns a vector Y such that X is (nearly) equal to A * Y. This is the standard
mathematical operation for solving a single set of linear equations. The index range of the result is
X'Range. Constraint_Error is raised if A'Length(1), A'Length(2) and X'Length are not equal.
Constraint_Error is raised if the matrix A is ill-conditioned.

function Solve (A, X : Real_Matrix) return Real_Matrix;

This function returns a matrix Y such that X is (nearly) equal to A * Y. This is the standard
mathematical operation for solving several sets of linear equations. The index ranges of the result
are those of X. Constraint_Error is raised if A'Length(1), A'Length(2) and X'Length(1) are not
equal. Constraint_Error is raised if the matrix A is ill-conditioned.

function Inverse (A : Real_Matrix) return Real_Matrix;

This function returns a matrix B such that A * B is (nearly) equal to the unit matrix. The index
ranges of the result are those of A. Constraint_Error is raised if A'Length(1) is not equal to
A'Length(2). Constraint_Error is raised if the matrix A is ill-conditioned.

function Determinant (A : Real_Matrix) return Real'Base;

This function returns the determinant of the matrix A. Constraint_Error is raised if A'Length(1) is
not equal to A'Length(2).

function Eigenvalues(A : Real_Matrix) return Real_Vector;

This function returns the eigenvalues of the symmetric matrix A as a vector sorted into order with
the largest first. Constraint_Error is raised if A'Length(1) is not equal to A'Length(2). The index
range of the result is A'Range(1). Argument_Error is raised if the matrix A is not symmetric.

procedure Eigensystem(A : in Real_Matrix;
 Values : out Real_Vector;
 Vectors : out Real_Matrix);

This procedure computes both the eigenvalues and eigenvectors of the symmetric matrix A. The out
parameter Values is the same as that obtained by calling the function Eigenvalues. The out
parameter Vectors is a matrix whose columns are the eigenvectors of the matrix A. The order of the
columns corresponds to the order of the eigenvalues. The eigenvectors are normalized and mutually
orthogonal (they are orthonormal), including when there are repeated eigenvalues. Constraint_Error
is raised if A'Length(1) is not equal to A'Length(2). The index ranges of the parameter Vectors are
those of A. Argument_Error is raised if the matrix A is not symmetric.

function Unit_Matrix (Order : Positive;
 First_1, First_2 : Integer := 1) return Real_Matrix;

This function returns a square "unit matrix" with Order**2 components and lower bounds of
First_1 and First_2 (for the first and second index ranges respectively). All components are set to
0.0 except for the main diagonal, whose components are set to 1.0. Constraint_Error is raised if
First_1 + Order - 1 > Integer'Last or First_2 + Order - 1 > Integer'Last.

Implementation Requirements

Accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigenvalues and Eigensystem are
implementation defined.

For operations not involving an inner product, the accuracy requirements are those of the corresponding
operations of the type Real in both the strict mode and the relaxed mode (see G.2).

ISO/IEC 8652:1995/WD.1:2004

167

For operations involving an inner product, no requirements are specified in the relaxed mode. In the strict
mode the modulus of the absolute error of the inner product X*Y shall not exceed g*abs(X)*abs(Y) where g
is defined as

g = X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa)

Documentation Requirements

Implementations shall document any techniques used to reduce cancellation errors such as extended
precision arithmetic.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

Implementation Advice

Implementations should implement the Solve and Inverse functions using established techniques such as LU
decomposition with row interchanges followed by back and forward substitution. Implementations are
recommended to refine the result by performing an iteration on the residuals; if this is done then it should be
documented.

It is not the intention that any special provision should be made to determine whether a matrix is ill-
conditioned or not. The naturally occurring overflow (including division by zero) which will result from
executing these functions with an ill-conditioned matrix and thus raise Constraint_Error is sufficient.

The test that a matrix is symmetric may be performed by using the equality operator to compare the relevant
components.

G.3.2 Complex Vectors and Matrices

Insert new clause: [AI95-00296-01]

Static Semantics

The generic library package Numerics.Generic_Complex_Arrays has the following declaration:

with Ada.Numerics.Generic_Real_Arrays, Ada.Numerics.Generic_Complex_Types;
generic
 with package Real_Arrays is new Ada.Numerics.Generic_Real_Arrays (<>);
 use Real_Arrays;
 with package Complex_Types is new Ada.Numerics.Generic_Complex_Types
(Real);
 use Complex_Types;
package Ada.Numerics.Generic_Complex_Arrays is
 pragma Pure(Generic_Complex_Arrays);

 -- Types

 type Complex_Vector is array (Integer range <>) of Complex;
 type Complex_Matrix is array (Integer range <>,
 Integer range <>) of Complex;

 -- Subprograms for Complex_Vector types

 -- Complex_Vector selection, conversion and composition operations

 function Re (X : Complex_Vector) return Real_Vector;
 function Im (X : Complex_Vector) return Real_Vector;

 procedure Set_Re (X : in out Complex_Vector;
 Re : in Real_Vector);
 procedure Set_Im (X : in out Complex_Vector;
 Im : in Real_Vector);

ISO/IEC 8652:1995/WD.1:2004

168

 function Compose_From_Cartesian (Re : Real_Vector) return
Complex_Vector;
 function Compose_From_Cartesian (Re, Im : Real_Vector) return
Complex_Vector;

 function Modulus (X : Complex_Vector) return Real_Vector;
 function "abs" (Right : Complex_Vector) return Real_Vector
 renames Modulus;
 function Argument (X : Complex_Vector) return Real_Vector;
 function Argument (X : Complex_Vector;
 Cycle : Real'Base) return Real_Vector;

 function Compose_From_Polar (Modulus, Argument : Real_Vector)
 return Complex_Vector;
 function Compose_From_Polar (Modulus, Argument : Real_Vector;
 Cycle : Real'Base)
 return Complex_Vector;

 -- Complex_Vector arithmetic operations

 function "+" (Right : Complex_Vector) return Complex_Vector;
 function "-" (Right : Complex_Vector) return Complex_Vector;
 function Conjugate (X : Complex_Vector) return Complex_Vector;

 function "+" (Left, Right : Complex_Vector) return Complex_Vector;
 function "-" (Left, Right : Complex_Vector) return Complex_Vector;

 function "*" (Left, Right : Complex_Vector) return Complex;

 -- Mixed Real_Vector and Complex_Vector arithmetic operations

 function "+" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Vector;
 function "+" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Vector;
 function "-" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Vector;
 function "-" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Vector;

 function "*" (Left : Real_Vector; Right : Complex_Vector) return
Complex;
 function "*" (Left : Complex_Vector; Right : Real_Vector) return
Complex;

 -- Complex_Vector scaling operations

 function "*" (Left : Complex;
 Right : Complex_Vector) return Complex_Vector;
 function "*" (Left : Complex_Vector;
 Right : Complex) return Complex_Vector;
 function "/" (Left : Complex_Vector;
 Right : Complex) return Complex_Vector;

 function "*" (Left : Real'Base;
 Right : Complex_Vector) return Complex_Vector;
 function "*" (Left : Complex_Vector;
 Right : Real'Base) return Complex_Vector;
 function "/" (Left : Complex_Vector;
 Right : Real'Base) return Complex_Vector;

 -- Other Complex_Vector operations

 function Unit_Vector (Index : Integer;
 Order : Positive;

ISO/IEC 8652:1995/WD.1:2004

169

 First : Integer := 1) return Complex_Vector;

 -- Subprograms for Complex_Matrix types

 -- Complex_Matrix selection, conversion and composition operations

 function Re (X : Complex_Matrix) return Real_Matrix;
 function Im (X : Complex_Matrix) return Real_Matrix;

 procedure Set_Re (X : in out Complex_Matrix;
 Re : in Real_Matrix);
 procedure Set_Im (X : in out Complex_Matrix;
 Im : in Real_Matrix);

 function Compose_From_Cartesian (Re : Real_Matrix) return
Complex_Matrix;
 function Compose_From_Cartesian (Re, Im : Real_Matrix) return
Complex_Matrix;

 function Modulus (X : Complex_Matrix) return Real_Matrix;
 function "abs" (Right : Complex_Matrix) return Real_Matrix
 renames Modulus;

 function Argument (X : Complex_Matrix) return Real_Matrix;
 function Argument (X : Complex_Matrix;
 Cycle : Real'Base) return Real_Matrix;

 function Compose_From_Polar (Modulus, Argument : Real_Matrix)
 return Complex_Matrix;
 function Compose_From_Polar (Modulus, Argument : Real_Matrix;
 Cycle : Real'Base)
 return Complex_Matrix;

 -- Complex_Matrix arithmetic operations

 function "+" (Right : Complex_Matrix) return Complex_Matrix;
 function "-" (Right : Complex_Matrix) return Complex_Matrix;
 function Conjugate (X : Complex_Matrix) return Complex_Matrix;
 function Transpose (X : Complex_Matrix) return Complex_Matrix;

 function "+" (Left, Right : Complex_Matrix) return Complex_Matrix;
 function "-" (Left, Right : Complex_Matrix) return Complex_Matrix;
 function "*" (Left, Right : Complex_Matrix) return Complex_Matrix;

 function "*" (Left, Right : Complex_Vector) return Complex_Matrix;

 function "*" (Left : Complex_Vector;
 Right : Complex_Matrix) return Complex_Vector;
 function "*" (Left : Complex_Matrix;
 Right : Complex_Vector) return Complex_Vector;

 -- Mixed Real_Matrix and Complex_Matrix arithmetic operations

 function "+" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
 function "+" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;
 function "-" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
 function "-" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;
 function "*" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
 function "*" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;

ISO/IEC 8652:1995/WD.1:2004

170

 function "*" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Matrix;
 function "*" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Matrix;

 function "*" (Left : Real_Vector;
 Right : Complex_Matrix) return Complex_Vector;
 function "*" (Left : Complex_Vector;
 Right : Real_Matrix) return Complex_Vector;
 function "*" (Left : Real_Matrix;
 Right : Complex_Vector) return Complex_Vector;
 function "*" (Left : Complex_Matrix;
 Right : Real_Vector) return Complex_Vector;

 -- Complex_Matrix scaling operations

 function "*" (Left : Complex;
 Right : Complex_Matrix) return Complex_Matrix;
 function "*" (Left : Complex_Matrix;
 Right : Complex) return Complex_Matrix;
 function "/" (Left : Complex_Matrix;
 Right : Complex) return Complex_Matrix;

 function "*" (Left : Real'Base;
 Right : Complex_Matrix) return Complex_Matrix;
 function "*" (Left : Complex_Matrix;
 Right : Real'Base) return Complex_Matrix;
 function "/" (Left : Complex_Matrix;
 Right : Real'Base) return Complex_Matrix;

 -- Complex_Matrix inversion and related operations

 function Solve (A : Complex_Matrix; X: Complex_Vector) return
Complex_Vector;
 function Solve (A, X : Complex_Matrix) return Complex_Matrix;
 function Inverse (A : Complex_Matrix) return Complex_Matrix;
 function Determinant (A : Complex_Matrix) return Complex;

 -- Eigenvalues and vectors of a Hermitian matrix

 function Eigenvalues(A : Complex_Matrix) return Real_Vector;

 procedure Eigensystem(A : in Complex_Matrix;
 Values : out Real_Vector;
 Vectors : out Complex_Matrix);

 -- Other Complex_Matrix operations

 function Unit_Matrix (Order : Positive;
 First_1, First_2 : Integer := 1)
 return Complex_Matrix;

end Ada.Numerics.Generic_Complex_Arrays;

The library package Numerics.Complex_Arrays is declared pure and defines the same types and
subprograms as Numerics.Generic_Complex_Arrays, except that the predefined type Float is systematically
substituted for Real'Base, and the Real_Vector and Real_Matrix types exported by Numerics.Real_Arrays are
systematically substituted for Real_Vector and Real_Matrix, and the Complex type exported by
Numerics.Complex_Types is systematically substituted for Complex, throughout. Nongeneric equivalents for
each of the other predefined floating point types are defined similarly, with the names
Numerics.Short_Complex_Arrays, Numerics.Long_Complex_Arrays, etc.

ISO/IEC 8652:1995/WD.1:2004

171

Two types are defined and exported by Ada.Numerics.Generic_Complex_Arrays. The composite type
Complex_Vector is provided to represent a vector with components of type Complex; it is defined as an
unconstrained one-dimensional array with an index of type Integer. The composite type Complex_Matrix is
provided to represent a matrix with components of type Complex; it is defined as an unconstrained, two-
dimensional array with indices of type Integer.

The effect of the various subprograms is as described below. In many cases they are described in terms of
corresponding scalar operations in Numerics.Generic_Complex_Types. Any exception raised by those
operations is propagated by the array subprogram. Moreover, any constraints on the parameters and the
accuracy of the result for each individual component are as defined for the scalar operation.

In the case of those operations which are defined to involve an inner product, Constraint_Error may be
raised if an intermediate result has a component outside the range of Real'Base even though the final
mathematical result would not.

function Re (X : Complex_Vector) return Real_Vector;
function Im (X : Complex_Vector) return Real_Vector;

Each function returns a vector of the specified cartesian components of X. The index range of the
result is X'Range.

procedure Set_Re (X : in out Complex_Vector; Re : in Real_Vector);
procedure Set_Im (X : in out Complex_Vector; Im : in Real_Vector);

Each procedure replaces the specified (cartesian) component of each of the components of X by the
value of the matching component of Re or Im; the other (cartesian) component of each of the
components is unchanged. Constraint_Error is raised if X'Length is not equal to Re'Length or
Im'Length.

function Compose_From_Cartesian (Re : Real_Vector) return Complex_Vector;
function Compose_From_Cartesian (Re, Im : Real_Vector) return Complex_Vector;

Each function constructs a vector of Complex results (in cartesian representation) formed from
given vectors of cartesian components; when only the real components are given, imaginary
components of zero are assumed. The index range of the result is Re'Range. Constraint_Error is
raised if Re'Length is not equal to Im'Length.

function Modulus (X : Complex_Vector) return Real_Vector;
function "abs" (Right : Complex_Vector) return Real_Vector renames
Modulus;
function Argument (X : Complex_Vector) return Real_Vector;
function Argument (X : Complex_Vector;
 Cycle : Real'Base) return Real_Vector;

Each function calculates and returns a vector of the specified polar components of X or Right using
the corresponding function in Numerics.Generic_Complex_Types. The index range of the result is
X'Range or Right'Range.

function Compose_From_Polar (Modulus, Argument : Real_Vector)
 return Complex_Vector;
function Compose_From_Polar (Modulus, Argument : Real_Vector; Cycle :
Real'Base)
 return Complex_Vector;

Each function constructs a vector of Complex results (in cartesian representation) formed from
given vectors of polar components using the corresponding function in
Numerics.Generic_Complex_Types on matching components of Modulus and Argument. The index
range of the result is Modulus'Range. Constraint_Error is raised if Modulus'Length is not equal to
Argument'Length.

function "+" (Right : Complex_Vector) return Complex_Vector;
function "-" (Right : Complex_Vector) return Complex_Vector;

ISO/IEC 8652:1995/WD.1:2004

172

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of Right. The index range of the result is
Right'Range.

function Conjugate (X : Complex_Vector) return Complex_Vector;

This function returns the result of applying the appropriate function Conjugate in
Numerics.Generic_Complex_Types to each component of X. The index range of the result is
X'Range.

function "+" (Left, Right : Complex_Vector) return Complex_Vector;
function "-" (Left, Right : Complex_Vector) return Complex_Vector;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of Left and the matching component of
Right. The index range of the result is Left'Range. Constraint_Error is raised if Left'Length is not
equal to Right'Length.

function "*" (Left, Right : Complex_Vector) return Complex;

This operation returns the inner product of Left and Right. Constraint_Error is raised if Left'Length
is not equal to Right'Length. This operation involves an inner product.

function "+" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Vector;
function "+" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Vector;
function "-" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Vector;
function "-" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Vector;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of Left and the matching component of
Right. The index range of the result is Left'Range. Constraint_Error is raised if Left'Length is not
equal to Right'Length.

function "*" (Left : Real_Vector; Right : Complex_Vector) return Complex;
function "*" (Left : Complex_Vector; Right : Real_Vector) return Complex;

Each operation returns the inner product of Left and Right. Constraint_Error is raised if Left'Length
is not equal to Right'Length. These operations involve an inner product.

function "*" (Left : Complex; Right : Complex_Vector) return Complex_Vector;

This operation returns the result of multiplying each component of Right by the complex number
Left using the appropriate operation "*" in Numerics.Generic_Complex_Types. The index range of
the result is Right'Range.

function "*" (Left : Complex_Vector; Right : Complex) return Complex_Vector;
function "/" (Left : Complex_Vector; Right : Complex) return Complex_Vector;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of the vector Left and the complex number
Right. The index range of the result is Left'Range.

function "*" (Left : Real'Base; Right : Complex_Vector) return
Complex_Vector;

This operation returns the result of multiplying each component of Right by the real number Left
using the appropriate operation "*" in Numerics.Generic_Complex_Types. The index range of the
result is Right'Range.

function "*" (Left : Complex_Vector; Right : Real'Base) return
Complex_Vector;
function "/" (Left : Complex_Vector; Right : Real'Base) return
Complex_Vector;

ISO/IEC 8652:1995/WD.1:2004

173

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of the vector Left and the real number
Right. The index range of the result is Left'Range.

function Unit_Vector (Index : Integer;
 Order : Positive;
 First : Integer := 1) return Complex_Vector;

This function returns a "unit vector" with Order components and a lower bound of First. All
components are set to (0.0,0.0) except for the Index component which is set to (1.0,0.0).
Constraint_Error is raised if Index < First, Index > First + Order - 1, or if First + Order - 1 >
Integer'Last.

function Re (X : Complex_Matrix) return Real_Matrix;
function Im (X : Complex_Matrix) return Real_Matrix;

Each function returns a matrix of the specified cartesian components of X. The index ranges of the
result are those of X.

procedure Set_Re (X : in out Complex_Matrix; Re : in Real_Matrix);
procedure Set_Im (X : in out Complex_Matrix; Im : in Real_Matrix);

Each procedure replaces the specified (cartesian) component of each of the components of X by the
value of the matching component of Re or Im; the other (cartesian) component of each of the
components is unchanged. Constraint_Error is raised if X'Length(1) is not equal to Re'Length(1) or
Im'Length(1) or if X'Length(2) is not equal to Re'Length(2) or Im'Length(2).

function Compose_From_Cartesian (Re : Real_Matrix) return Complex_Matrix;
function Compose_From_Cartesian (Re, Im : Real_Matrix) return Complex_Matrix;

Each function constructs a matrix of Complex results (in cartesian representation) formed from
given matrices of cartesian components; when only the real components are given, imaginary
components of zero are assumed. The index ranges of the result are those of Re. Constraint_Error is
raised if Re'Length(1) is not equal to Im'Length(1) or Re'Length(2) is not equal to Im'Length(2).

function Modulus (X : Complex_Matrix) return Real_Matrix;
function "abs" (Right : Complex_Matrix) return Real_Matrix renames
Modulus;
function Argument (X : Complex_Matrix) return Real_Matrix;
function Argument (X : Complex_Matrix;
 Cycle : Real'Base) return Real_Matrix;

Each function calculates and returns a matrix of the specified polar components of X or Right using
the corresponding function in Numerics.Generic_Complex_Types. The index ranges of the result
are those of X or Right.

function Compose_From_Polar (Modulus, Argument : Real_Matrix)
 return Complex_Matrix;
function Compose_From_Polar (Modulus, Argument : Real_Matrix;
 Cycle : Real'Base)
 return Complex_Matrix;

Each function constructs a matrix of Complex results (in cartesian representation) formed from
given matrices of polar components using the corresponding function in
Numerics.Generic_Complex_Types on matching components of Modulus and Argument. The index
ranges of the result are those of Modulus. Constraint_Error is raised if Modulus'Length(1) is not
equal to Argument'Length(1) or Modulus'Length(2) is not equal to Argument'Length(2).

function "+" (Right : Complex_Matrix) return Complex_Matrix;
function "-" (Right : Complex_Matrix) return Complex_Matrix;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of Right. The index ranges of the result are
those of Right.

function Conjugate (X : Complex_Matrix) return Complex_Matrix;

ISO/IEC 8652:1995/WD.1:2004

174

This function returns the result of applying the appropriate function Conjugate in
Numerics.Generic_Complex_Types to each component of X. The index ranges of the result are
those of X.

function Transpose (X : Complex_Matrix) return Complex_Matrix;

This function returns the transpose of a matrix X. The first and second index ranges of the result are
X'Range(2) and X'Range(1) respectively.

function "+" (Left, Right : Complex_Matrix) return Complex_Matrix;
function "-" (Left, Right : Complex_Matrix) return Complex_Matrix;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of Left and the matching component of
Right. The index ranges of the result are those of Left. Constraint_Error is raised if Left'Length(1)
is not equal to Right'Length(1) or Left'Length(2) is not equal to Right'Length(2).

function "*" (Left, Right : Complex_Matrix) return Complex_Matrix;

This operation provides the standard mathematical operation for matrix multiplication. The first
and second index ranges of the result are Left'Range(1) and Right'Range(2) respectively.
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length(1). This operation involves
inner products.

function "*" (Left, Right : Complex_Vector) return Complex_Matrix;

This operation returns the outer product of a (column) vector Left by a (row) vector Right using the
appropriate operation "*" in Numerics.Generic_Complex_Types for computing the individual
components. The first and second index ranges of the matrix result are Left'Range and Right'Range
respectively.

function "*" (Left : Complex_Vector;
 Right : Complex_Matrix) return Complex_Vector;

This operation provides the standard mathematical operation for multiplication of a (row) vector
Left by a matrix Right. The index range of the (row) vector result is Right'Range(2).
Constraint_Error is raised if Left'Length is not equal to Right'Length(1). This operation involves
inner products.

function "*" (Left : Complex_Matrix;
 Right : Complex_Vector) return Complex_Vector;

This operation provides the standard mathematical operation for multiplication of a matrix Left by a
(column) vector Right. The index range of the (column) vector result is Left'Range(1).
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length. This operation involves
inner products.

function "+" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
function "+" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;
function "-" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
function "-" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of Left and the matching component of
Right. The index ranges of the result are those of Left. The exception Constraint_Error is raised if
Left'Length(1) is not equal to Right'Length(1) or Left'Length(2) is not equal to Right'Length(2).

function "*" (Left : Real_Matrix;
 Right : Complex_Matrix) return Complex_Matrix;
function "*" (Left : Complex_Matrix;
 Right : Real_Matrix) return Complex_Matrix;

ISO/IEC 8652:1995/WD.1:2004

175

Each operation provides the standard mathematical operation for matrix multiplication. The first
and second index ranges of the result are Left'Range(1) and Right'Range(2) respectively.
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length(1). These operations
involve inner products.

function "*" (Left : Real_Vector;
 Right : Complex_Vector) return Complex_Matrix;
function "*" (Left : Complex_Vector;
 Right : Real_Vector) return Complex_Matrix;

Each operation returns the outer product of a (column) vector Left by a (row) vector Right using the
appropriate operation "*" in Numerics.Generic_Complex_Types for computing the individual
components. The first and second index ranges of the matrix result are Left'Range and Right'Range
respectively.

function "*" (Left : Real_Vector;
 Right : Complex_Matrix) return Complex_Vector;
function "*" (Left : Complex_Vector;
 Right : Real_Matrix) return Complex_Vector;

Each operation provides the standard mathematical operation for multiplication of a (row) vector
Left by a matrix Right. The index range of the (row) vector result is Right'Range(2).
Constraint_Error is raised if Left'Length is not equal to Right'Length(1). These operations involve
inner products.

function "*" (Left : Real_Matrix;
 Right : Complex_Vector) return Complex_Vector;
function "*" (Left : Complex_Matrix;
 Right : Real_Vector) return Complex_Vector;

Each operation provides the standard mathematical operation for multiplication of a matrix Left by
a (column) vector Right. The index range of the (column) vector result is Left'Range(1).
Constraint_Error is raised if Left'Length(2) is not equal to Right'Length. These operations involve
inner products.

function "*" (Left : Complex; Right : Complex_Matrix) return Complex_Matrix;

This operation returns the result of multiplying each component of Right by the complex number
Left using the appropriate operation "*" in Numerics.Generic_Complex_Types. The index ranges of
the result are those of Right.

function "*" (Left : Complex_Matrix; Right : Complex) return Complex_Matrix;
function "/" (Left : Complex_Matrix; Right : Complex) return Complex_Matrix;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of the matrix Left and the complex number
Right. The index ranges of the result are those of Left.

function "*" (Left : Real'Base; Right : Complex_Matrix) return
Complex_Matrix;

This operation returns the result of multiplying each component of Right by the real number Left
using the appropriate operation "*" in Numerics.Generic_Complex_Types. The index ranges of the
result are those of Right.

function "*" (Left : Complex_Matrix; Right : Real'Base) return
Complex_Matrix;
function "/" (Left : Complex_Matrix; Right : Real'Base) return
Complex_Matrix;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of the matrix Left and the real number
Right. The index ranges of the result are those of Left.

function Solve (A : Complex_Matrix; X: Complex_Vector) return Complex_Vector;

ISO/IEC 8652:1995/WD.1:2004

176

This function returns a vector Y such that X is (nearly) equal to A * Y. This is the standard
mathematical operation for solving a single set of linear equations. The index range of the result is
X'Range. Constraint_Error is raised if A'Length(1), A'Length(2) and X'Length are not equal.
Constraint_Error is raised if the matrix A is ill-conditioned.

function Solve (A, X : Complex_Matrix) return Complex_Matrix;

This function returns a matrix Y such that X is (nearly) equal to A * Y. This is the standard
mathematical operation for solving several sets of linear equations. The index ranges of the result
are those of X. Constraint_Error is raised if A'Length(1), A'Length(2) and X'Length(1) are not
equal. Constraint_Error is raised if the matrix A is ill-conditioned.

function Inverse (A : Complex_Matrix) return Complex_Matrix;

This function returns a matrix B such that A * B is (nearly) equal to the unit matrix. The index
ranges of the result are those of A. Constraint_Error is raised if A'Length(1) is not equal to
A'Length(2). Constraint_Error is raised if the matrix A is ill-conditioned.

function Determinant (A : Complex_Matrix) return Complex;

This function returns the determinant of the matrix A. Constraint_Error is raised if A'Length(1) is
not equal to A'Length(2).

function Eigenvalues(A : Complex_Matrix) return Real_Vector;

This function returns the eigenvalues of the Hermitian matrix A as a vector sorted into order with
the largest first. Constraint_Error is raised if A'Length(1) is not equal to A'Length(2). The index
range of the result is A'Range(1). Argument_Error is raised if the matrix A is not Hermitian.

procedure Eigensystem(A : in Complex_Matrix;
 Values : out Real_Vector;
 Vectors : out Complex_Matrix);

This procedure computes both the eigenvalues and eigenvectors of the Hermitian matrix A. The out
parameter Values is the same as that obtained by calling the function Eigenvalues. The out
parameter Vectors is a matrix whose columns are the eigenvectors of the matrix A. The order of the
columns corresponds to the order of the eigenvalues. The eigenvectors are mutually orthonormal,
including when there are repeated eigenvalues. Constraint_Error is raised if A'Length(1) is not
equal to A'Length(2). The index ranges of the parameter Vectors are those of A. Argument_Error is
raised if the matrix A is not Hermitian.

function Unit_Matrix (Order : Positive;
 First_1, First_2 : Integer := 1)
 return Complex_Matrix;

This function returns a square "unit matrix" with Order**2 components and lower bounds of
First_1 and First_2 (for the first and second index ranges respectively). All components are set to
(0.0,0.0) except for the main diagonal, whose components are set to (1.0,0.0). Constraint_Error is
raised if First_1 + Order - 1 > Integer'Last or First_2 + Order - 1 > Integer'Last.

Implementation Requirements

Accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigenvalues and Eigensystem are
implementation defined.

For operations not involving an inner product, the accuracy requirements are those of the corresponding
operations of the type Real'Base and Complex in both the strict mode and the relaxed mode (see G.2).

For operations involving an inner product, no requirements are specified in the relaxed mode. In the strict
mode the modulus of the absolute error of the inner product X*Y shall not exceed g*abs(X)*abs(Y) where g
is defined as

g = X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa) for mixed complex and real
operands

ISO/IEC 8652:1995/WD.1:2004

177

g = sqrt(2.0) * X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa) for two complex
operands

Documentation Requirements

Implementations shall document any techniques used to reduce cancellation errors such as extended
precision arithmetic.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for
the appropriate predefined type.

Although many operations are defined in terms of operations from Numerics.Generic_Complex_Types, they
need not be implemented by calling those operations provided that the effect is the same.

Implementation Advice

Implementations should implement the Solve and Inverse functions using established techniques.
Implementations are recommended to refine the result by performing an iteration on the residuals; if this is
done then it should be documented.

It is not the intention that any special provision should be made to determine whether a matrix is ill-
conditioned or not. The naturally occurring overflow (including division by zero) which will result from
executing these functions with an ill-conditioned matrix and thus raise Constraint_Error is sufficient.

The test that a matrix is Hermitian may use the equality operator to compare the real components and
negation followed by equality to compare the imaginary components (see G.2.1).

Implementations should not perform operations on mixed complex and real operands by first converting the
real operand to complex. See G.1.1.

ISO/IEC 8652:1995/WD.1:2004

178

Annex H: Safety and Security
Replace the title: [AI95-00347-01]

Safety and Security

by:

High Integrity Systems

Replace paragraph 1: [AI95-00347-01]

This Annex addresses requirements for systems that are safety critical or have security constraints. It
provides facilities and specifies documentation requirements that relate to several needs:

by:

This Annex addresses requirements for high integrity systems (including safety-critical systems and security-
critical systems). It provides facilities and specifies documentation requirements that relate to several needs:

H.3.1 Pragma Reviewable

Replace paragraph 8: [AI95-00209-01]

• For each reference to a scalar object, an identification of the reference as either ``known to be
initialized,'' or ``possibly uninitialized,'' independent of whether pragma Normalize_Scalars applies;

by:

• For each read of a scalar object, an identification of the read as either ``known to be initialized,'' or
``possibly uninitialized,'' independent of whether pragma Normalize_Scalars applies;

H.3.2 Pragma Inspection_Point

Replace paragraph 9: [AI95-00209-01]

7 The implementation is not allowed to perform ``dead store elimination'' on the last assignment to a variable
prior to a point where the variable is inspectable. Thus an inspection point has the effect of an implicit
reference to each of its inspectable objects.

by:

7 The implementation is not allowed to perform ``dead store elimination'' on the last assignment to a variable
prior to a point where the variable is inspectable. Thus an inspection point has the effect of an implicit read of
each of its inspectable objects.

H.4 Safety and Security Restrictions

Replace the title: [AI95-00347-01]

Safety and Security Restrictions

by:

High Integrity Restrictions

Replace paragraph 2: [AI95-00347-01]

The following restrictions, the same as in D.7, apply in this Annex: No_Task_Hierarchy,
No_Abort_Statement, No_Implicit_Heap_Allocation, Max_Task_Entries is 0,
Max_Asynchronous_Select_Nesting is 0, and Max_Tasks is 0. The last three restrictions are checked prior to
program execution.

ISO/IEC 8652:1995/WD.1:2004

179

by:

The following restrictions, the same as in D.7, apply in this Annex: No_Task_Hierarchy,
No_Abort_Statement, No_Implicit_Heap_Allocation, Max_Task_Entries is 0,
Max_Asynchronous_Select_Nesting is 0, and Max_Tasks is 0. The last three restrictions are checked prior to
program execution. Pragma Profile(Ravenscar) applies in this Annex.

Replace paragraph 20: [AI95-00285-01]

No_IO
 Semantic dependence on any of the library units Sequential_IO, Direct_IO, Text_IO,

Wide_Text_IO, or Stream_IO is not allowed.

by:

No_IO
 Semantic dependence on any of the library units Sequential_IO, Direct_IO, Text_IO,

Wide_Text_IO, Wide_Wide_Text_IO, or Stream_IO is not allowed.

H.5 Pragma Detect_Blocking

Insert new clause: [AI95-00305-01]

The following pragma forces an implementation to detect potentially blocking operations within a protected
operation.

Syntax

The form of a pragma Detect_Blocking is as follows:

pragma Detect_Blocking;

Dynamic Semantics

An implementation is required to detect a potentially blocking operation within a protected operation, and to
raise Program_Error (see 9.5.1).

Post-Compilation Rules

A pragma Detect_Blocking is a configuration pragma.

Implementation Permissions

An implementation is allowed to reject a compilation_unit if a potentially blocking operation is present
directly within an entry_body or the body of a protected subprogram.

NOTES

10 An operation that causes a task to be blocked within a foreign language domain is not defined to be
potentially blocking, and need not be detected.

H.6 Pragma Partition_Elaboration_Policy

Insert new clause: [AI95-00265-01]

This clause defines a pragma for user control over elaboration policy.

Syntax

The form of a pragma Partition_Elaboration_Policy is as follows:

pragma Partition_Elaboration_Policy (policy_identifier);

The policy_identifier shall be either Sequential, Concurrent or an implementation-defined identifier.

Post-Compilation Rules

The pragma is a configuration pragma. It applies to all compilation units in a partition.

ISO/IEC 8652:1995/WD.1:2004

180

If the Sequential policy is specified for a partition then pragma Restrictions (No_Task_Hierarchy) shall also
be specified for the partition.

Dynamic Semantics

Notwithstanding what this International Standard says elsewhere, this pragma allows partition elaboration
rules concerning task activation and interrupt attachment to be changed. If the policy_identifier is
Concurrent, or if there is no pragma Partition_Elaboration_Policy defined for the partition, then the rules
defined elsewhere in this Standard apply.

If the partition elaboration policy is Sequential, all task activations for library-level tasks and all interrupt
handler attachments for library-level interrupt handlers are deferred. The deferred task activations and
handler attachments occur after the elaboration of all library_items prior to calling the main subprogram. At
this point the Environment task is suspended until all deferred task activations and handler attachments are
complete.

If any deferred task activation fails, Tasking_Error is raised in the Environment task. The Environment task
and all tasks whose activations fail are terminated. If a number of dynamic interrupt handler attachments for
the same interrupt are deferred then the most recent call of Attach_Handler or Exchange_Handler
determines which handler is attached.

Implementation Advice

If the partition elaboration policy is Sequential and the Environment task becomes permanently blocked
during elaboration then the partition is deadlocked and it is recommended that the partition be immediately
terminated.

Implementation Permission

If the partition elaboration policy is Sequential and any task activation fails then an implementation may
immediately terminate the active partition to mitigate the hazard posed by continuing to execute with a
subset of the tasks being active.

ISO/IEC 8652:1995/WD.1:2004

181

Annex J: Obsolescent Features
Replace paragraph 1: [AI95-00368-01]

This Annex contains descriptions of features of the language whose functionality is largely redundant with
other features defined by this International Standard. Use of these features is not recommended in newly
written programs.

by:

This Annex contains descriptions of features of the language whose functionality is largely redundant with
other features defined by this International Standard. Use of these features is not recommended in newly
written programs. Use of these features can be prevented by using pragma
Restrictions(No_Obsolescent_Features), see 13.12.

J.10 Specific Suppression of Checks

Insert new clause: [AI95-00224-01]

Pragma Suppress can be used to suppress checks on specific entities.

Syntax

The form of a specific Suppress pragma is as follows:

pragma Suppress(identifier, [On =>] name);

Legality Rules

The identifier shall be the name of a check (see 11.5). The name shall statically denote some entity.

For a specific Suppress pragma that is immediately within a package_specification, the name shall
denote an entity (or several overloaded subprograms) declared immediately within the
package_specification.

Static Semantics

A specific Suppress pragma applies to the named check from the place of the pragma to the end of the
innermost enclosing declarative region, or, if the pragma is given in a package_specification, to the end
of the scope of the named entity. The pragma applies only to the named entity, or, for a subtype, on objects
and values of its type. A specific Suppress pragma suppresses the named check for any entities to which it
applies (see 11.5). Which checks are associated with a specific entity is not defined by this International
Standard.

Implementation Permissions

An implementation is allowed to place restrictions on specific Suppress pragmas.

NOTES

3 An implementation may support a similar On parameter on pragma Unsuppress (see 11.5).

J.11 The Class Attribute of Untagged Incomplete Types

Insert new clause: [AI95-00326-01]

For the first subtype S of a type T declared by an incomplete_type_declaration that is not tagged, the
following attribute is defined:

S'Class
 Denotes the first subtype of the incomplete class-wide type rooted at T. The completion of T shall

declare a tagged type. Such an attribute reference shall occur in the same library unit as the
incomplete_type_declaration.

ISO/IEC 8652:1995/WD.1:2004

182

J.12 Pragma Interface

Insert new clause: [AI95-00284-02]

Syntax

In addition to an identifier, the reserved word interface is allowed as a pragma name, to provide
compatibility with a prior edition of the International Standard.

