Information technology —Programming languages —
Ada

AMENDMENT 1 (Draft 6)

Technologies de l'information —Langages de programmation — Ada

AMENDEMENT 1

Amendment 1 to International Standard ISO/IEC 8652:1995 was prepared by AXE Consultants.

© 2004, AXE Consultants. All Rights Reserved.

This document may be copied, in whole or in part, in any form or by any means, as is, or with alterations,
provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy. Compiled copies of standard library units and examples need not contain this
copyright notice so long as the notice is included in all copies of the source code and documentation. Any
other use or distribution of this document is prohibited without the prior express permission of AXE.

ISO/IEC 8652:1995/WD.1:2004

Introduction

International Standard | SO/IEC 8652:1995 defines the Ada programming language.
This amendment modifies Ada by making changes and additions that improve:
The safety of applicationswrittenin Ada;
The portability of applicationswrittenin Ada;
Interoperability with other languages and systems; and
Accessibility and ease of transition from idiomsin other programming and modeling languages.
This amendment incorporates the following major additions to the International Standard:
The Ravenscar profileto provide asimplified tasking system for high-integrity systems (see clause D.13);
A non-preemptive task dispatching policy (see clause D.2.4);
Aggregates and constants for limited types (see clauses 4.3.1 and 7.5);
Control of overriding to eliminate errors (see clause 8.3);

Improvements for access types, such as null excluding subtypes (see clause 3.10), additional uses for
anonymous access types (see clauses 3.6 and 8.5.1), and anonymous access-to-subprogram subtypes to
support 'downward closures' (see clauses 3.10 and 3.10.2);

Additional context clause capabilities: limited views to allow mutually dependent types (see clauses 3.10.1
and 10.1.2) and private context clauses that apply only in the private part of a package (see clause 10.1.2);

Added standard packages, including time management (see 9.6), file directory and name management (see
clause A.16), and array and vector operations (see clause G.3);

Interfaces, to provide alimited form of multiple inheritance of operations (see clause 3.9.4); and
A mechanism for writing C unionsto make interfaces with C systems easier (see clause B.3.3).

This Amendment is organized by sections corresponding to those in the International Standard. These sections
include wording changes and additions to the International Standard. Clause and subclause headings are given for
each clause that contains awording change. Clauses and subclauses that do not contain any change or addition
are omitted.

For each change, an anchor paragraph from the International Standard (as corrected by Technical Corrigendum 1)
isgiven. New or revised text and instructions are given with each change. The anchor paragraph can be replaced or
deleted, or text can be inserted before or after it. When a heading immediately precedes the anchor paragraph, any
text inserted before the paragraph isintended to appear under the heading.

Typographical conventions:

Instructions about the text changes are in this font. The actual text changes arein the same fonts asthe
International Standard - thisfont for text, this font for syntax, and this font for Ada source code.

Disclaimer:

This document is a draft of a possible amendment to Ada 95 (International Standard ISO/IEC
8652:1995). This draft contains only proposals substantially approved by the ISO/IEC JTC 1/SC
22/WG 9 Ada Rapporteur Group (ARG). Many other important proposals are under consideration
by the ARG. Neither the ARG nor any other group has determined which, if any, of these
proposals will be included in the amendment. Any proposal may be substantially changed or
withdrawn before this document begins standardization, and other proposals may be added.
This document is not an official publication or work product of the ARG.

2

ISO/IEC 8652:1995/WD.1:2004

ISO/IEC 8652:1995/WD.1:2004

Section 1: General

1.1.2 Structure

Replace paragraph 13: [Al95-00347-01]
AnnexH, ~Safety and Security"

by:
Annex H, “"High Integrity Systems"

ISO/IEC 8652:1995/WD.1:2004

Section 2: Lexical Elements

2.9 Reserved Words

Replace paragraph 3: [A195-00218-03; Al95-00251-01]
NOTES

6 The reserved words appear in lower case boldface in this International Standard, except when used in the
designator of an attribute (see 4.1.4). Lower case boldface is also used for areserved word in astring_literal
used as an operator_symbol. Thisis merely a convention — programs may be written in whatever typeface is
desired and available.

by:
interface and overriding are nonreserved keywords.

NOTES

6 The reserved words appear in lower case boldface in this International Standard, except when used in the
designator of an attribute (see 4.1.4). Lower case boldface is also used for areserved word in astring_literal
used as an operator_symbol. Thisis merely a convention — programs may be written in whatever typefaceis
desired and available.

ISO/IEC 8652:1995/WD.1:2004

Section 3: Declarations and Types

3.2 Types and Subtypes

Replace paragraph 4: [Al195-00326-01]

The composite types are the record types, record extensions, array types, task types, and protected types. A
private type or private extension represents a partial view (see 7.3) of atype, providing support for data
abstraction. A partial view isacompositetype.

by:
The composite types are the record types, record extensions, array types, task types, and protected types.

There can be multiple views of atype with varying sets of operations. Anincomplete type represents an
incomplete view (see 3.10.1) of atype with avery restricted usage, providing support for recursive data
structures. A private type or private extension represents a partial view (see 7.3) of atype, providing support
for data abstraction. The full view (see 3.2.1) of atype providesits complete declaration. An incomplete or
partial view is considered a composite type.

Replace paragraph 5: [Al195-00326-01]

Certain composite types (and partial views thereof) have special components called discriminants whose
values affect the presence, constraints, or initialization of other components. Discriminants can be thought of
as parameters of the type.

by:
Certain composite types (and views thereof) have special components called discriminants whose values

affect the presence, constraints, or initialization of other components. Discriminants can be thought of as
parameters of the type.

3.2.1 Type Declarations

Replace paragraph 4: [Al195-00251-01]

type_definition ::=
enumeration_type_definition | integer_type_definition
| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition

by:
type_definition ::=
enumeration_type_definition | integer_type_definition
| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition | interface_type_definition

Replace paragraph 8: [Al195-00326-01]

A named type that is declared by afull_type_declaration, or an anonymous type that is defined as part of
declaring an object of thetype, is called afull type. Thetype_definition, task_definition, protected_definition,
or access_definition that defines afull typeiscalled afull type definition. Types declared by other forms of
type_declaration are not separate types; they are partial or incomplete views of some full type.

by:

A named type that is declared by afull_type_declaration, or an anonymous type that is defined as part of
declaring an object of the type, iscalled afull type. A full type definesthe full view of atype. The

ISO/IEC 8652:1995/WD.1:2004

type_definition, task_definition, protected_definition, or access_definition that definesafull typeiscalled a
full type definition. Types declared by other forms of type_declaration are not separate types; they are partial
or incomplete views of some full type.

3.2.2 Subtype Declarations

Replace paragraph 3: [Al195-00231-01]
subtype_indication ::= subtype_mark [constraint]
by:
subtype_indication ::=
[null_exclusion] subtype_mark [scalar_constraint | composite_constraint]
Delete paragraph 5: [AlI95-00231-01]

constraint ::= scalar_constraint | composite_constraint

3.2.3 Classification of Operations

Replace paragraph 7: [Al195-00200-01]

Any subprograms not covered above that are explicitly declared immediately within the same
declarative region as the type and that override (see 8.3) other implicitly declared primitive
subprograms of the type.

by:

In the case of anonformal type, any subprograms not covered above that are explicitly declared
immediately within the same declarative region as the type and that override (see 8.3) other implicitly
declared primitive subprograms of the type.

3.3.1 Object Declarations

Replace paragraph 5: [A195-00287-01]

An object_declaration without the reserved word constant declares avariable object. If it hasa
subtype_indication or anarray_type_definition that defines an indefinite subtype, then there shall be an
initialization expression. An initialization expression shall not be given if the object is of alimited type.

by:

An object_declaration without the reserved word constant declares avariable object. If it hasa
subtype_indication or anarray_type_definition that defines an indefinite subtype, then there shall be an
initialization expression.

3.4 Derived Types and Classes

Replace paragraph 2: [A195-00251-01]

derived_type_definition ::= [abstract] new parent_subtype_indication [record_extension_part]
by:

interface_list ::= interface_subtype_mark {and interface_subtype_mark}

derived_type_definition ::=
[abstract] new parent_subtype_indication [[and interface_list] record_extension_part]

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 3: [A195-00251-01]
The parent_subtype_indication defines the parent subtype; itstypeis the parent type.
by:
The parent_subtype_indication defines the parent subtype; itstype isthe parent type. A derived type has
one parent type and zero or more interface ancestor types.
Replace paragraph 8: [AI95-00251-01]
Each class of types that includes the parent type also includes the derived type.
by:
Each class of types that includes the parent type or an interface ancestor type also includes the
derived type.
Insert after paragraph 23: [AlI95-00251-01]

If aprimitive subprogram of the parent type is visible at the place of the derived_type_definition, then the
corresponding inherited subprogram isimplicitly declared immediately after the derived_type_definition.
Otherwise, the inherited subprogram isimplicitly declared later or not at al, asexplained in 7.3.1.

the new paragraph:

If atype declaration names an interface type in aninterface_list, then the declared type inherits any user-
defined primitive subprograms of the interface type in the same way.

Insert after paragraph 35: [AlI95-00251-01]
17 If the reserved word abstract is given in the declaration of atype, the typeis abstract (see 3.9.3).
the new paragraph:

18 Aninterface type which has an interface ancestor "is derived from" that type, and thereforeis aderived
type. A derived_type_definition, however, never defines an interface type.

3.4.1 Derivation Classes

Replace paragraph 2: [Al195-00251-01]

A derived type isderived fromits parent type directly; it is derivedindirectly from any type from which its
parent type isderived. The derivation class of typesfor atype T (also called the classrooted at T) is the set
consisting of T (theroot type of the class) and all types derived from T (directly or indirectly) plus any
associated universal or class-wide types (defined bel ow).

by:
A derived typeisderived fromits parent type directly; it is derivedindirectly from any type from which its
parent typeisderived. A derived type or interface typeis also derived from each of its interface ancestor types,
if any. The derivation class of typesfor atype T (also called the classrooted at T) isthe set consisting of T
(theroot type of the class) and all typesderived from T (directly or indirectly) plusany associated universal or
class-wide types (defined below).

Replace paragraph 6: [Al195-00230-01]

Universal types
Universal types are defined for (and belong to) the integer, real, and fixed point classes, and are
referred to in this standard as respectively, universal_integer, universal_real, and universal_fixed.
These are anal ogous to class-wide types for these language-defined numeric classes. Aswith class-
widetypes, if aformal parameter is of auniversal type, then anactual parameter of any typeinthe
corresponding classis acceptable. In addition, avalue of auniversal type (including an integer or real

by:

ISO/IEC 8652:1995/WD.1:2004

numeric_literal) is ™ universal" in that it is acceptable where some particular typein theclassis
expected (see 8.6).

Universal types
Universal types are defined for (and belong to) the integer, real, fixed, and access point classes, and
arereferred to in this standard as respectively, universal_integer, universal_real, universal_fixed,
and universal_access. These are anal ogous to class-wide types for these language-defined classes.
Aswith class-widetypes, if aformal parameter is of auniversal type, then an actual parameter of any
typeinthe corresponding classis acceptable. In addition, avalue of auniversal type (including an
integer or real numeric_literal) is “universal" in that it is acceptable where some particular typein the
classis expected (see 8.6).

Replace paragraph 10: [A195-00251-01]

by:

A specific type T2 is defined to be a descendant of atype T1 if T2 isthe same asT1, or if T2 isderived (directly
or indirectly) from T1. A class-wide type T2'Class is defined to be a descendant of type TL if T2 isa
descendant of T1. Similarly, the universal types are defined to be descendants of the root types of their

classes. If atype T2 is adescendant of atype T1, then T1 is called an ancestor of T2. The ultimate ancestor of
atypeisthe ancestor of the type that is not a descendant of any other type.

A specific type T2 is defined to be a descendant of atype T1 if T2 isthe same asT1, or if T2 isderived (directly
or indirectly) from T1. A class-widetype T2'Classis defined to be adescendant of type T1if T2 isa
descendant of T1. Similarly, the universal types are defined to be descendants of the root types of their

classes. If atype T2 is adescendant of atype T1, then T1 is called an ancestor of T2. The ultimate ancestor of
atypeisan ancestor of that type that is not a descendant of any other type. Each untagged type has a unique
ultimate ancestor.

3.5.4 Integer Types

Replace paragraph 16: [A195-00340-01]

by:

For every modular subtype S, the following attribute is defined:

For every modular subtype S, the following attributes are defined:
SMod
SMod denotes a function with the following specification:

function S Mbd (Arg : universal _integer)
return S' Base

This function returns Arg mod SModulus.

3.6 Array Types

Replace paragraph 7: [Al195-00230-01]

by:

component_definition ::= [aliased] subtype_indication

component_definition ::= [aliased] subtype_indication | access_definition

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 22: [Al95-00230-01]

The elaboration of adiscrete_subtype_definition that does not contain any per-object expressions creates the
discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the range.
The elaboration of adiscrete_subtype_definition that contains one or more per-object expressions is defined
in 3.8. The elaboration of acomponent_definition in anarray_type_definition consists of the elaboration of
the subtype_indication. The elaboration of any discrete_subtype_definitions and the elaboration of the
component_definition are performed in an arbitrary order.

by:

The elaboration of adiscrete_subtype_definition that does not contain any per-object expressions creates the
discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the range.
The elaboration of adiscrete_subtype_definition that contains one or more per-object expressions is defined
in 3.8. The elaboration of acomponent_definition in anarray_type_definition consists of the elaboration of
the subtype_indication or access_definition. The elaboration of any discrete_subtype_definitions and the
elaboration of the component_definition are performed in an arbitrary order.

3.6.2 Operations of Array Types

Replace paragraph 16: [Al95-00287-01]

48 A component of an array can be named with an indexed_component. A value of an array type can be
specified with an array_aggregate, unless the array typeis limited. For a one-dimensional array type, aslice
of the array can be named; also, string literals are defined if the component type is a character type.

by:

48 A component of an array can be named with an indexed_component. A value of an array type can be
specified with an array_aggregate. For a one-dimensional array type, adice of the array can be named; a so,
string literals are defined if the component type is a character type.

3.7 Discriminants

Replace paragraph 1: [Al195-00326-01]

A composite type (other than an array type) can have discriminants, which parameterize the type. A
known_discriminant_part specifies the discriminants of acompositetype. A discriminant of an objectisa
component of the object, and is either of a discrete type or an access type. Anunknown_discriminant_part in
the declaration of a partial view of atype specifies that the discriminants of the type are unknown for the given
view; all subtypes of such a partial view are indefinite subtypes.

by:

A composite type (other than an array type) can have discriminants, which parameterize the type. A
known_discriminant_part specifies the discriminants of acompositetype. A discriminant of an objectisa
component of the object, and is either of a discrete type or an access type. Anunknown_discriminant_part in
the declaration of aview of atype specifiesthat the discriminants of the type are unknown for the given view;
all subtypes of such aview areindefinite subtypes.

Replace paragraph 5: [A195-00231-01]

discriminant_specification ::=
defining_identifier_list : subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

by:

discriminant_specification ::=
defining_identifier_list : [null_exclusion] subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

10

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 9: [Al95-00231-01; Al95-00254-01]

by:

The subtype of adiscriminant may be defined by a subtype_mark, in which case the subtype_mark shall
denote a discrete or access subtype, or it may be defined by anaccess_definition (in which case the
subtype_mark of the access_definition may denote any kind of subtype). A discriminant that is defined by
an access_definition is called an access discriminant and is of an anonymous general access-to-variable type
whose designated subtype is denoted by the subtype_mark of the access_definition.

The subtype of adiscriminant may be defined by an optional null_exclusion and a subtype_mark, in which
case the subtype_mark shall denote a discrete or access subtype, or it may be defined by an
access_definition. A discriminant that is defined by anaccess_definition is called an access discriminant
and is of an anonymous access type.

Delete paragraph 10: [AI95-00230-01]

A discriminant_specification for an access discriminant shall appear only in the declaration for atask or
protected type, or for atype with the reserved word limited in its (full) definition or in that of one of its
ancestors. In addition to the places where Legality Rules normally apply (see 12.3), thisrule appliesalso in the
private part of an instance of a generic unit.

3.8 Record Types

Delete paragraph 8: [AlI95-00287-01]

A default_expression is not permitted if the component is of alimited type.

Replace paragraph 18: [A195-00230-01]

by:

Within the definition of acompositetype, if acomponent_definition or discrete_subtype_definition (see
9.5.2) includes aname that denotes a discriminant of the type, or that is an attribute_reference whose prefix
denotes the current instance of the type, the expression containing the name is called a per-object expression,
and the constraint or range being defined is called a per-object constraint. For the elaboration of a
component_definition of acomponent_declaration or the discrete_subtype_definition of an
entry_declaration for an entry family (see 9.5.2), if the constraint or range of the subtype_indication or
discrete_subtype_definition is not a per-object constraint, then the subtype_indication or
discrete_subtype_definition is elaborated. On the other hand, if the constraint or range is a per-object
constraint, then the elaboration consists of the evaluation of any included expression that is not part of a per-
object expression. Each such expression is evaluated once unlessit is part of anamed associationin a
discriminant constraint, in which caseit is evaluated once for each associated discriminant.

Within the definition of acomposite type, if acomponent_definition or discrete_subtype_definition (see
9.5.2) includes aname that denotes a discriminant of the type, or that is an attribute_reference whose prefix
denotes the current instance of the type, the expression containing the name is called a per-object expression,
and the constraint or range being defined is called a per-object constraint. For the elaboration of a
component_definition of acomponent_declaration or the discrete_subtype_definition of an
entry_declaration for an entry family (see 9.5.2), if the component subtype is defined by anaccess_definition
or if the constraint or range of the subtype_indication or discrete_subtype_definition is not a per-object
constraint, then the access_definition, subtype_indication, or discrete_subtype_definition is elaborated. On
the other hand, if the constraint or range is a per-object constraint, then the elaboration consists of the
evaluation of any included expression that is not part of a per-object expression. Each such expressionis
evaluated once unlessit is part of anamed association in adiscriminant constraint, in which caseitis
evaluated once for each associated discriminant.

11

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 25: [A195-00287-01]

61 A component of arecord can be named with aselected_component. A value of arecord can be specified
with arecord_aggregate, unless the record typeis limited.

by:
61 A component of arecord can be named with aselected_component. A value of arecord can be specified
with arecord_aggregate.

3.9.2 Dispatching Operations of Tagged Types

Replace paragraph 17: [Al95-00196-01]

If all of the controlling operands are tag-indeterminate, then:
by:

If al of the controlling operands (if any) are tag-indeterminate, then:
Insert after paragraph 18: [AlI95-00196-01]

If the call has acontrolling result and isitself a (possibly parenthesized or qualified) controlling
operand of an enclosing call on a dispatching operation of type T, then its controlling tag valueis
determined by the controlling tag value of this enclosing call;

the new paragraph:

If the call has a controlling result and is the (possibly parenthesized or qualified) expression of an
assignment statement whose target is of a class-wide type, then its controlling tag value is determined
by the target;

3.9.3 Abstract Types and Subprograms

Replace paragraph 4: [Al195-00251-01]

For aderived type, if the parent or ancestor type has an abstract primitive subprogram, or a primitive function
with a controlling result, then:

by:
If atypeinherits a subprogram corresponding to an abstract subprogram or to afunction with a controlling
result, then
Replace paragraph 5: [Al195-00251-01]
If the derived typeis abstract or untagged, the inherited subprogram is abstract.
by:
If theinheriting typeis abstract or untagged, the inherited subprogram is abstract.

3.9.4 Interface Types

Insert new clause: [A195-00251-01]

Aninterfacetypeis an abstract tagged type intended for use in providing arestricted form of multiple
inheritance. A tagged type may be derived from multiple interface types.

Syntax
interface_type_definition ::= [limited] interface [interface_list]

Satic Semantics

12

ISO/IEC 8652:1995/WD.1:2004

Aninterface type (also called an "interface™) is a specific abstract tagged type that is defined by an
interface_type_definition.

Legality Rules

Aninterface type shall have no components.

All user-defined primitive subprograms of an interface type shall be abstract subprograms or null procedures.
The type of a subtype named in aninterface_list shall be an interface type.

If atype declaration names an interface type in aninterface_list, then the accessibility level of the declared
type shall not be statically deeper than that of the interface type; also, the declared type shall not be declared
in ageneric body if the interface type is declared outside that body.

A descendant of an interface type shall be limited if and only if the interface typeislimited.

A full view shall be adescendant of an interface typeif and only if the corresponding partial view (if any) is
also a descendant of the interface type.

For an interface type declared in avisible part, a primitive subprogram shall not be declared in the private part.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the private
part of an instance of a generic unit.

3.10 Access Types

Replace paragraph 2: [Al195-00231-01]

access_type_definition ::=
access_to_object_definition
| access_to_subprogram_definition

by:
access_type_definition ::=
[null_exclusion] access_to_object_definition
| [null_exclusion] access_to_subprogram_definition

Replace paragraph 6: [A195-00231-01; Al95-00254-01]
access_definition ::= access subtype_mark
by:
null_exclusion ::= not null
access_definition ::=
[null_exclusion] access [general_access_modifier] subtype_mark |

[null_exclusion] access [pr otected] procedure parameter_profile |
[null_exclusion] access [protected] function parameter_and_result_profile

Replace paragraph 9: [Al195-00225-01]

A view of an object isdefined to be aliased if it is defined by an object_declaration or component_definition
with the reserved word aliased, or by arenaming of an aliased view. In addition, the dereference of an access-
to-object value denotes an aliased view, as does aview conversion (see 4.6) of an aliased view. Finally, the
current instance of alimited type, and aformal parameter or generic formal object of atagged type are defined
to be aliased. Aliased views are the ones that can be designated by an access value. If the view defined by an
object_declaration is aliased, and the type of the object has discriminants, then the object is constrained; if its
nominal subtype is unconstrained, then the object is constrained by itsinitial value. Similarly, if the object
created by an allocator has discriminants, the object is constrained, either by the designated subtype, or by its
initial value.

13

ISO/IEC 8652:1995/WD.1:2004

by:

A view of an object is defined to be aliased if it is defined by an object_declaration or component_definition
with the reserved word aliased, or by arenaming of an aliased view. In addition, the dereference of an access-
to-object value denotes an aliased view, as does aview conversion (see 4.6) of an aliased view. A current
instance of alimited tagged type, aprotected type, atask type, or atype that has the reserved word limited in
itsfull definition is aso defined to be aliased. Finally, aformal parameter or generic formal object of atagged
typeisdefined to be aliased. Aliased views are the ones that can be designated by an access value. If the view
defined by an object_declaration is aliased, and the type of the object has discriminants, then the object is
constrained; if its nominal subtype is unconstrained, then the object is constrained by itsinitial value.
Similarly, if the object created by anallocator has discriminants, the object is constrained, either by the
designated subtype, or by itsinitial value.

Replace paragraph 12: [A195-00230-01; A195-00231-01; AlI95-00254-01]

by:

Anaccess_definition defines an anonymous general access-to-variable type; the subtype_mark denotesits
designated subtype. An access_definition is used in the specification of an access discriminant (see 3.7) or an
access parameter (see 6.1).

An access_definition defines an anonymous general access type or an anonymous access-to-subprogram
type. For ageneral accesstype, the subtype_mark denotes itsdesignated subtype; if the reserved word
constant appears, the type is an access-to-constant type; otherwiseit is an access-to-variable type. For an
access-to-subprogram type, the parameter_profile or parameter_and_result_profile denotes its designated
profile. If anull_exclusion is present, or the access_definition isfor a controlling access parameter (see 3.9.2),
the access_definition defines an access subtype which excludes the null value; otherwise the subtype
includes anull value.

Replace paragraph 13: [A195-00230-01; A195-00231-01]

by:

For each (named) accesstype, thereisaliteral null which hasanull access value designating no entity at all.
The null value of anamed access type isthe default initial value of the type. Other values of an accesstype are
obtained by evaluating an attribute_reference for the Access or Unchecked_Access attribute of an aliased
view of an object or non-intrinsic subprogram, or, in the case of a named access-to-object type, an allocator,
which returns an access value designating a newly created object (see 3.10.2).

For each accesstype, thereisanull access value designating no entity at all. The null value of an accesstype
isthe default initial value of the type. Other values of an access type are obtained by evaluating an
attribute_reference for the Access or Unchecked A ccess attribute of an aliased view of an object or non-
intrinsic subprogram, or, in the case of an access-to-object type, an allocator, which returns an accessvalue
designating anewly created object (see 3.10.2).

Replace paragraph 14: [Al195-00231-01]

by:

14

All subtypes of an access-to-subprogram type are constrained. The first subtype of atype defined by an
access_definition or anaccess_to_object_definition is unconstrained if the designated subtypeis an
unconstrained array or discriminated subtype; otherwiseit is constrained.

All subtypes of an access-to-subprogram type are constrained. The first subtype of atype defined by an
access_definition or an access_to_object_definition isunconstrained if the designated subtypeis an
unconstrained array or discriminated subtype; otherwise it is constrained. The first subtype of atype defined
by an access type_definition excludesthe null value if anull_exclusion is present; otherwise, the first
subtype includes the null value.

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 15: [A195-00231-01]

A composite_constraint iscompatible with an unconstrained access subtype if it is compatible with the
designated subtype. An access val ue satisfiesacomposite_constraint of an access subtypeif it equalsthe
null value of itstype or if it designates an object whose val ue satisfies the constraint.

by:
A composite_constraint iscompatible with an unconstrained access subtype if it is compatible with the
designated subtype. A null_exclusion is compatible with an access subtype if the subtype includes a null
value. An access val ue satisfies acomposite_constraint of an access subtypeif it equals the null value of its
type or if it designates an object whose val ue satisfies the constraint. An access value satisifes a
null_exclusion imposed on an access subtype if it does not equal the null value of itstype.

Replace paragraph 17: [A195-00230-01]

The elaboration of an access_definition creates an anonymous general access-to-variable type [(this happens
as part of the initialization of an access parameter or access discriminant)].

by:
The elaboration of an access_definition creates an anonymous general access-to-variable type.

3.10.1 Incomplete Type Declarations

Replace paragraph 2: [Al195-00326-01]
incomplete_type_declaration ::= type defining_identifier [discriminant_part];
by:

incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged)];

Replace paragraph 4: [Al195-00326-01]

If anincomplete_type_declaration has a known_discriminant_part, then afull_type_declaration that
completesit shall have afully conforming (explicit) known_discriminant_part (see 6.3.1). If an
incomplete_type_declaration has no discriminant_part (or anunknown_discriminant_part), then a
corresponding full_type_declaration is nevertheless allowed to have discriminants, either explicitly, or
inherited viaderivation.

by:
If anincomplete_type_declaration includes the keyword tagged, then a full_type_declaration that completes
it shall declare atagged type. If anincomplete_type_declaration has a known_discriminant_part, then a
full_type_declaration that completesit shall have afully conforming (explicit) known_discriminant_part (see
6.3.1). If anincomplete_type_declaration has no discriminant_part (or an unknown_discriminant_part),
then a corresponding full_type_declaration is nevertheless allowed to have discriminants, either explicitly, or
inherited via derivation.

Replace paragraph 5: [Al195-00326-01]
The only allowed uses of a name that denotes anincomplete_type_declaration are asfollows:

by:
A name that denotes an incomplete view of atype may be used as follows:

Delete paragraph 7: [AlI95-00326-01]

as the subtype_mark defining the subtype of a parameter or result of an
access_to_subprogram_definition;

15

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 8: [Al195-00326-01]
asthe subtype_mark in anaccess_definition;
by:
asthe subtype_mark in anaccess_definition.
If such a name denotes atagged incomplete view, it may also be used:

as the subtype_mark defining the subtype of a parameter in aformal_part;

Replace paragraph 9: [Al195-00326-01]

as the prefix of anattribute_reference whose attribute_designator is Class; such an
attribute_referenceissimilarly restricted to the uses allowed here; when used in this way, the
corresponding full_type_declaration shall declare atagged type, and the attribute_reference shall
occur in the same library unit astheincomplete_type_declaration.

by:

asthe prefix of anattribute_reference whose attribute _designator is Class; such an
attribute_reference isrestricted to the uses allowed above for tagged incompl ete views.

If such aname occurs within the list of declarative_items containing the completion of the incomplete view, it
may also be used:

asthe subtype_mark defining the subtype of a parameter or result of an
access_to_subprogram_definition.

If any of the above uses occurs as part of the declaration of a primitive subprogram of the incomplete view, and
the declaration occursimmediately within the private part of a package, then the completion of the incomplete
view shall also occur immediately within the private part; it may not be deferred to the package body.

Replace paragraph 10: [Al95-00217-06; A195-00326-01]
A dereference (whether implicit or explicit -- see 4.1) shall not be of an incomplete type.

by:
A prefix shall not be of an incomplete view.

Replace paragraph 11: [Al195-00326-01]

Anincomplete_type_declaration declares an incomplete type and its first subtype; the first subtypeis
unconstrained if aknown_discriminant_part appears.

by:

Anincomplete_type_declaration declares anincomplete view of atype, and its first subtype; the first
subtype is unconstrained if aknown_discriminant_part appears. If theincomplete_type_declaration
includes the reserved wordtagged, it declares atagged incomplete view. An incomplete view of atypeisa
limited view of the type (see 7.5).

Given an access type A whose designated type T is an incomplete view, adereference of avalue of type A
also has thisincomplete view except when:

it occursin the immediate scope of the completion of T, or

it occursin the scope of anonlimited_with_clause that mentions alibrary package in whose visible
part the completion of T isdeclared.

In these cases, the dereference has the full view of T.

16

ISO/IEC 8652:1995/WD.1:2004

3.10.2 Operations of Access Types

Replace paragraph 2: [Al195-00235-01]

by:
For an attribute_reference with attribute_designator Access (or Unchecked_Access-- see 13.10), the
expected type shall be asingle accesstype A such that:

For an attribute_reference with attribute_designator Access (or Unchecked_Access-- see 13.10), the
expected type shall be a single access type; the prefix of such an attribute_reference is never interpreted as
an implicit_dereference. If the expected type is an access-to-subprogram type, then the expected profile of the
prefix is the designated profile of the access type.

A is an access-to-object type with designated type D and the type of the prefix isD'Class or is
covered by D, or

A isan access-to-subprogram type whose designated profile is type conformant with that of the
prefix.

The prefix of such an attribute_reference is never interpreted as an implicit_dereference or parameterless
function_call (see 4.1.4). The designated type or profile of the expected type of the attribute_referenceisthe
expected type or profile for the prefix.

Replace paragraph 12: [A195-00230-01]

by:

The accessibility level of the anonymous access type of an access discriminant is the same as that of
the containing object or associated constrained subtype.

The accessibility level of the anonymous access type defined by anaccess_definition of an
object_renaming_declaration is the same as that of the renamed object (view).

The accessibility level of the anonymous access type of an access discriminant specified for alimited
type is the same as the containing object or associated constrained subtype. For other components
having an anonymous access type, the accessibility level of the access typeisthe same asthelevel
of the containing composite type.

Replace paragraph 13: [A195-00254-01]

by:

The accessibility level of the anonymous access type of an access parameter is the same asthat of the
view designated by the actual. If the actual is anallocator, thisisthe accessibility level of the
execution of the called subprogram.

The accessibility level of the anonymous access type of an access parameter specifying an access-to-
object type isthe same as that of the view designated by the actual. If the actual isanallocator, this
isthe accessibility level of the execution of the called subprogram.

The accessibility level of the anonymous access type of an access parameter specifying an access-to-
subprogram typeisinfinite.

Replace paragraph 32: [A195-00229-01]

P'Accessyields an access value that designates the subprogram denoted by P. The type of P'Access
is an access-to-subprogram type (S), as determined by the expected type. The accessibility level of P
shall not be statically deeper than that of S. In addition to the places where Legality Rulesnormally
apply (see 12.3), thisrule applies also in the private part of an instance of a generic unit. The profile of
P shall be subtype-conformant with the designated profile of S, and shall not be Intrinsic. If the
subprogram denoted by P is declared within ageneric body, S shall be declared within the generic
body.

17

ISO/IEC 8652:1995/WD.1:2004

by:

18

P'Accessyields an access value that designates the subprogram denoted by P. The type of P'/Access
is an access-to-subprogram type (S), as determined by the expected type. The accessibility level of P
shall not be statically deeper than that of S. In addition to the places where Legality Rules normally
apply (see 12.3), thisrule applies also in the private part of an instance of ageneric unit. The profile of
P shall be subtype-conformant with the designated profile of S, and shall not be Intrinsic. If the
subprogram denoted by P is declared within a generic unit, and the expression P'Access occurs within
the body of that generic unit or within the body of a generic unit declared within the declarative
region of the generic, then the ultimate ancestor of Sshall be a non-formal type declared within the
generic unit.

ISO/IEC 8652:1995/WD.1:2004

Section 4: Names and Expressions

4.1.3 Selected Components

Insert after paragraph 9: [Al95-00252-01]

The prefix shall resolve to denote an object or value of sometask or protected type (after any implicit
dereference). The selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within the visible part of that type. The
selected_component denotes the corresponding entry, entry family, or protected subprogram.

the new paragraph:

A view of asubprogram whosefirst formal parameter is of atagged or is an access parameter whose
designated type istagged. The prefix (after any implicit dereference) shall resolve to denote an object
or value of aspecific tagged type T or class-wide type T'Class. The selector_name shall resolve to
denote aview of asubprogram declared immediately within the region in which an ancestor of the
type Tisdeclared. Thefirst formal parameter of the subprogram shall be of type T, or aclass-wide
type that coversT, or an access parameter designating one of these types. The designator of the
subprogram shall not be the same as that of acomponent of the tagged type visible at the point of the
selected_component. The selected_component denotes aview of this subprogram that omitsthe
first formal parameter.

Insert after paragraph 15: [AlI95-00252-01]

For aselected_component that denotes a component of a variant, a check is made that the values of the
discriminants are such that the value or object denoted by the prefix has this component. The exception
Constraint_Error israised if this check fails.

the new paragraph:

For aselected_component with atagged prefix and selector_name that denotes aview of a subprogram, a
call on the view denoted by the selected_component isequivalent to acall on the underlying subprogram
with thefirst actual parameter being provided by the object or value denoted by the prefix (or the Access
attribute of this object or valueif the first formal is an access parameter), and the remaining actual parameters
given by the actual_parameter_part, if any.

4.2 Literals

Delete paragraph 2: [AlI95-00230-01]
The expected type for aliteral null shall be a single access type.

Delete paragraph 7: [AlI95-00230-01; AlI95-00231-01]

A litera null shall not be of an anonymous access type, since such typesdo not have anull value (see 3.10).

Replace paragraph 8: [Al195-00230-01]
Aninteger literal is of type universal_integer. A real literal isof type universal_real.
by:

Aninteger literal isof type universal_integer. A rea literal isof type universal_real. Theliteral null is of type
universal_access.

19

ISO/IEC 8652:1995/WD.1:2004

4.3 Aggregates

Replace paragraph 3: [Al195-00287-01]

The expected type for an aggregate shall be a single nonlimited array type, record type, or record extension.
by:

The expected type for an aggregate shall be asingle array type, record type, or record extension.

4.3.1 Record Aggregates

Replace paragraph 4: [Al195-00287-01]

record_component_association ::=
[component_choice_list =>] expression

by:
record_component_association ::=
[component_choice_list =>] expression
| component_choice_list => <>

Replace paragraph 8: [Al195-00287-01]

The expected type for arecord_aggregate shall be a single nonlimited record type or record extension.
by:

The expected type for arecord_aggregate shall be a single record type or record extension.

Replace paragraph 16: [A195-00287-01]

Each record_component_association shall have at |east one associated component, and each needed
component shall be associated with exactly one record_component_association. If a
record_component_association has two or more associated components, all of them shall be of the same

type.

by:
Each record_component_association shall have at |east one associated component, and each needed
component shall be associated with exactly one record_component_association. If a
record_component_association with an expression has two or more associated components, all of them shall
be of the same type.

Insert after paragraph 17: [Al95-00287-01]

If the components of avariant_part are needed, then the value of a discriminant that governs the variant_part
shall be given by a static expression.

the new paragraph:
A record_component_association for a discriminant without adefault_expression shall have an expression
rather than <>.

Insert before paragraph 20: [Al95-00287-01]

The expression of arecord_component_association is evaluated (and converted) once for each associated
component.

the new paragraph:

For arecord_component_association with an expression, the expression defines the value for the
associated component(s). For arecord_component_association with a<>, if the component_declaration
has a default_expression, that default_expression defines the value for the associated component(s);

20

ISO/IEC 8652:1995/WD.1:2004

otherwise, the associated component(s) areinitialized by default as for a stand-alone object of the component
subtype (see 3.3.1).

4.3.2 Extension Aggregates

Replace paragraph 4: [Al195-00287-01]
The expected type for an extension_aggregate shall be asingle nonlimited type that is arecord extension. If
the ancestor_part is an expression, it is expected to be of any nonlimited tagged type.

by:

The expected type for an extension_aggregate shall be asingle type that is arecord extension. If the
ancestor_part is anexpression, it is expected to be of any tagged type.

Replace paragraph 5: [A195-00306-01]

If the ancestor_part isasubtype_mark, it shall denote a specific tagged subtype. The type of the
extension_aggregate shall be derived from the type of the ancestor_part, through one or more record
extensions (and no private extensions).

by:

If the ancestor_part isasubtype_mark, it shall denote a specific tagged subtype. If the ancestor_part is an
expression, it shal not be dynamically tagged. The type of the extension_aggregate shall be derived from
the type of the ancestor_part, through one or more record extensions (and no private extensions).

4.3.3 Array Aggregates

Replace paragraph 3: [Al195-00287-01]

positional_array_aggregate ::=
(expression, expression {, expression})
| (expression {, expression}, others => expression)

by:
positional_array_aggregate ::=
(expression, expression {, expression})
| (expression {, expression}, others => expression)
| (expression {, expression}, others => <>)

Replace paragraph 5: [Al195-00287-01]

array_component_association ::=
discrete_choice_list => expression

by:

array_component_association ::=
discrete_choice_list => expression
| discrete_choice_list => <>

Replace paragraph 7: [Al195-00287-01]

The expected type for anarray_aggregate (that is not a subaggregate) shall be asingle nonlimited array type.
The component type of thisarray typeisthe expected type for each array component expression of the
array_aggregate.

21

ISO/IEC 8652:1995/WD.1:2004

by:
The expected type for anarray_aggregate (that is not a subaggregate) shall be asingle array type. The
component type of thisarray typeisthe expected type for each array component expression of the
array_aggregate.
Insert before paragraph 24: [AI95-00287-01]
The bounds of the index range of anarray_aggregate (including a subaggregate) are determined as follows:
the new paragraph:

Each array component expression defines the value for the associated component(s). For an component given
by <>, the associated component(s) are initialized by default (see 3.3.1).

4.5.2 Relational Operators and Membership Tests

Replace paragraph 3: [Al195-00251-01]

The tested type of amembership test isthe type of the range or the type determined by the subtype_mark. If
the tested typeistagged, then the simple_expression shall resolve to be of atype that coversor is covered
by the tested type; if untagged, the expected type for the simple_expression is the tested type.

by:
The tested type of amembership test isthe type of the range or the type determined by the subtype_mark. If
the tested type istagged, then then the simple_expression shall resolve to be of atypethat is convertible
(see 4.6) to the tested type; if untagged, the expectedtype for the simple_expression isthe tested type.
Insert after paragraph 7: [Al195-00230-01]

function "=" (Left, Right : T) return Bool ean
function "/="(Left, Right : T) return Bool ean

the new paragraphs:

The following additional equality operators for the universal_accesstype are declared in package Standard for
use with anonymous access types:

function "=" (Left, Right : universal _access) return Bool ean
function "/="(Left, Right : universal _access) return Bool ean
Insert after paragraph 9: [Al95-00230-01]

function "<" (Left, Right : T) return Bool ean
function "<="(Left, Right : T) return Bool ean
function ">" (Left, Right : T) return Bool ean
function ">="(Left, Right : T) return Bool ean

the new paragraphs:

Name Resolution Rules

At least one of the operands of the equality operators for universal_access shall be of a specific anonymous
access type.

Legality Rules

The operands of the equality operators for universal_access shall be convertible to one another (see 4.6).

4.6 Type Conversions

Replace paragraph 8: [Al195-00251-01]
If the target type is a numeric type, then the operand type shall be a numeric type.
22

ISO/IEC 8652:1995/WD.1:2004

by:
Inaview conversion for an untagged type, the target type shall be convertible (back) to the operand type.
If thereisatypethat isan ancestor of both the target type and the operand type, then
Thetarget type shall be untagged; or
The operand type shall be covered by or descended from the target type; or
The operand type shall be a class-wide type that covers the target type; or

The operand and target types shall both be class-wide types and the specific type associated with at
least one of them shall be an interface type.

If thereis no type that is an ancestor of both the target type and the operand type, then
If the target type is a numeric type, then the operand type shall be a numeric type.

Replace paragraph 9: [Al195-00246-01; AI95-00251-01]
If the target typeis an array type, then the operand type shall be an array type. Further:
by:
If the target typeis an array type, then the operand type shall be an array type. Further:
Replace paragraph 10: [A195-00251-01]
Thetypes shall have the same dimensionality;
by:
Thetypes shall have the same dimensionality;
Replace paragraph 11: [Al95-00251-01]
Corresponding index types shall be convertible;
by:
Corresponding index types shall be convertible;
Replace paragraph 12: [A195-00246-01; A195-00251-01]
The component subtypes shall statically match; and
by:
The component subtypes shall statically match;
Replace paragraph 12.1: [Al95-00246-01; AI95-00251-01]

In aview conversion, the target type and the operand type shall both or neither have aliased
components.

by:
Neither the target type nor the operand type shall be limited; and

In aview conversion: the target type and the operand type shall both or neither have aliased
components; and the operand type shall not have atagged, private, or volatile subcomponent.

Replace paragraph 13: [A195-00230-01; A195-00251-01]
If thetarget typeisageneral accesstype, then the operand type shall be an access-to-object type. Further:
by:
If the target type isuniversal_access, then the operand type shall be an access type.

23

ISO/IEC 8652:1995/WD.1:2004

If the target type is ageneral access-to-object type, then the operand shall be universal_access or an
access-to-object type. Further, if not universal_access:
Replace paragraph 14: [Al95-00251-01]
If the target type is an access-to-variable type, then the operand type shall be an access-to-variable
type;
by:
If thetarget typeis an access-to-variable type, then the operand type shall be an access-to-
variable type;
Replace paragraph 15: [Al95-00251-01]

If the target designated type is tagged, then the operand designated type shall be convertibleto the
target designated type;

by:
If the target designated type is tagged, then the operand designated type shall be convertible to
the target designated type;

Replace paragraph 16: [Al95-00251-01]

If the target designated typeis not tagged, then the designated types shall be the same, and either the
designated subtypes shall statically match or the target designated subtype shall be discriminated
and unconstrained; and

by:
If the target designated type is not tagged, then the designated types shall be the same, and
either the designated subtypes shall statically match or the target designated subtype shall be
discriminated and unconstrained; and

Replace paragraph 17: [Al95-00251-01]

The accessibility level of the operand type shall not be statically deeper than that of the target type.
In addition to the places where Legality Rules normally apply (see 12.3), thisrule applies also in the
private part of an instance of a generic unit.

by:
The accessibility level of the operand type shall not be statically deeper than that of the target
type. In addition to the places where Legality Rules normally apply (see 12.3), thisrule applies
also in the private part of an instance of ageneric unit.

Replace paragraph 18: [Al195-00230-01; A195-00251-01]

If the target typeis an access-to-subprogram type, then the operand type shall be an access-to-subprogram
type. Further:

by:
If the target type is an access-to-subprogram type, then the operand type shall be universal_access
or an access-to-subprogram type. Further, if not universal_access:

Replace paragraph 19: [Al95-00251-01]
The designated profiles shall be subtype-conformant.
by:
The designated profiles shall be subtype-conformant.

24

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 20: [A195-00251-01]

The accessibility level of the operand type shall not be statically deeper than that of the target type.
In addition to the places where Legality Rules normally apply (see 12.3), thisrule appliesalso in the
private part of an instance of ageneric unit. If the operand type is declared within ageneric body, the
target type shall be declared within the generic body.

by:
The accessibility level of the operand type shall not be statically deeper than that of the target
type. In addition to the places where Legality Rules normally apply (see 12.3), thisrule applies
also in the private part of an instance of ageneric unit. If the operand typeis declared within a
generic body, the target type shall be declared within the generic body.
Delete paragraph 21: [AlI95-00251-01]
If the target typeis not included in any of the above four cases, there shall be atype that isan ancestor of both
the target type and the operand type. Further, if the target typeistagged, then either:
Delete paragraph 22: [Al95-00251-01]
The operand type shall be covered by or descended from the target type; or

Delete paragraph 23: [Al95-00251-01]
The operand type shall be a class-wide type that covers the target type.

Delete paragraph 24: [AlI95-00251-01]

Inaview conversion for an untagged type, the target type shall be convertible (back) to the operand type.

Replace paragraph 49: [Al195-00230-01; A195-00231-01]

If the target type is an anonymous access type, a check is made that the value of the operand is
not null; if thetarget is not an anonymous access type, then the result is null if the operand value
isnull.

by:
If the operand value is null, the result of the conversion isthe null value of the target type.

Replace paragraph 51: [Al195-00231-01]

After conversion of the value to the target type, if the target subtypeis constrained, a check is performed that
the value satisfies this constraint.

by:

After conversion of the value to the target type, if the target subtype is constrained, a check is performed that
the value satisfies this constraint. If the target subtype excludes the null value, then a check is made that the
value isnot null.

4.8 Allocators

Replace paragraph 5: [A195-00287-01]

If the type of the allocator is an access-to-constant type, the allocator shall be aninitialized allocator. If the
designated typeis limited, the allocator shall be an uninitialized allocator.

by:
If the type of the allocator is an access-to-constant type, the allocator shall be an initialized allocator.

25

ISO/IEC 8652:1995/WD.1:2004

4.9 Static Expressions and Static Subtypes

Replace paragraph 26: [A195-00263-01]

by:

A static subtype iseither astatic scalar subtype or astatic string subtype. A static scalar subtypeisan
unconstrained scalar subtype whose type is not a descendant of aformal scalar type, or aconstrained scalar
subtype formed by imposing a compatible static constraint on a static scalar subtype. A static string subtype
is an unconstrained string subtype whose index subtype and component subtype are static (and whose typeis
not adescendant of aformal array type), or a constrained string subtype formed by imposing a compatible
static constraint on a static string subtype. In any case, the subtype of a generic formal object of mode in out,
and the result subtype of a generic formal function, are not static.

A static subtype is either astatic scalar subtype or a static string subtype. A static scalar subtypeisan
unconstrained scalar subtype whose type is not a descendant of aformal type, or aconstrained scalar subtype
formed by imposing a compatible static constraint on a static scalar subtype. A static string subtypeis an
unconstrained string subtype whose index subtype and component subtype are static, or a constrained string
subtype formed by imposing a compatible static constraint on a static string subtype. In any case, the subtype
of ageneric formal object of modein out, and the result subtype of a generic formal function, are not static.

Replace paragraph 38: [Al95-00268-01]

by:

For areal static expression that is not part of alarger static expression, and whose expected typeisnot a
descendant of aformal scalar type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
valueis exactly half-way between two machine numbers, any rounding shall be performed away from zero. If
the expected type is a descendant of aformal scalar type, no special rounding or truncating is required - normal
accuracy rules apply (see Annex G).

For areal static expression that is not part of alarger static expression, and whose expected typeisnot a
descendant of aformal scalar type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
valueis exactly half-way between two machine numbers, the rounding performed isimplementation-defined. If
the expected type is a descendant of aformal scalar type, no special rounding or truncating is required - normal
accuracy rules apply (see Annex G).

I mplementation Advice

For areal static expression that is not part of alarger static expression, and whose expected typeisnot a
descendant of aformal scalar type, the rounding should be the same as the default rounding for the target
system.

4.9.1 Statically Matching Constraints and Subtypes

Replace paragraph 2: [Al195-00231-01; A195-00254-01]

by:

26

A subtype statically matches another subtype of the sametype if they have statically matching constraints.
Two anonymous access subtypes statically match if their designated subtypes statically match.

A subtype statically matches another subtype of the same type if they have statically matching constraints,
and, for access subtypes, either both or neither exclude null. Two anonymous access-to-object subtypes
statically match if their designated subtypes statically match, and either both or neither exclude null, and either
both or neither are access-to-constant. Two anonymous access-to-subprogram subtypes statically match if
their designated profiles are subtype conformant, and either both or neither exclude null.

ISO/IEC 8652:1995/WD.1:2004

Section 5: Statements

No changesin this section.

27

ISO/IEC 8652:1995/WD.1:2004

Section 6: Subprograms

6.1 Subprogram Declarations

Replace paragraph 2: [A195-00218-03]
subprogram_declaration ::= subprogram_specification ;
by:
overriding_indicator ::= [not] overriding
subprogram_declaration ::= [overriding_indicator]
subprogram_specification ;
Replace paragraph 3: [Al195-00218-03]
abstract_subprogram_declaration ::= subprogram_specification is abstract;
by:
abstract_subprogram_declaration ::= [overriding_indicator]
subprogram_specificationis abstract;
Replace paragraph 15: [Al95-00231-01]

parameter_specification ::=
defining_identifier_list : mode subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

by:
parameter_specification ::=
defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]
Replace paragraph 23: [Al95-00231-01]

The nominal subtype of aformal parameter isthe subtype denoted by the subtype_mark, or defined by the
access_definition, in the parameter_specification.

by:
The nominal subtype of aformal parameter is the subtype determined by the optional null_exclusion and the
subtype_mark, or defined by the access_definition, in the parameter_specification.

Replace paragraph 24: [A195-00231-01; A195-00254-01]

An access parameter isaformal in parameter specified by anaccess_definition. An access parameter is of an
anonymous general access-to-variable type (see 3.10). Access parameters allow dispatching callsto be
controlled by access values.

by:
An access parameter isaformal in parameter specified by anaccess_definition. An access parameter is of an
anonymous access type (see 3.10). Access parameters of an access-to-object type allow dispatching callsto be
controlled by access values. Access parameters of an access-to-subprogram type permit callsto subprograms
passed as parameters irrespective of their accessibility level.
Replace paragraph 27: [A195-00254-01]
For any access parameters, the designated subtype of the parameter type.
by:
For any access parameters of an access-to-object type, the designated subtype of the parameter type.

28

ISO/IEC 8652:1995/WD.1:2004

For access parameters of an access-to-subprogram type, the subtypes of the profile of the parameter
type.

6.3 Subprogram Bodies

Replace paragraph 2: [Al195-00218-03]

subprogram_body ::=
subprogram_specificationis
declarative_part
begin
handled_sequence_of_statements
end [designator];

by:

subprogram_body ::=
[overriding_indicator]
subprogram_specificationis
declarative_part
begin
handled_sequence_of_statements
end [designator];

6.3.1 Conformance Rules

Replace paragraph 10: [Al95-00252-01]

asubprogram declared immediately within aprotected_body.
by:

asubprogram declared immediately within aprotected_body;

the view of a subprogram denoted by a selected_component whose prefix denotes an object or
value of atagged type, and whose selector_name denotes a subprogram operating on the type (see
4.1.3).

Insert after paragraph 13: [AlI95-00254-01]
The default calling convention isentry for an entry.

the new paragraph:

The calling convention for an access parameter of an access-to-subprogram type isprotected if the
reserved word protected appearsin its definition and otherwise is the convention of the subprogram
that contains the parameter.

6.4 Subprogram Calls

Replace paragraph 8: [Al95-00310-01]

The name or prefix given in aprocedure_call_statement shall resolve to denote acallable entity that isa
procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in afunction_call shall
resolve to denote a callable entity that is afunction. When there is an actual_parameter_part, the prefix can
be animplicit_dereference of an access-to-subprogram value.

by:

The name or prefix given in aprocedure_call_statement shall resolve to denote acallable entity that isa
procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in afunction_call shall

29

ISO/IEC 8652:1995/WD.1:2004

resolve to denote a call able entity that isafunction. The name or prefix shall not resolve to denote an abstract
subprogram unlessit is also a dispatching subprogram. When there is anactual_parameter_part, the prefix
can be animplicit_dereference of an access-to-subprogram value.

6.5 Return Statements

Replace paragraph 18: [A195-00316-01]

aname that denotes an object view whose accessibility level isnot deeper than that of the master
that elaborated the function body; or

by:

aname that denotes an object view (or avalue with an associated object, see 6.2) whose accessibility
level is not deeper than that of the master that elaborated the function body; or

6.5.1 Pragma No_Return

Insert new clause: [A195-00329-01]
A pragmaNo_Return indicates that a procedure can return only by propagating an exception.
Syntax
The form of apragmaNo_Return, which isaprogram unit pragma (see 10.1.5), isasfollows:
pragmaNo_Return(local_name{, local_name});
Legality Rules
The pragmashall apply to one or more procedures or generic procedures.

If apragmaNo_Return appliesto aprocedure or a generic procedure, there shall be noreturn_statements
within the procedure.

Satic Semantics

If apragmaNo_Return appliesto a generic procedure, pragmaNo_Return appliesto all instances of that
generic procedure.

Dynamic Semantics

If apragmaNo_Return appliesto a procedure, then the exception Program_Error israised at the point of the
call of the procedure if the procedure body completes normally.

30

ISO/IEC 8652:1995/WD.1:2004

Section 7: Packages

7.3 Private Types and Private Extensions

Replace paragraph 2: [Al95-00251-01]

private_extension_declaration ::=
type defining_identifier [discriminant_part] is
[abstract] new ancestor_subtype_indication with private;

by:
private_extension_declaration ::=
type defining_identifier [discriminant_part] is
[abstract] new ancestor_subtype_indication [and interface_list] with private;

7.4 Deferred Constants

Replace paragraph 9: [Al195-00256-01]

The completion of adeferred constant declaration shall occur before the constant is frozen (see 7.4).
by:

The completion of adeferred constant declaration shall occur before the constant isfrozen (see 13.14).

7.5 Limited Types

Replace paragraph 1: [Al195-00287-01]

A limited typeis (aview of) atype for which the assignment operation is not allowed. A nonlimited typeisa
(view of a) type for which the assignment operation is allowed.

by:
A limited typeis (aview of) atype for which copying (such asfor an assignment_statement) is not allowed. A
nonlimited typeisa(view of a) type for which copying is allowed.

Insert before paragraph 2: [Al95-00287-01]

If atagged record type has any limited components, then the reserved word limited shall appear in its
record_type_definition.

the new paragraph:
For an assignment operation that initializes alimited object with the value of anexpression, the expression
shall be a(possibly parenthesized or qualified) aggregate.
Insert after paragraph 8: [Al95-00287-01]
There are no predefined equality operatorsfor alimited type.
the new paragraph:
I mplementation Requirements

For an aggregate of alimited type used to initialize an object as allowed above, the implementation shall not
create a separate anonymous object for the aggregate. The aggregate shall be constructed directly in the new
object.

31

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 9: [Al195-00287-01]
13 The following are consequences of the rules for limited types:

by:
13 While limited types have an assignment operation, other rules of the language insure that it is never actually
invoked. The source of such an assignment operation must be an aggregate, and such aggregate s must be
built directly in the target object.

Delete paragraph 10: [AlI95-00287-01]

An initialization expression is not allowed in an object_declaration if the type of the object is limited.

Delete paragraph 11: [A195-00287-01]
A default expression is not alowed in acomponent_declaration if the type of the record component is
limited.

Delete paragraph 12: [AlI95-00287-01]
Aninitialized alocator is not allowed if the designated typeis limited.

Delete paragraph 13: [A195-00287-01]

A generic formal parameter of modein must not be of alimited type.

Delete paragraph 14: [Al95-00287-01]
14 Aggregate s are not available for alimited composite type. Concatenation is not available for alimited array
type.

Delete paragraph 15: [AlI95-00287-01]

15 Therules do not exclude adefault_expression for aformal parameter of alimited type; they do not exclude
adeferred constant of alimited typeif the full declaration of the constant is of anonlimited type.

7.6 User-Defined Assignment and Finalization

Replace paragraph 5: [A195-00161-01]
type Controlled is abstract tagged private;

by:

type Controlled is abstract tagged private;
pragma Preel aborable_lInitialization(Controlled);

Replace paragraph 7: [A195-00161-01]
type Limted_Controlled is abstract tagged limted private;
by:

type Limted Controlled is abstract tagged limted private;
pragnma Preel aborable Initialization(Limted Controlled);

Insert after paragraph 9: [Al95-00360-01]

A controlled type is adescendant of Controlled or Limited_Controlled. The (default) implementations of
Initialize, Adjust, and Finalize have no effect. The predefined "=" operator of type Controlled always returns
True, since this operator isincorporated into the implementation of the predefined equality operator of types
derived from Controlled, asexplained in 4.5.2. The type Limited_Controlled is like Controlled, except thet it is
limited and it lacks the primitive subprogram Adjust.

32

ISO/IEC 8652:1995/WD.1:2004

the new paragraphs:

A typeissaid to need finalization if:

itisacontrolled type, atask type or a protected type; or
it has a component that needs finalization; or
itisalimited type that has an access discriminant whose designated type needs finalization; or

it isone of anumber of language-defined typesthat are explicitly defined to need finalization.

Replace paragraph 21: [Al95-00147-01]

by:

For an aggregate or function call whose valueis assigned into atarget object, the implementation
need not create a separate anonymous object if it can safely create the value of the aggregate or
function call directly in the target object. Similarly, for anassignment_statement, the implementation
need not create an anonymous object if the value being assigned is the result of evaluating a name
denoting an object (the source object) whose storage cannot overlap with the target. If the source
object might overlap with the target object, then the implementation can avoid the need for an
intermediary anonymous object by exercising one of the above permissions and perform the
assignment one component at atime (for an overlapping array assignment), or not at all (for an
assignment where the target and the source of the assignment are the same object). Even if an
anonymous object is created, the implementation may move its value to the target object as part of the
assignment without re-adjusting so long as the anonymous object has no aliased subcomponents.

For an aggregate or function call whose value is assigned into atarget object, the implementation
need not create a separate anonymous object if it can safely create the value of the aggregate or
function call directly in the target object. Similarly, for anassignment_statement, the implementation
need not create an anonymous object if the value being assigned is the result of evaluating a name
denoting an object (the source object) whose storage cannot overlap with the target. If the source
object might overlap with the target object, then the implementation can avoid the need for an
intermediary anonymous object by exercising one of the above permissions and perform the
assignment one component at atime (for an overlapping array assignment), or not at al (for an
assignment where the target and the source of the assignment are the same object).

Furthermore, an implementation is permitted to omit implicit Initialize, Adjust, and Finalize calls and associated
assignment operations on an object of nonlimited controlled type provided that:

any omitted Initialize call isnot acall on a user-defined Initialize procedure, and

any usage of the value of the object after theimplicit Initialize or Adjust call and before any
subsequent Finalize call on the object does not change the external effect of the program, and

after the omission of such calls and operations, any execution of the program that executes an
Initialize or Adjust call on an object or initializes an object by anaggregate will aso later execute a
Finalize call on the object and will always do so prior to assigning a new value to the object, and

the assignment operations associated with omitted Adjust calls are also omitted.

This permission appliesto Adjust and Finalize calls even if theimplicit calls have additional external effects.

7.6.1 Completion and Finalization

Replace paragraph 16: [A195-00256-01]

For an Adjust invoked as part of theinitialization of a controlled object, other adjustments due to be
performed might or might not be performed, and then Program_Error is raised. During its propagation,
finalization might or might not be applied to objects whose Adjust failed. For an Adjust invoked as
part of an assignment statement, any other adjustments due to be performed are performed, and then
Program_Error israised.

33

ISO/IEC 8652:1995/WD.1:2004

by:

34

For an Adjust invoked as part of assignment operations other than those invoked as part of an
assignment statement, other adjustments due to be performed might or might not be performed, and
then Program_Error israised. During its propagation, finalization might or might not be applied to
objectswhose Adjust failed. For an Adjust invoked as part of an assignment statement, any other
adjustments due to be performed are performed, and then Program_Error is raised.

ISO/IEC 8652:1995/WD.1:2004

Section 8: Visibility Rules

8.3 Visibility
Insert after paragraph 12: [AlI95-00251-01]

Animplicit declaration of an inherited subprogram overrides a previous implicit declaration of an
inherited subprogram.

the new paragraphs:
If two or more homographs are implicitly declared at the same place:

If oneisanon-null non-abstract subprogram, then it overrides al which are null or abstract
subprograms.

If al are null procedures or abstract subprograms, then any null procedure overrides all abstract
subprograms; if more than one homograph remains that is not thus overridden, then oneis
chosen arbitrarily to override the others.

Replace paragraph 20: [A195-00217-06]

The declaration of alibrary unit (including alibrary_unit_renaming_declaration) ishidden from all
visibility except at placesthat are within its declarative region or within the scope of awith_clause
that mentionsit. For each declaration or renaming of a generic unit as a child of some parent generic
package, there is a corresponding declaration nested immediately within each instance of the parent.
Such a nested declaration is hidden from all visibility except at placesthat are within the scope of a
with_clause that mentions the child.

by:

The declaration of alibrary unit (including alibrary_unit_renaming_declaration) is hidden from all
visibility except at places that are within its declarative region or within the scope of a
nonlimited_with_clause that mentionsit. The limited view of alibrary packageis hidden from all
visibility except at places that are within the scope of alimited_with_clause that mentionsit but not
within the scope of anonlimited_with_clause that mentionsit. For each declaration or renaming of a
generic unit as a child of some parent generic package, thereis a corresponding declaration nested
immediately within each instance of the parent. Such a nested declaration is hidden from al visibility
except at places that are within the scope of awith_clause that mentions the child.

Insert after paragraph 23: [AlI95-00195-01]
A declaration is also hidden from direct visibility where hidden from al visibility.
the new paragraph:

An attribute_definition_clause isvisible at a place if adeclaration at the point of the
attribute_definition_clause would be immediately visible at the place.

Replace paragraph 26: [A195-00218-01; A195-00251-01]

A non-overridable declarationisillegal if there is ahomograph occurring immediately within the same
declarative region that is visible at the place of the declaration, and is not hidden from all visibility by the non-
overridable declaration. In addition, atype extensionisillegal if somewhere within itsimmediate scope it has
two visible components with the same name. Similarly, the context_clause for asubunit isillega if it mentions
(inawith_clause) some library unit, and there is ahomograph of the library unit that is visible at the place of
the corresponding stub, and the homograph and the mentioned library unit are both declared immediately
within the same declarative region. These rules also apply to dispatching operations declared in the visible part
of an instance of a generic unit. However, they do not apply to other overloadable declarations in an instance;
such declarations may have type conformant profilesin the instance, so long as the corresponding
declarationsin the generic were not type conformant.

35

ISO/IEC 8652:1995/WD.1:2004

by:
A non-overridable declarationisillegal if there isahomograph occurring immediately within the same
declarativeregion that isvisible at the place of the declaration, and is not hidden from all visibility by the non-
overridable declaration. In addition, atype extensionisillegal if somewhere within itsimmediate scope it has
two visible components with the same name. Similarly, the context_clause for asubunitisillegal if it mentions
(inawith_clause) somelibrary unit, and there is a homograph of the library unit that is visible at the place of
the corresponding stub, and the homograph and the mentioned library unit are both declared immediately
within the same declarative region.

If two or more homographs are implicitly declared at the same place (and not overridden by a non-overridable
declaration) then at most one shall be a non-null non-abstract subprogram. If all are null or abstract, then all of
the null subprograms shall be fully conformant with one another. If all are abstract, then all of the subprograms
shall be fully conformant with one another.

All of these rules also apply to dispatching operations declared in the visible part of an instance of ageneric
unit. However, they do not apply to other overloadable declarations in an instance; such declarations may
have type conformant profilesinthe instance, so long as the corresponding declarations in the generic were
not type conformant.

If asubprogram_declaration, abstract_subprogram_declaration, subprogram_body,
subprogram_body_stub, subprogram_renaming_declaration, or generic_instantiation of a subprogram has
an overriding_indicator, then:

the operation shall be a primitive operation for some type;

if the overriding_indicator isoverriding, then the operation shall override ahomograph at the point of
the declaration or body;

if the overriding_indicator isnot overriding, then the operation shall not override any homograph (at
any point).

In addition to the places where Legality Rules normally apply, these rules also apply in the private part of an
instance of ageneric unit.

8.4 Use Clauses

Replace paragraph 5: [A195-00217-06]
A package name of ause_package_clause shall denote a package.
by:
A package name of ause_package_clause shall denote a non-limited view of a package.

Insert after paragraph 7: [Al95-00217-06]

For ause_clause immediately within a declarative region, the scope is the portion of the declarative region
starting just after the use_clause and extending to the end of the declarative region. However, the scope of a
use_clause in the private part of alibrary unit does not include the visible part of any public descendant of
that library unit.

the new paragraph:
A package isnamed in ause_package_clauseif it isdenoted by a package_name of that clause. A typeis
named inause_type_clauseif it isdetermined by a subtype_mark of that clause.

Replace paragraph 8: [Al195-00217-06]

For each package denoted by a package_name of ause_package_clause whose scope encloses a place,
each declaration that occursimmediately within the declarative region of the package is potentially use-visible
at thisplace if the declaration is visible at this place. For each type T or T'Class determined by a subtype _mark

36

ISO/IEC 8652:1995/WD.1:2004

of ause_type_clause whose scope encloses a place, the declaration of each primitive operator of type T is
potentially use-visible at this placeif its declaration is visible at this place.

by:

For each package named in ause_package_clause whose scope encloses a place, each declaration that
occursimmediately within the declarative region of the package ispotentially use-visible at this place if the
declaration isvisible at this place. For each type T or T'Class named in ause_type_clause whose scope
encloses a place, the declaration of each primitive operator of type T ispotentially use-visible at this placeif its
declaration isvisible at this place.

8.5.1 Object Renaming Declarations

Replace paragraph 2: [Al195-00230-01]

object_renaming_declaration ::=
defining_identifier : subtype_mark renames object_name;

by:
object_renaming_declaration ::=

defining_identifier : subtype_mark renames object_name;
| defining_identifier : access_definition renames object_name;

Replace paragraph 3: [Al195-00231-01; Al95-00254-01]
The type of the object_name shall resolve to the type determined by the subtype_mark.

by:
Thetype of the object_name shall resolve to the type determined by the subtype _mark, or in the case where
the type is defined by anaccess_definition, to a specific anonymous access type which in the case of an
access-to-object type shall have the same designated type as that of the access_definition and in the case of

an access-to-subprogram type shall have a designated profile which is subtype conformant with that of the
access_definition.

Replace paragraph 4: [A195-00231-01; Al95-00254-01]
The renamed entity shall be an object.

by:

The renamed entity shall be an object. In the case where the type is defined by anaccess_definition of an
access-to-object type, the renamed entity shall be of an access-to-constant type if and only if the
access_definition defines an access-to-constant type.

Replace paragraph 6: [Al195-00230-01]

An object_renaming_declaration declares a new view of the renamed object whose properties are identical to
those of the renamed view. Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected; similarly, the
constraints that apply to an object are not affected by renaming (any constraint implied by the subtype_mark
of the object_renaming_declaration isignored).

by:

An object_renaming_declaration declares anew view of the renamed object whose properties are identical to
those of the renamed view. Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected; similarly, the
constraints that apply to an object are not affected by renaming (any constraint implied by the subtype_mark
or access_definition of the object_renaming_declaration isignored).

37

ISO/IEC 8652:1995/WD.1:2004

8.5.3 Package Renaming Declarations

Replace paragraph 3: [Al195-00217-06]
The renamed entity shall be a package.
by:
The renamed entity shall be anon-limited view of a package.

8.5.4 Subprogram Renaming Declarations

Replace paragraph 2: [Al195-00218-03]
subprogram_renaming_declaration ::= subprogram_specification renames callable_entity nhame;

by:
subprogram_renaming_declaration ::=
[overriding_indicator]
subprogram_specification renames callable_entity name;

Insert after paragraph 5: [Al195-00228-01]

The profile of arenaming-as-body shall be subtype-conformant with that of the renamed callable entity, and
shall conform fully to that of the declaration it completes. If the renami ng-as-body completes that declaration
before the subprogram it declaresis frozen, the profile shall be mode-conformant with that of the renamed
callable entity and the subprogram it declares takes its convention from the renamed subprogram; otherwise,
the profile shall be subtype-conformant with that of the renamed callable entity and the convention of the
renamed subprogram shall not be Intrinsic. A renaming-as-body isillegal if the declaration occurs before the
subprogram whose declaration it completesis frozen, and the renaming renames the subprogram itself, through
one or more subprogram renaming declarations, none of whose subprograms has been frozen.

the new paragraph:

If the callable_entity_name of arenaming denotes a subprogram which shall be overridden (see 3.9.3), then
therenamingisillegal.

8.6 The Context of Overload Resolution

Replace paragraph 25: [Al195-00230-01; Al95-00231-01; Al95-00254-01]

when T is an anonymous access type (see 3.10) with designated type D, to an access-to-variable
type whose designated type isD'Class or is covered by D.

by:

when T is a specific anonymous access-to-object type (see 3.10) with designated type D, to an
access-to-object type whose designated type isD'Class or is covered by D, and that is access-to-
constant only if T is access-to-constant; or

when T is an anonymous access-to-subprogram type (see 3.10), to an access-to-subprogram type
whose designated profile is subtype-conformant with that of T.

38

ISO/IEC 8652:1995/WD.1:2004

Section 9: Tasks and Synchronization

9.1 Task Units and Task Objects

Replace paragraph 21: [Al195-00287-01]

4 A task typeisalimited type (see 7.5), and hence has neither an assignment operation nor predefined equality
operators. If an application needs to store and exchange task identities, it can do so by defining an access type
designating the corresponding task objects and by using access values for identification purposes. Assignment is
available for such an access type as for any accesstype. Alternatively, if the implementation supports the
Systems Programming Annex, the ldentity attribute can be used for task identification (see C.7).

by:

4 A task typeisalimited type (see 7.5), and hence has neither assignment nor predefined equality operators. If
an application needs to store and exchange task identities, it can do so by defining an access type designating the
corresponding task objects and by using access values for identification purposes. Assignment is available for
such an access type as for any access type. Alternatively, if the implementation supports the Systems
Programming Annex, the Identity attribute can be used for task identification (see C.7).

9.4 Protected Units and Protected Objects

Replace paragraph 23: [A195-00287-01]

15 A protected typeisalimited type (see 7.5), and hence has neither an assignment operation nor predefined
equality operators.

by:

15 A protected typeisalimited type (see 7.5), and hence has neither assignment nor predefined equality
operators.

9.6 Delay Statements, Duration, and Time

Replace paragraph 10: [A195-00161-01]
package Ada. Cal endar is
type Time is private;
by:
package Ada. Cal endar is

type Time is private;
pragma Preel aborabl e_Initialization(Tine);

Replace paragraph 11: [Al95-00351-01]

subt ype Year_Number is Integer range 1901 .. 2099;
subtype Month_Nunmber is Integer range 1 .. 12;

subt ype Day_Nunber is Integer range 1 .. 31;

subtype Day_Duration is Duration range 0.0 .. 86_400.0;

by:

subtype Year _Nunber is Integer range 1901 .. 2399;
subtype Month_Nunber is Integer range 1 .. 12;

subt ype Day_Nunber is Integer range 1 .. 31;

is

subtype Day_Duration is Duration range 0.0 .. 86_400.0;

39

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 24: [Al95-00351-01]

Thefunctions Y ear, Month, Day, and Seconds return the corresponding values for a given value of the type
Time, as appropriate to an implementation-defined timezone; the procedure Split returns all four corresponding
values. Conversely, the function Time_Of combines ayear number, a month number, a day number, and a
duration, into avalue of type Time. The operators"+" and "-" for addition and subtraction of times and

durations, and the relational operators for times, have the conventional meaning.

by:

Thefunctions Y ear, Month, Day, and Seconds return the corresponding values for a given value of the type
Time, as appropriate to an implementation-defined time zone; the procedure Split returns all four corresponding
values. Conversely, the function Time_Of combines ayear number, a month number, a day number, and a
duration, into avalue of type Time. The operators"+" and " -" for addition and subtraction of times and

durations, and the relational operators for times, have the conventional meaning.

9.6.1 Formatting, Time Zones, and other operations for Time

Insert new clause: [A195-00351-01]

Static Semantics
The following language-defined library packages exist:

package Ada. Cal endar. Ti me_Zones is

- - Time zone manipulation:
type Time_Offset is range -1440 .. 1440;

Unknown_Zone_Error : exception;

function UTC Time O fset (Date : in Time := Cock) return Tine_Ofset;

end Ada. Cal endar. Ti me_Zones;

package Ada. Cal endar. Arithnetic is

- - Arithmetic on days:

type Day_Count is range
-366* (1+Year _Nunber' | ast - Year_Nunber'first)

366* (1+Year _Nunber' | ast - Year_Nunber'first);
subt ype Leap_Seconds_Count is Integer range -999 .. 999;
procedure Difference (Left, Right : in Tinmne;
Days : out Day_Count;
Seconds : out Duration;
Leap_Seconds : out Leap_Seconds_Count);
function "+" (Left : Tine; R ght : Day Count) return Tineg;

function "+" (Left : Day_Count; Right : Tine) return Tineg;

function "-" (Left : Tine; Rght : Day_Count) return Ting;

40

ISO/IEC 8652:1995/WD.1:2004

function "-" (Left, Right : Time) return Day_Count;
end Ada. Cal endar. Arithneti c;

with Ada. Cal endar. Arithretic, Ada.Cal endar. Ti ne_Zones;
package Ada. Cal endar. Fornatting is

- - Day of the week:

type Day_Nane is (Mnday, Tuesday, Wdnesday, Thursday,
Friday, Saturday, Sunday);

function Day_of _Wek (Date : Tine) return Day_Nang;

- - Hours:Minutes: Seconds access:

subt ype Hour _Numnber is Natural range 0 .. 23;
subt ype M nut e_Nunber is Natural range 0 .. 59;
subt ype Second_Numnber is Natural range 0 .. 59;
subt ype Second_Durati on is Day_Duration range 0.0 .. 1.0;
function Hour (Date : in Tinme;
Tine_Zone : in Time_Zones. Time_Ofset := 0)

return Hour_Nunber;

function M nute (Date : in Tinme;
Tine_Zone : in Time_Zones. Time_Ofset := 0)
return M nute_Nunber;
function Second (Date : in Tinmne;
Tine_Zone : in Time_Zones. Tine_Ofset := 0)
return Second_Nunber;
function Sub_Second (Date : in Tineg;
Tine_Zone : in Time_Zones.Tine_ Ofset := 0)

return Second_Duration;

function Seconds_Of (Hour : in Hour_Nunber;
Mnute : in M nute_Nunber;
Second : in Second_Nunber := 0;
Sub_Second : in Second_Duration := 0.0)
return Day_Duration;

procedure Split (Seconds : in Day_Duration;
Hour : out Hour _Nunber;
M nut e : out M nute_Nunber;
Second : out Second_Nunber;

Sub_Second : out Second_Duration);

procedure Split (Date cin Tine;
Time_Zone : in Tine_Zones.Time_Ofset := 0;
Year : out Year_Nunber;
Mont h : out Mont h_Nunber;
Day : out Day_Nunber;
Hour : out Hour _Nunber;
M nute : out M nute_Nunber;

41

ISO/IEC 8652:1995/WD.1:2004

Second : out Second_Nunber;
Sub_Second : out Second_Duration);

function Tinme_O (Year : Year _Nunber;
Mont h : Mont h_Nunber ;
Day : Day_Nunber;
Hour . Hour _Nunber;
M nut e . M nut e_Nunber;
Second . Second_Nunber;
Sub_Second : Second_Duration := 0.0;
Leap_Second: Bool ean : = Fal se;
Time_Zone : Tine_Zones.Time_Ofset := 0)
return Tine;
function Tinme_O (Year . Year _Nunber;
Mont h : Mont h_Nunber ;
Day : Day_Nunber;
Seconds . Day_Duration;
Leap_Second: Bool ean : = Fal se;
Tine_Zone : Time_Zones.Time_Ofset := 0)
return Tine;
procedure Split (Date cin Tinme;
Time_Zone : in Tine_Zones.Time_Ofset := 0;
Year : out Year _Nunber;
Mont h : out Mont h_Nunber;
Day : out Day_Nunber;
Hour : out Hour_Nunber;
M nut e : out M nute_Nunber;
Second : out Second_Nunber;
Sub_Second : out Second_Durati on;
Leap_Second: out Bool ean);
procedure Split (Date oin Time;
Tinme_Zone : in Time_Zones. Tine_COffset : = 0;
Year : out Year _Nunber;
Mont h : out Mont h_Number;
Day : out Day_Nunber;
Seconds : out Day_Duration;
Leap_Second: out Bool ean);
- - Smpleimage and value:
function Image (Date : Timne;
I nclude_Tine_Fraction : Boolean := False) return String;
function Value (Date : String) return Tineg;
function Image (El apsed _Tine : Duration;
Include_Tine_Fraction : Boolean := False) return String;

function Value (El apsed_Tinme : String) return Duration;

end Ada. Cal endar. Formatti ng;

Type Time_Offset represents the number of minutes difference between the implementati on-defined time zone
used by Ada.Calendar and another time zone.

function UTC Time_Ofset (Date : in Time := dock) return Time_Ofset;

42

ISO/IEC 8652:1995/WD.1:2004

Returns, as anumber of minutes, the difference between the implementation-defined time zone of
Calendar, and UTC time, at the time Date. If the time zone of the Calendar implementation is unknown,
then Unknown_Zone_Error is raised.

procedure Difference (Left, Right : in Ting;
Days : out Day_Count;
Seconds : out Duration;
Leap_Seconds : out Leap_Seconds_Count);

Returns the difference between Left and Right. Daysis the number of days of difference, Secondsis
the remainder seconds of difference, and Leap_Secondsis the number of leap seconds. If Left < Right,
then Seconds <= 0.0, Days <=0, and Leap_Seconds <= 0. Otherwise, all values are non-negative. For
thereturned values, if Days = 0, then If Days = 0O, then Seconds + Duration(Leap_Seconds) =
Calendar."-" (Left, Right).

function "+" (Left : Tine; R ght : Day_Count) return Ting;
function "+" (Left : Day_Count; Right : Time) return Ting;

Add anumber of daysto atimevalue. Time_Error israised if the result is not representable as avalue
of type Time.

function "-" (Left : Tine; R ght : Day_Count) return Ting;

Subtract a number of daysfrom atime value. Time_Error israised if the result is not representable as a
value of type Time.

function "-" (Left, Right : Time) return Day_Count;

Subtract two time values, andretur n the number of days between them. Thisis the same value that
Difference would return in Days.

function Day_of _Wek (Date : Tinme) return Day_Nane;
Returnsthe day of the week for Time. Thisis based on the Y ear, Month, and Day values of Time.

function Hour (Date : in Tine;
Time_Zone : in Tine_Zones.Time_Ofset := 0)
return Hour_Nunber;
Returns the hour for Date, as appropriate for the specified time zone offsd.
function Mnute (Date : in Tine;
Time_Zone : in Tine_Zones.Time_Ofset := 0)

return M nute_Nunber;
Returns the minute within the hour for Date, as appropriate for the specified time zone offset.

function Second (Date : in Tine;
Time_Zone : in Tine_Zones.Time_Ofset := 0)
return Second_Nunber;

Returns the second within the hour and minute for Date, as appropriate for the specified time zone
offset.

function Sub_Second (Date : in Tine;
Time_Zone : in Tine_Zones.Time_Ofset := 0)
return Second_Duration;

Returns the fraction of second for Date. (This has the same accuracy as Day_Duration), as
appropriate to the specified time zone offset.

function Seconds_Of (Hour : in Hour_Nunber;
Mnute : in M nute_Nunber;
Second : in Second_Nunber := 0;
Sub_Second : in Second_Duration := 0.0)

43

ISO/IEC 8652:1995/WD.1:2004

return Day_Duration;

ReturnsaDay_Duration value for the Hour:Minute: Second.Sub_Second. This value can be usedin
Calendar.Time_Of aswell asthe argument to Calendar."+" and Calendar.”-".

procedure Split (Seconds : in Day_Duration;
Hour : out Hour_Nunber;
Mnute : out M nute_Nunber;
Second : out Second_Numnber;
Sub_Second : out Second_Duration);

Split Seconds into Hour:Minute: Second.Sub_Second.

procedure Split (Date cin Tine;

Tine_Zone : in Time_Zones.Tine_Ofset := 0;
Year : out Year _Nunber;

Mont h : out Mont h_Nunber;

Day : out Day_Nunber;

Hour : out Hour _Number;

M nut e : out M nute_Nunber;

Second : out Second_Nunber;

Sub_Second : out Second_Duration);

Split Date into its constituent parts (Y ear, Month, Day, Hour, Minute, Second, Sub_Second), relative
to the specified time zone of fset.

function Tine_O (Year . Year _Nunber;
Mont h : Mont h_Nunber;
Day : Day_Nunber;
Hour . Hour _Nunber;
M nut e : M nute_Nunber;
Second : Second_Nunber;
Sub_Second : Second_Duration := 0.0;
Leap_Second: Bool ean : = Fal se;
Time_Zone : Time_Zones.Tine_Ofset := 0)

return Tine;

Returns a Time built from the date and time val ues, relative to the specified time zone offset.
Time_Errorisraisedif Leap_Second is True, and Hour, Minute, and Second are not appropriate for a

Leap_Second.
function Tine_O (Year . Year _Nunber;
Mont h : Mont h_Nunber;
Day : Day_Nunber;
Seconds : Day_Durati on;
Leap_Second: Bool ean : = Fal se;
Tine_Zone : Time_Zones.Tine_ Offset := 0)

return Tine;

Returns a Time built from the date and time val ues, relative to the specified time zone offset.
Time_Errorisraised if Leap_Second is True, and Secondsis not appropriate for aLeap_Second.

procedure Split (Date cin Tine;

Tine_Zone : in Tine_Zones.Tine_Ofset := 0;
Year . out Year _Nunber;

Mont h : out Month_Nunber;

Day . out Day_Nunber;

Hour : out Hour _Nunber;

M nut e : out M nute_Nunber;

Second : out Second_Nunber;

Sub_Second : out Second_Duration;

44

ISO/IEC 8652:1995/WD.1:2004

Leap_Second: out Bool ean);

Split Date into its constituent parts (Y ear, Month, Day, Hour, Minute, Second, Sub_Second), relative
to the specified time zone offset. Leap_Second istrueif Date identifies aleap second.

procedure Split (Date :in Tineg;
Time_Zone : in Tine_Zones.Time_Ofset := 0;
Year : out Year_Nunber;
Mont h : out Mont h_Nunber;
Day : out Day_Nunber;
Seconds : out Day_Duration;

Leap_Second: out Bool ean);

Split Date into its constituent parts (Y ear, Month, Day, Seconds), relative to the specified time zone
offset. Leap_Second istrueif Date identifies aleap second.

function | mage (Date : Tineg;
I ncl ude_Tine_Fraction : Boolean := False) return String;

Returns a string form of the Date. The format is™Y ear-M onth-Day Hour:Minute: Second"”, where each
value other than Y ear isa 2-digit form of the value of the functions defined in Calendar and
Calendar.Formatting, including aleading '0', if needed. Y ear isa4-digit value. If
Include_Time_Fraction is True, Sub_Seconds* 100 is suffixed to the string as a 2-digit value following

a..
function Value (Date : String) return Tine;

Returns a Time value for the image given as Date. Constraint_Error israised if the string is not
formatted as described for Image, or the function cannot interpret the given string as a Time value.

function Inage (El apsed_Tinme : Duration;
I nclude_Time_Fraction : Boolean := False) return String;

Returns a string form of the Elapsed_Time. The format is"Hours:Minute: Second", where each value is
a2-digit form of the value, including aleading '0', if needed. If Include_Time_Fractionis True,
Sub_Seconds* 100 is suffixed to the string as a 2-digit valuefollowing a'.'.

function Value (El apsed_Tinme : String) return Duration;

Returns a Duration value for the image given as Elapsed_Time. Constraint_Error israised if the string
is not formatted as described for Image, or the function cannot interpret the given string as a Duration
value.

I mplementation Advice

An implementation should support leap seconds if the target system supports them. If leap seconds are not
supported, functions returning leap seconds should return zero, and Time_Of should raise Time_Error if
Leap_Secondistrue.

NOTES
36 The time in the time zone known as Greenwich Mean Time (GMT) is generally equivalent to UTC time.

37 The implementation-defined time zone used for type Time may be, but need not be, the local time zone.
UTC_Time_Offset always returns the difference relative to the implementation-defined time zone of package
Calendar. If UTC_Time_Offset does not raise Unknown_Zone_Error, UTC time can be safely calculated (within
the accuracy of the underlying time-base).

38 Calling Split on the results of subtracting Duration(UTC_Time_Offset* 60) from Clock provides the
components (hours, minutes, and so on) of the UTC time. In the US, for example, UTC_Time_Offset will
generaly be negative.

45

ISO/IEC 8652:1995/WD.1:2004

Section 10: Program Structure and Compilation Issues

10.1.1 Compilation Units - Library Units

Insert after paragraph 12: [AI95-00217-06; A195-00326-01]

A library_unit_declaration or alibrary_unit_renaming_declaration isprivate if the declaration isimmediately

preceded by the reserved word private; it is otherwise public. A library unit is private or public according to its
declaration. The public descendants of alibrary unit are the library unit itself, and the public descendants of its
public children. Its other descendants are private descendants.

the new paragraphs:

For each library package_declaration in the environment, there is an implicit declaration of alimited view of
that library package. The limited view of a package contains:

For each nested package_declaration, adeclaration of the limited view of that package, with the
same defining_program_unit_name.

For each type_declaration in the visible part, an incomplete view of the type is declared. If the
type_declaration istagged, then the view is atagged incomplete view.

Thelimited view of alibrary package_declaration is private if that library package_declaration is
immediately preceded by the reserved word private.

There isno syntax for declaring limited views of packages, because they are alwaysimplicit. Theimplicit
declaration of alimited view of a package isnot the declaration of alibrary unit (the library package _declaration
is); nonetheless, it isalibrary_item.

A library package_declaration isthe completion of itslimited view declaration.

The elaboration of the limited view of a package has no effect.

Replace paragraph 26: [A195-00217-06]

by:

A library_item depends semantically upon its parent declaration. A subunit depends semantically upon its
parent body. A library_unit_body depends semantically upon the corresponding library_unit_declaration, if
any. A compilation unit depends semantically upon eachlibrary_item mentioned in awith_clause of the
compilation unit. In addition, if agiven compilation unit contains an attribute_reference of atype defined in
another compilation unit, then the given compilation unit depends semantically upon the other compilation
unit. The semantic dependence relationship istransitive.

A library_item depends semantically upon its parent declaration. A subunit depends semantically upon its
parent body. A library_unit_body depends semantically upon the corresponding library_unit_declaration, if
any. Theimplicit declaration of the limited view of alibrary package depends semantically upon the implicit
declaration of the limited view of its parent. The declaration of alibrary package depends semantically upon the
implicit declaration of itslimited view. A compilation unit depends semantically upon eachlibrary_item
mentioned in awith_clause of the compilation unit. In addition, if a given compilation unit contains an
attribute_reference of atype defined in another compilation unit, then the given compilation unit depends
semantically upon the other compilation unit. The semantic dependence relationship istransitive.

10.1.2 Context Clauses - With Clauses

Replace paragraph 4: [Al195-00217-06; Al95-00326-01]

46

with_clause ::= with library_unit_name {, library_unit_name};

ISO/IEC 8652:1995/WD.1:2004

by:
with_clause ::= limited_with_clause | nonlimited_with_clause
limited_with_clause ::= limited [private] with library_unit_name {, library_unit_name};
nonlimited_with_clause ::= [private] with library_unit_name {, library_unit_name};
Replace paragraph 6: [Al195-00217-06]

A library_item ismentioned in awith_clauseif it is denoted by alibrary_unit_name or aprefix in the
with_clause.

by:

A library_item isnamed in awith_clauseif it is denoted by alibrary_unit_name in the with_clause. A
library_item ismentioned in awith_clause if it isnamed in thewith_clause or if it is denoted by a prefix in
the with_clause.

Replace paragraph 8: [Al95-00217-06; A195-00220-01; Al95-00262-01]

If awith_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be either the declaration of a private descendant of that library unit or the body or a
subunit of a (public or private) descendant of that library unit.

by:
If awith_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be one of:

the declaration, body, or subunit of a private descendant of that library unit;

the body or subunit of a public descendant of that library unit, but not a subprogram body acting asa
subprogram declaration (see 10.1.4); or

the declaration of a public descendant of that library unit, and the with_clause shall include the
keyword private.

A name denoting alibrary item that is visible only due to being mentioned inwith_clausesthat include the
keyword private shall appear only within

aprivate part,

abody, but not within the subprogram_specification of alibrary subprogram body,
aprivate descendant of the unit on which one of these with_clauses appear, or
apragmawithin a context clause.

A library_item mentioned in alimited_with_clause shall be apackage_declaration[, not a
subprogram_declaration, generic_declaration, generic_instantiation, or package_renaming_declaration].

A limited_with_clause shall not appear on alibrary_unit_body or subunit.
A limited_with_clause which names alibrary_item shall not appear:
in the same context_clause as anonlimited_with_clause which mentions the same library_item; or

in the same context_clause as ause_clause which names an entity declared within the declarative
region of thelibrary_item; or

in the scope of anonlimited_with_clause which mentions the same library_item; or

in the scope of ause_clause which names an entity declared within the declarative region of the
library_item.

47

ISO/IEC 8652:1995/WD.1:2004

10.1.3 Subunits of Compilation Units

Replace paragraph 3: [Al195-00218-03]

by:

subprogram_body_stub ::= subprogram_specification is separ ate;

subprogram_body_stub ::= [overriding_indicator]
subprogram_specification is separ ate;

Replace paragraph 8: [Al195-00243-01]

by:

The parent body of a subunit isthe body of the program unit denoted by itsparent_unit_name. Theterm
subunit is used to refer to a subunit and also to the proper_body of a subunit.

The parent body of a subunitisthe body of the program unit denoted by itsparent_unit_name. Theterm
subunit is used to refer to a subunit and also to the proper_body of asubunit. A subunit of a program unit
includes subunits declared directly in the program unit aswell as any subunits declared in those subunits
(recursively).

10.1.4 The Compilation Process

Replace paragraph 3: [Al195-00217-06]

by:

The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined.

The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined. The mechanisms for adding a unit mentioned in a
limited_with_clause within an environment are implementation defined.

Replace paragraph 6: [A195-00217-06]

by:

The implementation may require that a compilation unit be legal before inserting it into the environment.

The implementation may require that acompilation unit be legal before it canbe mentioned in a
limited_with_clause or it can be inserted into the environment.

10.1.5 Pragmas and Program Units

Replace paragraph 9: [Al195-00212-01]

by:

48

An implementation may place restrictions on configuration pragmas, so long asit allows them when the
environment contains no library_items other than those of the predefined environment.

An implementation may require that configuration pragmas that select partition-wide or system-wide options
be compiled when the environment contains nolibrary_items other than those of the predefined environment.
In this case, the implementation must still accept configuration pragmasin individual compilations that confirm
theinitialy selected partition-wide or system-wide options.

ISO/IEC 8652:1995/WD.1:2004

10.2 Program Execution

Replace paragraph 6: [Al195-00217-06]
If acompilation unit with stubsis needed, then so are any corresponding subunits.
by:
If acompilation unit with stubsis needed, then so are any corresponding subunits;
If the limited view of aunit is needed, thenthe full view of the unit is needed.

Replace paragraph 9: [Al195-00256-01]

The order of elaboration of library unitsis determined primarily by the elaboration dependences. Thereis an
elaboration dependence of agiven library_item upon another if the given library_item or any of its subunits
depends semantically on the other library_item. In addition, if agivenlibrary_item or any of its subunits has a
pragma Elaborate or Elaborate_All that mentions another library unit, then thereis an elaboration dependence
of the givenlibrary_item upon the body of the other library unit, and, for Elaborate_All only, upon each
library_item needed by the declaration of the other library unit.

by:

The order of elaboration of library unitsis determined primarily by the elaboration dependences. Thereis an
elaboration dependence of agiven library_item upon another if the given library_item or any of its subunits
depends semantically on the other library_item. In addition, if agivenlibrary_item or any of its subunits has a
pragma Elaborate or Elaborate All that names another library unit, then there is an elaboration dependence of
the given library_item upon the body of the other library unit, and, for Elaborate_All only, upon each
library_item needed by the declaration of the other library unit.

10.2.1 Elaboration Control

Insert after paragraph 4: [Al95-00161-01]
A pragma Preelaborateisalibrary unit pragma.
the new paragraphs:
The form of pragma Preelaborable_Initialization is asfollows:

pragma Preelaborable_Initialization (direct_name);

Replace paragraph 9: [Al195-00161-01]

The creation of adefault-initialized object (including a component) of a descendant of aprivate type,

private extension, controlled type, task type, or protected type with entry _declarations; similarly the
evaluation of an extension_aggregate with an ancestor subtype_mark denoting a subtype of such
atype.

by:
The creation of an object (including a component) of atype which does not have preelaborable

initialization. Similarly the evaluation of anextension_aggregate with an ancestor subtype_mark
denoting a subtype of such atype.

Insert after paragraph 11: [AI95-00161-01]

If apragma Preelaborate (or pragma Pure -- see below) appliesto alibrary unit, then it ispreelaborated. If a
library unit is preelaborated, then its declaration, if any, and body, if any, are elaborated prior to al non-
preelaborated library_items of the partition. The declaration and body of a preelaborated library unit, and al
subunits that are elaborated as part of elaborating the library unit, shall be preelaborable. In addition to the
places where Legality Rules normally apply (see 12.3), thisrule applies also in the private part of an instance of

49

ISO/IEC 8652:1995/WD.1:2004

ageneric unit. In addition, all compilation units of a preelaborated library unit shall depend semantically only
on compilation units of other preelaborated library units.

the new paragraphs:

50

The following rules specify which entities have preelaborable initialization:

The partial view of aprivate type or private extension, a protected type without entry _declarations, a
generic formal private type, or ageneric formal derived type, have preelaborable initialization if and
only if the pragma Preelaborable_Initialization has been applied to them.

A component (including a discriminant) of arecord or protected type has preelaborable initialization if
its declaration includes a default_expression whose execution does not perform any actions
prohibited in preelaborable constructs as described above, or if its declaration does not include a
default expression and its type has preelaborabl e initialization.

A derived type has preelaborable initialization if its parent type has preelaborableinitialization and (in
the case of aderived record or protected type) if the non-inherited components all have preelaborable
initialization. Moreover, a user-defined controlled type with an overridding Initialize procedure does
not have preelaborable initialization.

A view of atype has preelaborableinitialization if it is an elementary type, an array type whose
component type has preelaborableinitialization, or arecord type whose components al have
preelaborableinitialization.

A pragma Preelaborable_Initialization specifiesthat atype has preelaborable initialization. This pragma shall
appear in the visible part of a package or generic package.

If the pragma appearsin thefirst list of declarative items of a package_specification, then the direct_name
shall denote thefirst subtype of aprivate type, private extension, or protected type without
entry_declarations, and the type shall be declared within the same package as the pragma. If the pragma is
applied to aprivate type or a private extension, the full view of the type shall have preelaborable initiaization. If
the pragma is applied to a protected type, each component of the protected type shall have preelaborable
initialization. In addition to the places where Legality Rules normally apply, these rules apply aso in the private
part of an instance of ageneric unit.

If the pragma appearsin ageneric_formal_part, then the direct_name shall denote a generic formal private
type or ageneric formal derived type declared in the same generic_formal_part asthe pragma. Ina
generic_instantiation the corresponding actual type shall have preelaborableinitialization.

ISO/IEC 8652:1995/WD.1:2004

Section 11: Exceptions

11.3 Raise Statements

Replace paragraph 2: [Al195-00361-01]
raise_statement ::= raise [exception_name];
by:
raise_statement ::=raise; |
raise exception_name [with string_expression];
Insert after paragraph 3: [Al95-00361-01]

The name, if any, in araise_statement shall denote an exception. A raise_statement with no
exception_name (that is, are-raise statement) shall be within a handler, but not within a body enclosed by
that handler.

the new paragraph:

Name Resolution Rules

The expression, if any, inaraise_statement, is expected to be of type String.

Replace paragraph 4: [Al195-00361-01]

To raise an exception isto raise a new occurrence of that exception, as explained in 11.4. For the execution of a
raise_statement with an exception_name, the named exception is raised. For the execution of are-raise
statement, the exception occurrence that caused transfer of control to theinnermost enclosing handler is raised

again.
by:

Toraise an exception isto raise anew occurrence of that exception, as explained in 11.4. For the execution of a
raise_statement with an exception_name, the named exception israised. If astring_expression is present, a
call of Ada.Exceptions.Exception_Message returns that string. For the execution of are-raise statement, the
exception occurrence that caused transfer of control to the innermost enclosing handler israised again.

11.4.1 The Package Exceptions

Replace paragraph 4: [A195-00329-01]
procedure Rai se_Exception(E : in Exception_ld,

Message : in String :="");
function Exception_Message(X : Exception_Cccurrence) return String;
procedure Rerai se_Cccurrence(X : in Exception_Cccurrence);

by:
procedure Rai se_Exception(E : in Exception_ld,
Message : in String :="");
pragma No_Ret ur n(Rai se_Exception);
function Exception_Message(X : Exception_GCccurrence) return String;
procedure Reraise_Cccurrence(X : in Exception_Cccurrence);

Replace paragraph 10: [A195-00361-01]

Raise_Exception raises a new occurrence of the identified exception. In this case, Exception_Message returns
the Message parameter of Raise_Exception. For araise_statement with anexception_name,

51

ISO/IEC 8652:1995/WD.1:2004

by:

Exception_M essage returns implementation-defined information about the exception occurrence.
Reraise_Occurrence reraises the specified exception occurrence.

Raise_Exception raises a new occurrence of the identified exception. In this case, Exception_Message returns
the M essage parameter of Raise_Exception. For araise_statement with an exception_name and a
string_expression, Exception_Message returnsthat string. For araise_statement with an exception_name
but without a string_expression, Exception_Message returns implementation-defined information about the
exception occurrence. Reraise_Occurrence reraises the specified exception occurrence.

Replace paragraph 14: [Al195-00241-01; A195-00329-01]

by:

Raise_Exception and Reraise_Occurrence have no effect in the case of Null_Id or Null_Occurrence.
Exception_Message, Exception_Identity, Exception_Name, and Exception_Information raise Constraint_Error
for aNull_Id or Null_Occurrence.

Reraise_Occurrence has no effect in the case of Null_Occurrence. Raise_Exception and Exception_Name raise
Constraint_Error for aNull_Id. Exception_Message, Exception_Name, and Exception_Information raise
Constraint_Error for aNull_Occurrence. Exception_ldentity appliedto Null_Occurrence returns Null_Id.

11.4.2 Pragmas Assert and Assertion_Policy

Insert new clause: [A195-00286-01]

52

Pragma Assert is used to assert the truth of a boolean expression at any point within a sequence of
declarations or statements. Pragma Assertion_Policy is used to control whether such assertions are to be
ignored by the implementation, checked at run-time, or handled in some implementation-defined manner.

Syntax
The form of apragma Assert isasfollows:
pragma Assert(boolean_expression[, [M essage =>] string_expression]);
A pragmaAssert is allowed at the place where a declarative_item or astatement is allowed.
The form of apragma Assertion_Policy is asfollows:
pragma Assertion_Policy(policy_identifier);
A pragmaAssertion_Policy isaconfiguration pragma.
Legality Rules

The policy_identifier of an Assertion_Policy pragma shall be either Check, Ignore, or an implementation-
defined identifier.

Satic Semantics

A pragmaAssertion_Policy isaconfiguration pragmathat specifies the assertion policy in effect for the
compilation unitsto which it applies. Different policies may pertain to different compilation units within the
same partition. The default assertion policy isimplementation-defined.

The following language-defined library package exists:

package Ada. Assertions is
pragma Pure(Ada. Assertions);

Assertion_Error : exception;

procedure Assert(Check : in Bool ean; Message : in String :="");

ISO/IEC 8652:1995/WD.1:2004

end Ada. Asserti ons;
A compilation unit containing a pragma Assert has a semantic dependence on the Ada.Assertions library unit.
The assertion policy that applies within an instanceis the policy that applies within the generic unit.
Dynamic Semantics

An assertion policy specifies how a pragma Assert isinterpreted by the implementation. If the assertion policy
islgnore at the point of a pragma Assert, the pragmaisignored. If the assertion policy is Check at the point of
apragma Assert, the elaboration of the pragma consists of evaluating the boolean expression, and if it
evaluatesto False, evaluating the Message string, if any, and raising the exception
AdaAssertions.Assertion_Error, with amessage if the Message argument is provided.

Calling the procedure Ada.Assertions. Assert is equivalent to:

if Check = Fal se then
rai se Ada. Assertions. Assertion_Error with Message;
end if;

except that it can be called from Pure code. The procedure Assertions.Assert has these effects independent of
the assertion policy in effect.

I mplementation Permissions
Assertion_Error may be declared by renaming an implementation-defined exception from another package.
Implementations may define their own assertion policies.

NOTES

Normally, the boolean expression in an Assert pragma should not call functions that have significant side-effects
when the result of the expression is True, so that the particular assertion policy in effect will not affect normal
operation of the program.

11.5 Suppressing Checks

Replace paragraph 1: [Al195-00224-01]

A pragma Suppress gives permission to an implementation to omit certain language-defined checks.

Checking pragmasgive instructions to an implementation on handling language-defined checks. A pragma
Suppress gives permission to an implementation to omit certain language-defined checks, while apragma
Unsuppress revokes the permission to omit checks.

Replace paragraph 3: [A195-00224-01]

Theform of apragma Suppressis asfollows:

The forms of checking pragmas are asfollows:

Replace paragraph 4: [Al195-00224-01]

pragma Suppress(identifier [, [On =>] name]);

pragma Suppress(identifier);

pragma Unsuppress(identifier);

53

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 5: [A195-00224-01]

A pragma Suppressis alowed only immediately within adeclarative_part, immediately within a
package_specification, or as a configuration pragma.

by:

A checking pragmais allowed only immediately within adeclarative_part, immediately withina
package_specification, or as a configuration pragma.

Replace paragraph 6: [A195-00224-01]
The identifier shall be the name of a check. The name (if present) shall statically denote some entity.

by:
The identifier shall be the name of a check.

Delete paragraph 7: [Al95-00224-01]

For apragma Suppress that isimmediately within apackage_specification and includes aname, the name
shall denote an entity (or several overloaded subprograms) declared immediately within the
package_specification.

Replace paragraph 8: [Al195-00224-01]

A pragma Suppress gives permission to an implementation to omit the named check from the place of the
pragma to the end of the innermost enclosing declarative region, or, if the pragmaisgivenina
package_specification and includes aname, to the end of the scope of the named entity. If the pragma
includes a name, the permission applies only to checks performed on the named entity, or, for a subtype, on
objects and values of itstype. Otherwise, the permission appliesto all entities. If permission has been given to
suppress a given check, the check is sad to be suppressed.

by:
A checking pragma applies to the named check in a specific region (see below), and appliesto all entitiesin
that region. A checking pragmagiven in adeclarative_part or immediately within apackage_specification
applies from the place of the pragma to the end of the innermost enclosing declarative region. The region for a
checking pragma given as a configuration pragma s the declarative region for the entire compilation unit (or
units) towhich it applies.

If a checking pragma applies to ageneric instantiation, then the checking pragma also applies to the instance. If
achecking pragma appliesto acall to a subprogram that has a pragma Inline applied to it, then the checking
pragma also applies to the inlined subprogram body.

A pragma Suppress gives permission to an implementation to omit the named check (or every check in the
case of All_Checks) for any entitiesto which it applies. If permission has been given to suppress agiven
check, the check is said to be suppressed.

A pragma Unsuppress revokes the permission to omit the named check (or every check in the case of
All_Checks) given by any pragma Suppress that applies at the point of the pragma Unsuppress. The
permission isrevoked for the region to which the pragma Unsuppress applies. If thereis no such permission at
the point of a pragma Unsuppress, then the pragma has no effect. A later pragma Suppress can renew the
permission.

Replace paragraph 27: [Al95-00224-01]

Animplementation is allowed to place restrictions on Suppress pragmas. An implementation is allowed to add
additional check names, with implementation-defined semantics. When Overflow_Check has been suppressed,
an implementation may also suppress an unspecified subset of the Range_Checks.

by:

Animplementation is allowed to place restrictions on checking pragmas, subject only to the requirement that
pragma Unsuppress shall allow any check names supported by pragma Suppress. An implementation is

54

ISO/IEC 8652:1995/WD.1:2004

alowed to add additional check names, with implementation-defined semantics. When Overflow_Check has
been suppressed, an implementation may also suppress an unspecified subset of the Range_Checks.

An implementation may support an additional parameter on pragma Unsuppress similar to the one allowed for
pragma Suppress (see J.10). The meaning of such a parameter isimplementation-defined.
Insert after paragraph 29: [AI95-00224-01]

2 Thereis no guarantee that a suppressed check is actually removed; hence a pragma Suppress should be
used only for efficiency reasons.

the new paragraph:

3 ltispossibleto give both a pragma Suppress and Unsuppress for the same check immediately within the
same declarative_part. In that case, the last pragma given determines whether or not the check is suppressed.
Similarly, it is possible to resuppress a check which has been unsuppressed by giving a pragma Suppressin an
inner declarative region.

55

ISO/IEC 8652:1995/WD.1:2004

Section 12: Generic Units

12.3 Generic Instantiation

Replace paragraph 2: [A195-00218-03]

generic_instantiation ::=
package defining_program_unit_nameis
new generic_package name [generic_actual_part];
| procedure defining_program_unit_name is
new generic_procedure_name [generic_actual_part];
| function defining_designator is
new generic_function_name [generic_actual_part];
by:
generic_instantiation ::=
package defining_program_unit_nameis
new generic_package name [generic_actual_part];
| [overriding_indicator]
procedure defining_program_unit_name is
new generic_procedure_name [generic_actual_part];
| [overriding_indicator]
function defining_designator is
new generic_function_name [generic_actual_part];

12.4 Formal Objects

Delete paragraph 8: [AlI95-00287-01]

Thetype of ageneric formal object of mode in shall be nonlimited.

Replace paragraph 9: [Al195-00255-01]

A formal_object_declaration declares a generic formal object. The default modeisin. For aformal object of
modein, the nominal subtype isthe one denoted by the subtype_mark in the declaration of the formal. For a
formal object of modein out, itstypeis determined by the subtype_mark in the declaration; its nominal
subtypeis nonstatic, even if the subtype_mark denotes a static subtype.

by:

A formal_object_declaration declares a generic formal object. The default modeisin. For aformal object of
mode in, the nominal subtype isthe one denoted by the subtype_mark in the declaration of the formal. For a
forma object of modein out, itstypeis determined by the subtype_mark in the declaration; its nominal
subtypeis nonstatic, evenif the subtype_mark denotes a static subtype; for acomposite type, its nominal
subtypeis unconstrained if the first subtype of the typeisunconstrained, even if the subtype_mark denotes
aconstrained subtype.

12.5 Formal Types

Replace paragraph 3: [Al195-00251-01]

formal_type_definition ::=
formal_private_type_definition
| formal_derived_type_definition
| formal_discrete_type_definition
| formal_signed_integer_type_definition
| formal_modular_type_definition

56

by:

ISO/IEC 8652:1995/WD.1:2004

| formal_floating_point_definition

| formal_ordinary_fixed_point_definition
| formal_decimal_fixed_point_definition
| formal_array_type_definition

| formal_access_type_definition

formal_type_definition ::=

formal_private_type_definition

| formal_derived_type_definition

| formal_discrete_type_definition

| formal_signed_integer_type_definition

| formal_modular_type_definition

| formal_floating_point_definition

| formal_ordinary_fixed_point_definition

| formal_decimal_fixed_point_definition

| formal_array_type_definition

| formal_access_type_definition

| formal_interface_type_definition

Replace paragraph 8: [Al195-00233-01]

by:

The formal type also belongs to each class that contains the determined class. The primitive subprograms of
the type are as for any typein the determined class. For aformal type other than aformal derived type, these
are the predefined operators of the type. For an elementary formal type, the predefined operators are implicitly
declared immediately after the declaration of the formal type. For acomposite formal type, the predefined
operators are implicitly declared either immediately after the declaration of the formal type, or later inits
immediate scope according to the rules of 7.3.1. In an instance, the copy of such an implicit declaration declares
aview of the predefined operator of the actual type, even if this operator has been overridden for the actual
type. The rules specific to formal derived typesaregivenin 12.5.1.

The formal type also belongs to each class that contains the determined class. The primitive subprograms of
the type are as for any typein the determined class. For aformal type other than aformal derived type, these
are the predefined operators of the type. For an elementary formal type, the predefined operators are implicitly
declared immediately after the declaration of the formal type. For acomposite formal type, the predefined
operators areimplicitly declared either immediately after the declaration of the formal type, or later immediately
within the declarative region in which the typeis declared according to therules of 7.3.1. In an instance, the
copy of such animplicit declaration declares aview of the predefined operator of the actual type, evenif this
operator has been overridden for the actual type. The rules specific to formal derived typesaregivenin 12.5.1.

12.5.1 Formal Private and Derived Types

Replace paragraph 3: [Al195-00251-01]

by:

formal_derived_type_definition ::= [abstract] new subtype_mark [with private]

formal_derived_type_definition ::=
[abstract] new subtype_mark [[and interface_list] with private]

Insert after paragraph 10: [AlI95-00231-01]

If the ancestor subtype is an unconstrained discriminated subtype, then the actual shall have the
same number of discriminants, and each discriminant of the actual shall correspond to a discriminant
of the ancestor, in the sense of 3.7.

57

ISO/IEC 8652:1995/WD.1:2004

the new paragraph:

If the ancestor subtype is an access subtype, the actual subtype shall exclude null if and only if the
ancestor subtype excludes null.

Insert after paragraph 15: [Al195-00251-01]

For ageneric formal type with anunknown_discriminant_part, the actual may, but need not, have
discriminants, and may be definite or indefinite.

the new paragraph:

The actual type shall be adescendant of every ancestor of the formal type.

Replace paragraph 20: [Al95-00233-01]

If the ancestor type is a composite type that is not an array type, the formal type inherits components from the
ancestor type (including discriminantsif a new discriminant_part is not specified), asfor aderived type
defined by aderived_type_definition (see 3.4).

by:
If the ancestor type isacomposite type that is not an array type, the formal type inherits components from the

ancestor type (including discriminantsif anew discriminant_part is not specified), asfor aderived type
defined by aderived_type_definition (see 3.4 and 7.3.1).

Replace paragraph 21: [Al95-00233-01]

For aformal derived type, the predefined operators and inherited user-defined subprograms are determined by
the ancestor type, and are implicitly declared at the earliest place, if any, within the immediate scope of the
formal type, where the corresponding primitive subprogram of the ancestor isvisible (see 7.3.1). In an instance,
the copy of such an implicit declaration declares aview of the corresponding primitive subprogram of the
ancestor of the formal derived type, even if this primitive has been overridden for the actual type. When the
ancestor of the formal derived typeisitself aformal type, the copy of the implicit declaration declares aview of
the corresponding copied operation of the ancestor. In the case of aformal private extension, however, the tag
of theformal typeisthat of the actual type, soif thetagin acall is statically determined to be that of the formal
type, the body executed will be that corresponding to the actual type.

by:
For aformal derived type, the predefined operators and inherited user-defined subprograms are determined by
the ancestor type, and areimplicitly declared at the earliest place, if any, immediately within the declarative
region in which the formal typeis declared, where the corresponding primitive subprogram of the ancestor is
visible (see 7.3.1). In an instance, the copy of such an implicit declaration declaresa view of the corresponding
primitive subprogram of the ancestor of the formal derived type, evenif this primitive has been overridden for
the actual type. When the ancestor of the formal derived typeisitself aformal type, the copy of the implicit
declaration declares aview of the corresponding copied operation of the ancestor. In the case of aformal
private extension, however, the tag of the formal typeisthat of the actual type, soif thetaginacall is statically
determined to be that of the formal type, the body executed will be that corresponding to the actual type.

12.5.4 Formal Access Types

Replace paragraph 4: [Al195-00231-01]

If and only if the general_access_modifier constant appliesto the formal, the actual shall be an access-to-
constant type. If the general_access_modifier all appliesto the formal, then the actual shall be a general
access-to-variable type (see 3.10).

by:

If and only if the general_access_modifier constant appliesto the formal, the actual shall be an access-to-
constant type. If the general_access_maodifier all appliesto the formal, then the actual shall be ageneral

58

ISO/IEC 8652:1995/WD.1:2004

access-to-variable type (see 3.10). If and only if the formal subtype excludes null, the actual subtype shall
exclude null.

12.5.5 Formal Interface Types
The class determined for aformal interface typeisthe class of all interface types.
Syntax
formal_interface_type_definition ::= interface_type_definition
Legality Rules
The actual type shall be an interface type.
The actual type shall be a descendant of every ancestor of the formal type.

The actual type shall be limited if and only if the formal typeislimited.

12.7 Formal Packages

Replace paragraph 3: [Al195-00317-01]
formal_package_actual_part ::=
(<>) | [generic_actual_part]
by:
formal_package_actual_part ::=
(<>)
| [generic_actual_part]
| (Igeneric_association {, generic_association},] others => <>)

Any positional generic_associations shall precede any named generic_associations.

Replace paragraph 5: [Al195-00317-01]

The actual shall be an instance of the template. If the formal_package_actual_part is (<>), then the actual
may be any instance of the template; otherwise, each actual parameter of the actual instance shall match the
corresponding actual parameter of the formal package (whether the actual parameter is given explicitly or by
default), asfollows:

by:
The actual shall be an instance of the template. If the formal_package_actual_part is(<>) or (others =><>),

then the actual may be any instance of the template; otherwise, certain of the actual parameters of the actual
instance shall match the corresponding actual parameter of the formal package, determined as follows:

If the formal_package_actual_part includesgeneric_associationsaswell as" others => <>", then
only the actual parameters specified explicitly in these generic_associations are required to match;

Otherwise, all actual parameters shall match, whether the actual parameter is given explicitly or by
default.

Therulesfor matching of actual parameters between the actual instance and the formal package are as follows:

Replace paragraph 10: [A195-00317-01]

Thevisible part of aformal package includesthefirst list of basic_declarative_items of the
package_specification. In addition, if the formal_package_actual_part is(<>), it also includesthe
generic_formal_part of the template for the formal package.

59

ISO/IEC 8652:1995/WD.1:2004

by:

60

Thevisible part of aformal package includesthefirst list of basic_declarative_items of the
package_specification. In addition, for each actual parameter that is not required to match, a copy of the
declaration of the corresponding formal parameter of the template isincluded in the visible part of the formal
package. If the copied declaration isfor aformal type, copies of the implicit declarations of the primitive
subprograms of the formal type are also included in the visible part of the formal package.

ISO/IEC 8652:1995/WD.1:2004

Section 13: Representation Issues

13.1 Representation Items

Replace paragraph 11: [Al95-00326-01]

Operational and representation aspects of ageneric formal parameter are the same as those of the actual.
Operational and representation aspects of a partial view are the same as those of the full view. A type-related
representation item is not allowed for a descendant of a generic formal untagged type.

by:

Operational and representation aspects of ageneric formal parameter are the same as those of the actual.
Operational and representation aspects are the same for all views of atype. A type-related representation item
is not allowed for a descendant of ageneric formal untagged type.

13.3 Representation Attributes

Delete paragraph 26: [Al95-00247-01]

If an Alignment is specified for acomposite subtype or object, this Alignment shall be equal to the
least common multiple of any specified Alignments of the subcomponent subtypes, or an integer
multiple thereof.

13.7 The Package System

Replace paragraph 12: [A195-00161-01]

type Address is inplenentation-defined;
Nul | _Address : constant Address;

by:

type Address is inplenentation-defined;
pragna Preel aborabl e I nitializati on(Address);
Nul | _Address : constant Address;

In paragraph 15replace: [Al95-00221-01]
Default_Bit_Oder : constant Bit_Order;
by:
Default _Bit_Oder : constant Bit_Order := inplenentation-defined;

Replace paragraph 35: [Al95-00221-01]
See 13.5.3 for an explanation of Bit_Order and Default_Bit_Order.

by:
See 13.5.3 for an explanation of Bit_Order and Default_Bit_Order. Default_Bit_Order shall be a static constant.

13.9.1 Data Validity

Replace paragraph 12: [A195-00167-01]

A call to an imported function or an instance of Unchecked_Conversion is erroneous if the result is scalar, and
the result object has an invalid representation.

61

ISO/IEC 8652:1995/WD.1:2004

by:

A call to an imported function or an instance of Unchecked_Conversion is erroneousiif the result is scalar, the
result object has an invalid representation, and the result is used other than as the expression of an
assignment_statement or an object_declaration, or asthe prefix of aValid attribute. If such aresult object is
used as the source of an assignment, and the assigned value is an invalid representation for the target of the
assignment, then any use of the target object prior to afurther assignment to the target object, other than as
the prefix of aValid attribute reference, is erroneous.

13.11 Storage Management

Replace paragraph 6: [A195-00161-01]

type Root_Storage Pool is
abstract new Ada. Controlled.Limted _Controlled with private;

by:
type Root_Storage_Pool is
abstract new Ada. Controlled.Limted_Controlled with private;
pragma Preel aborable_lInitializati on(Root_Storage_Pool) ;

Replace paragraph 25: [A195-00230-01]

A storage pool for an anonymous access type should be created at the point of an allocator for the type, and
be reclaimed when the designated object becomes inaccessible.

by:
The storage pool used for an allocator of an anonymous access type should be determined as follows:

If the allocator isinitializing an access discriminant of an object of alimited type, and the discriminant
isitself asubcomponent of an object being created by an outer allocator, then the storage pool used
for the outer allocator should also be used for the allocator initializing the access discriminant;

Otherwise, the storage pool should be created at the point of the allocator, and be reclaimed when the
allocated object becomes inaccessible.

13.11.1 The Max_Size In_Storage_ Elements Attribute

Replace paragraph 3: [Al195-00256-01]

Denotesthe maximum value for Size_In_Storage Elementsthat will be requested via Allocate for an access
type whose designated subtypeis S. The value of this attribute is of type universal_integer.

by:

Denotes the maximum value for Size In_Storage Elementsthat could be requested by the implementation via
Allocate for an access type whose designated subtypeis S. The value of this attributeis of type
universal_integer.

13.12 Pragma Restrictions

Insert after paragraph 7: [Al95-00257-01]
The set of restrictions isimplementation defined.
the new paragraphs:

The followingrestriction_identifiers are language-defined (additional restrictions are defined in the Specialized
Needs Annexes):

62

ISO/IEC 8652:1995/WD.1:2004

No_Implementation_Attributes
There are no implementation-defined attributes. This restriction applies only to the current
compilation or environment, not the entire partition.

No_Implementation_Pragmas
There are no implementation-defined pragmas or pragma arguments. Thisrestriction applies only to
the current compilation or environment, not the entire partition.

13.13.1 The Package Streams

Replace paragraph 3: [Al195-00161-01]

type Root_Stream Type is abstract tagged limted private;
by:

type Root_Stream Type is abstract tagged linmted private;

pragnma Preel aborabl e I nitialization(Root_Stream Type);
Replace paragraph 8: [Al195-00227-01]

The Read operation transfers Item’'L ength stream elements from the specified stream to fill the array Item. The
index of thelast stream element transferred isreturned in Last. Last islessthan Item'Last only if the end of the
stream is reached.

by:
The Read operation transfers stream elements from the specified stream to fill the array Item. Elements are
transferred until Item'Length elements have been transferred, or until the end of the stream is reached. If any
elements are transferred, theindex of the last stream element transferred is returned in Last. Otherwise,
Item'First - Lisreturned in Last. Last islessthan Item'Last only if the end of the stream is reached.

Insert after paragraph 10: [Al95-00227-01]
See A.12.1, " The Package Streams.Stream 10" for an example of extending type Root_Stream_Type.

the new paragraph:

If the end of stream has been reached, and Item'First is Stream_Element_Offset'First, Read will raise
Constraint_Error.

13.13.2 Stream-Oriented Attributes

Insert before paragraph 2: [Al95-00270-01]
For every subtype S of a specific type T, the following attributes are defined.
the new paragraphs:
For every subtype S of an elementary type T, the following operational attribute is defined:

SStream _Size
Denotes the number of bits occupied in astream by items of subtype S. Hence, the number of stream
elements required per item of elementary type T is:

T Stream Size / Ada. Streans. Stream El enent' Si ze
The value of this attribute is of type universal_integer and isamultiple of Stream_Element'Size.

Stream_Size may be specified for first subtypes via an attribute_definition_clause; the expression of
such a clause shall be static, non-negative, and amultiple of Stream_Element'Size.

Implementation Advice

63

ISO/IEC 8652:1995/WD.1:2004

The recommended level of support for the Stream_Size attributeis: A Stream_Size clause should be supported
for an elementary type T if the specified Stream_Size isamultiple of Stream_Element'Size and is no less than
the size of the first subtype of T, and no greater than the size of the largest type of the same elementary class
(signed integer, modular integer, floating point, ordinary fixed point, decimal fixed point, or access).

Replace paragraph 9: [Al195-00195-01; A195-00270-01]

by:

For elementary types, the representation in terms of stream elementsisimplementation defined. For composite
types, the Write or Read attribute for each component is called in canonical order, which islast dimension
varying fastest for an array, and positional aggregate order for arecord. Bounds are not included in the stream
if Tisan array type. If T isadiscriminated type, discriminants are included only if they have defaults. If Tisa
tagged type, the tag is not included. For type extensions, the Write or Read attribute for the parent typeis
called, followed by the Write or Read attribute of each component of the extension part, in canonical order. For
alimited type extension, if the attribute of any ancestor type of T has been directly specified and the attribute
of any ancestor type of the type of any of the extension components which are of alimited type has not been
specified, the attribute of T shall be directly specified.

For elementary types, the representation in terms of stream elementsisimplementation defined. For composite
types, the Write or Read attribute for each component is called in canonical order, which islast dimension
varying fastest for an array, and positional aggregate order for arecord. Bounds are not included in the stream
if Tisan array type. If Tisadiscriminated type, discriminants are included only if they have defaults. If Tisa
tagged type, thetag is not included. For type extensions, the Write or Read attribute for the parent typeis
called, followed by the Write or Read attribute of each component of the extension part, in canonical order. For
alimited type extension, if the attribute of the parent type of T is available anywhere within theimmediate
scope of T, and the attribute of the type of any of the extension components which are of alimited type, L, is
not available at the freezing point of T, then the attribute of T shall be directly specified.

Constraint_Error israised by the predefined Write attribute if the value of the elementary item is outside the
range of values representable using Stream_Size bits. For asigned integer type, an enumeration type, or a
fixed-point type, the range is unsigned only if the integer code for the first subtype low bound is non-negative,
and a (symmetric) signed range that covers all values of the first subtype would require more than Stream_Size
bits; otherwise the range is signed.

Replace paragraph 17: [AI95-00270-01]

by:

If astream element is the same size as a storage element, then the normal in-memory representation should be
used by Read and Write for scalar objects. Otherwise, Read and Write should use the smallest number of
stream elements needed to represent all values in the base range of the scalar type.

By default, the predefined stream-oriented attributes for an elementary type should only read or write the
minimum number of stream elements required by the first subtype of the type, rounded up to the nearest factor
or multiple of theword size that is also a multiple of the stream element size.

Replace paragraph 27: [Al95-00195-01]

by:

S'Output then calls SWrite to write the value of Item to the stream. S'Input then creates an object (with the
bounds or discriminants, if any, taken from the stream), initializes it with SRead, and returns the value of the
object.

S'Output then calls SWrite to write the value of Item to the stream. SInput then creates an object (with the
bounds or discriminants, if any, taken from the stream), passesit to SRead, and returns the value of the object.
Normal default initialization and finalization take place for this object (see 3.3.1, 7.6, 7.6.1).

Insert after paragraph 28: [Al95-00260-01]

64

For every subtype S'Class of aclass-wide type T'Class:

ISO/IEC 8652:1995/WD.1:2004

the new paragraphs:
SClassTag_Write
SClassTag_Write denotes a procedure with the following specification:
procedure S O ass' Tag Wite (

Stream : access Streans. Root _Stream Type' d ass;
Tag : Ada. Tags. Tag);

SClassTag_Write writes the value of Tag to Stream.
SClassTag_Read
S'ClassTag_Read denotes a function with the following specification:
function S dass' Tag Wite (

Stream : access Streans. Root_Stream Type' d ass)
return Ada. Tags. Tag;

SClassTag_Read reads atag from Stream, and returnsits value.
The default implementations of the Tag_Write and Tag_Read operate as follows:

If Tisaderived type with parent type P, the default implementation of Tag_Write calls
P'ClassTag_Write, and the default implementation of Tag_Read callsP'Class Tag_Read;

Otherwise, the default implementation of Tag_Write calls String'Output(Stream,
Tags.Externa_Tag(Tag)) -- see 3.9. The default implementation of Tag_Read returns the value of
Tags.Internal_Tag(String'l nput(Stream)).

Replace paragraph 31: [Al95-00260-01]

First writes the external tag of Itemto Stream (by calling String'Output(Tags.External_Tag(ItemTag) -- see 3.9)
and then dispatches to the subprogram denoted by the Output attribute of the specific typeidentified by the

tag.
by:

First writes the external tag of Itemto Stream (by calling STag_Write(Stream, ItemTag)) and then dispatches
to the subprogram denoted by the Output attribute of the specific type identified by the tag.

Replace paragraph 34: [Al195-00260-01]

First reads the external tag from Streamand determines the corresponding internal tag (by calling
Tags.Internal_Tag(String'l nput(Stream)) -- see 3.9) and then dispatches to the subprogram denoted by the
Input attribute of the specific typeidentified by the internal tag; returns that result.

by:
First reads the external tag from Streamand determines the corresponding internal tag (by calling
STag_Read(Stream)) and then dispatches to the subprogram denoted by the Input attribute of the specific
typeidentified by the internal tag; convertsthat result to SClass and returnsiit.

Replace paragraph 35: [A195-00195-01]

In the default implementation of Read and Input for acomposite type, for each scalar component that isa
discriminant or whose component_declaration includes a default_expression, a check is made that the value
returned by Read for the component belongsto its subtype. Constraint_Error israised if this check fails. For
other scalar components, no check is made. For each component that is of an accesstype, if the
implementation can detect that the val ue returned by Read for the component is not a value of its subtype,
Constraint_Error israised. If the valueis not avalue of its subtype and this error is not detected, the
component has an abnormal value, and erroneous execution can result (see 13.9.1).

65

ISO/IEC 8652:1995/WD.1:2004

by:

In the default implementation of Read and Input for a composite type, for each scalar component that isa
discriminant or whose component_declaration includes a default_expression, a check is made that the value
returned by Read for the component belongs to its subtype. Constraint_Error israised if this check fails. For
other scalar components, no check is made. For each component that is of an accesstype, if the
implementation can detect that the value returned by Read for the component is not a value of its subtype,
Constraint_Error israised. If the value is not avalue of its subtype and this error is not detected, the
component has an abnormal value, and erroneous execution can result (see 13.9.1). In the default
implementation of Read for acomposite type with defaulted discriminants, if the actual parameter of Read is
constrained, a check is made that the discriminants read from the stream are equal to those of the actual
parameter. Constraint_Error israised if this check fails.

It is unspecified at which point and in which order these checks are performed. In particular, if Constraint_Error
israised dueto the failure of one of these checks, it is unspecified how many stream elements have been read
from the stream.

Replace paragraph 36: [Al95-00195-01]

by:

66

The stream-oriented attributes may be specified for any type viaan attribute_definition_clause. All nonlimited
types have default implementations for these operations. An attribute_reference for one of these attributesis
illegal if thetypeislimited, unless the attribute has been specified by an attribute_definition_clause or (for a
type extension) the attribute has been specified for an ancestor type. For anattribute_definition_clause
specifying one of these attributes, the subtype of the Item parameter shall be the base subtype if scalar, and
the first subtype otherwise. The same rule appliesto the result of the Input function.

The stream-oriented attributes may be specified for any type viaan attribute_definition_clause. The
subprogram name given in such a clause shall not denote an abstract subprogram.

A stream-oriented attribute for a subtype of a specific type T isavailable at places where one of the following
conditionsistrue:

The attribute_designator is Read, Write or Output, and T is nonlimited.
The attribute_designator is Input, and T is nonlimited and not abstract.

The attribute_designator is Read (resp. Write) and T isalimited record extension, and the attribute
Read (resp. Write) is available for the parent type of T and for the types of all of the extension
components.

The attribute_designator is Input (resp. Output), and T isalimited type, and the attribute Read (resp.
Write) isavailablefor T.

The attribute has been specified via an attribute_definition_clause, and the
attribute_definition_clauseisvisible.

A stream-oriented attribute for a subtype of a class-wide type T'Classis available at places where one of the
following conditionsistrue:

Tisnonlimited; or

The attribute has been specified via an attribute_definition_clause, and the
attribute_definition_clauseisvisible; or

where the corresponding attribute of T isavailable, provided that if T has apartial view, the
corresponding attribute is available at the end of the visible part where T is declared.

An attribute_reference for one of the stream-oriented attributesisillegal unlessthe attributeis available at the
place of the attribute_reference.

ISO/IEC 8652:1995/WD.1:2004

In the parameter_and_result_profiles for the stream-oriented attributes, the subtype of the Item parameter is
the base subtype of Tif Tisascalar type, and the first subtype otherwise. The same rule appliesto the result
of the Input attribute.

For an attribute_definition_clause specifying one of these attributes, the subtype of the Item parameter shall
be the base subtype if scalar, and the first subtype otherwise. The same rule appliesto the result of the Input
function.

Insert after paragraph 36.1: [Al95-00195-01]

For every subtype S of alanguage-defined nonlimited specific type T, the output generated by S'Output or
SWrite shall be readable by S'nput or SRead, respectively. Thisrule applies across partitionsif the
implementation conforms to the Distributed Systems Annex.

the new paragraphs:

If Constraint_Error israised during a call to Read because of failure of one the above checks, the
implementation must ensure that the discriminants of the actual parameter of Read are not modified.

Implementation Permissions

The number of calls performed by the predefined implementation of the stream- oriented attributes on the Read
and Write operations of the stream type is unspecified. An implementation may take advantage of this
permission to perform internal buffering. However, all the calls on the Read and Write operations of the stream
type needed to implement an explicit invocation of a stream-oriented attribute must take place before this
invocation returns. An explicit invocation is one appearing explicitly in the program text, possibly through a
generic instantiation (see 12.3).

Insert after paragraph 38: [Al95-00260-01]
User-specified attributes of S'Class are not inherited by other class-wide types descended from S.

the new paragraph:

User-specified Tag_Read and Tag_Write attributes should raise an exception if presented with atag value not
in SClass.

13.14 Freezing Rules

Insert after paragraph 7: [Al95-00251-01]
The declaration of arecord extension causes freezing of the parent subtype.
the new paragraph:

The declaration of a specific descendant of an interface type freezes the interface type.

67

ISO/IEC 8652:1995/WD.1:2004

Annex A: Predefined Language Environment

A.4.2 The Package Strings.Maps

Replace paragraph 4: [Al195-00161-01]

Representation for a set of character values:
type Character_Set is private;

by:

Representation for a set of character values:
type Character_Set is private;

pragmae Preel aborable_lInitializati on(Character_Set);

Replace paragraph 20: [Al95-00161-01]

Representation for a character to character mapping:
type Character_Mapping is private;

by:

Representation for a character to character mapping:
type Character_Mapping is private;

pragma Preel aborable_lnitialization(Character_Mpping);

A.4.3 Fixed-Length String Handling
Insert after paragraph 8: [AlI95-00301-01]
- - Search subprograms

the new paragraphs:
function Index (Source : in String;
Pattern : in String;
From: in Positive;
Going : in Drection
Mappi ng :
return Natural;

: = Forwar d;

in Maps. Character_Mapping := Maps. ldentity)

function Index (Source : in String;
Pattern : in String;
From: in Positive;
Going : in Drection := Forward;
Mappi ng : in Maps. Character_Mappi ng_Functi on)
return Natural;

function Index (Source : in String;

Set i n Maps. Charact er_Set;
From: in Positive;

Test : in Menbership :

= | nsi de;
Going : in Direction := Forward)
return Natural;
function I ndex_Non_Bl ank (Source : in String;

From: in Positive;

Going : in Direction := Forward)
68

ISO/IEC 8652:1995/WD.1:2004

return Natural;

Insert after paragraph 56: [AlI95-00301-01]
Otherwise, Length_Error is propagated.
the new paragraphs:

function Index (Source : in String;
Pattern : in String;
From: in Positive;
Coing : in Drection := Forward;
Mappi ng : in Maps. Character_Mapping : = Maps. ldentity)
return Natural;

function Index (Source : in String;
Pattern : in String;
From: in Positive;
CGoing : in Direction := Forward,
Mappi ng : in Maps. Charact er _Mappi ng_Functi on)
return Natural;

Each Index function searches, starting from From, for a slice of Source, with length Pattern'Length,
that matches Pattern with respect to Mapping; the parameter Going indicates the direction of the
lookup. If Going = Forward, then Index returns the smallest index | which is greater than or equal to
From such that the slice of Source starting at | matches Pattern. If Going = Backward, then Index
returns the largest index | suchthat the slice of Source starting at | matches Pattern and has an upper
bound less than or equal to From. If thereis no such slice, then O isreturned. If Pattern isthe null
string then Pattern_Error is propagated.

Replace paragraph 58: [A195-00301-01]

Each Index function searches for a slice of Source, with length Pattern’Length, that matches Pattern
with respect to Mapping; the parameter Going indicates the direction of the lookup. If Going =
Forward, then Index returns the smallest index | such that the slice of Source starting at | matches
Pattern. If Going = Backward, then Index returns the largest index | such that the slice of Source
starting at | matches Pattern. If thereisno such slice, then O isreturned. If Pattern isthe null string
then Pattern_Error is propagated.

by:
If Going = Forward, returns
I ndex (Source, Pattern, Source'First, Forward, Mpping);
otherwise returns

I ndex (Source, Pattern, Source'last, Backward, Mpping);

function Index (Source : in String;
Set : in Maps. Character_Set;
From: in Positive;
Test : in Menbership := Inside;
Coing : in Drection := Forward)
return Natural;

Index searches for the first or last occurrence of any of a set of characters (when Test=Inside), or any
of the complement of a set of characters (when Test=Outside). It returns the smallest index | >= From
(if Going=Forward) or the largest index | <= From (if Going=Backward) such that Source(l) satisfiesthe
Test condition with respect to Set; it returns O if there is no such Character in Source.

69

ISO/IEC 8652:1995/WD.1:2004

Replace paragraph 60: [Al95-00301-01]

Index searches for thefirst or last occurrence of any of a set of characters (when Test=Inside), or any
of the complement of ase of characters (when Test=Outside). It returnsthe smallest index | (if
Going=Forward) or the largest index | (if Going=Backward) such that Source(l) satisfies the Test
condition with respect to Set; it returns O if there is no such Character in Source.

by:
If Going = Forward, returns
I ndex (Source, Set, Source'First, Test, Forward);
otherwise returns

I ndex (Source, Set, Source'last, Test, Backward);

function | ndex_Non_Bl ank (Source : in String;
From: in Positive;
Going : in Direction := Forward)

return Natural;

Returns Index (Source, Maps. To_Set(Space), From, Outside, Going);

A.4.4 Bounded-Length String Handling

Insert after paragraph 12: [AlI95-00301-01]
function To_String (Source : in Bounded_String) return String;
the new paragraphs:

procedure Set_Bounded_String

(Target : out Bounded_Stri ng;
Source : in String);
Drop s in Truncation := Error);

Insert after paragraph 28: [AlI95-00301-01]

function Slice (Source : in Bounded_String;
Low : in Positive;
H gh :in Natural)

return String;

the new paragraphs:

functi on Bounded_Slice
(Source : in Bounded_String;

Low : in Positive;
H gh :in Natural;
Dr op :in Truncation := Error)

return Unbounded_Stri ng;

procedure Bounded_Slice

(Source : in Bounded_Stri ng;
Target : out Bounded_Stri ng;
Low cin Posi ti ve;
H gh cin Nat ur al ;
Dr op cin Truncation := Error);

Insert after paragraph 43: [AlI95-00301-01]
- - Search subprograms

70

ISO/IEC 8652:1995/WD.1:2004

the new paragraphs:

function Index (Source : in Bounded_String;
Pattern : in String;
From: in Positive;
Going : in Direction := Forward;
Mappi ng : in Maps. Character_Mpping : = Maps. |l dentity)
return Natural;

function Index (Source : in Bounded_String;
Pattern : in String;
From: in Positive;
Going : in Direction := Forward;
Mappi ng : in Maps. Charact er _Mappi ng_Functi on)
return Natural;

function Index (Source : in Bounded_String;
Set : in Maps. Character_Set;
From: in Positive;
Test : in Menbership := Inside;
Going : in Drection := Forward)
return Natural;

function Index_Non_Blank (Source : in Bounded_String;
From: in Positive;
Coing : in Drection := Forward)
return Natural;
Insert after paragraph 92: [AI95-00301-01]

To_String returns the String value with lower bound 1 represented by Source. If B isaBounded_String, then B
=To_Bounded_String(To_String(B)).

the new paragraphs:

procedure Set_Bounded_String

(Target : out Bounded_Stri ng;
Source : in String);
Dr op Sin Truncation := Error);

Equivalent to Target := To_Bounded_String (Source, Drop);

Replace paragraph 101: [Al95-00238-01; A195-00301-01]

Returns the slice at positions Low through High inthe string represented by Source; propagates
Index_Error if Low > Length(Source)+1 or High > Length(Source).

by:

Returnsthe slice at positions Low through High in the string represented by Source; propagates
Index_Error if Low > Length(Source)+1 or High > Length(Source). The bounds of the returned string
areLow and High.

function Bounded_Slice
(Source : in Bounded_String;

Low : in Positive;
H gh : in Natural;
Dr op : in Truncation := Error)

return Bounded_Stri ng;

71

ISO/IEC 8652:1995/WD.1:2004

Returnsthe slice at positions Low through High in the string represented by Source as a bounded
string; propagates Index_Error if Low > Length(Source)+1 or High > Length(Source).

procedure Bounded_Slice

(Source : in Bounded_Stri ng;
Target : out Bounded_Stri ng;
Low Sin Posi ti ve;
H gh o in Nat ur al ;
Dr op cin Truncation := Error);

Equivalent to Target := Bounded_Slice (Soruce, Low, High, Drop);

A.4.5 Unbounded-Length String Handling

Replace paragraph 4: [Al195-00161-01]

type Unbounded_String is private;
by:

type Unbounded_String is private;

pragma Preel aborable_Initialization(Unbounded_String);
Insert after paragraph 11: [AlI95-00301-01]

function To_String (Source : in Unbounded_String) return String;

the new paragraphs:

procedure Set_Unbounded_String

(Target : out Unbounded_Stri ng;
Source : in String);
Dr op cin Truncation := Error);

Insert after paragraph 22: [Al95-00301-01]

function Slice (Source : in Unbounded_Stri ng;
Low :in Positive;
H gh :in Natural)
return String;

the new paragraphs:

function Unbounded _Slice
(Source : in Unbounded_String;

Low :in Positive;
H gh : in Natural;
Dr op > in Truncation := Error)

return Unbounded_Stri ng;

procedure Unbounded_Slice

(Source : in Unbounded_Stri ng;
Target : out Unbounded_Stri ng;
Low cin Posi tive;

H gh cin Nat ur al ;
Dr op cin Truncation := Error);

Insert after paragraph 38: [AlI95-00301-01]
- - Search subprograms

72

ISO/IEC 8652:1995/WD.1:2004

the new paragraphs:

function Index (Source : in Unbounded_String;
Pattern : in String;
From: in Positive;
Going @ in Drection := Forward;
Mappi ng @ in Maps. Character_Mapping : = Maps. |l dentity)
return Natural;

function Index (Source : in Unbounded_String;
Pattern : in String;
From: in Positive;
Going : in Drection := Forward;
Mappi ng @ in Maps. Charact er _Mappi ng_Functi on)
return Natural;

function Index (Source : in Unbounded_String;
Set : in Maps. Character_Set;
From: in Positive;
Test : in Menbership := Inside;
Going : in Drection : = Forward)
return Natural;

function I ndex_Non_Bl ank (Source : in Unbounded_String;
From: in Positive;
Going : in Drection := Forward)
return Natural;
Insert after paragraph 72: [AlI95-00360-01]

private
- - not specified by the language
end Ada. Strings. Unbounded;

the new paragraph:

The type Unbounded_String needs finalization (see 7.6).

Insert after paragraph 79: [AlI95-00301-01]
If U isan Unbounded_String, then To_Unbounded_String(To_String(U)) = U.

the new paragraph:

The procedure Set_Unbounded_String set Target to an Unbounded_String that represents Source.

Insert after paragraph 82: [Al95-00301-01]

The Element, Replace_Element, and Slice subprograms have the same effect as the corresponding bounded-
length string subprograms.

the new paragraph:

The function Unbounded_Slice returnsthe slice at positions Low through High in the string represented by
Source as a Unbounded_String. The procedure Unbounded_Slice sets Target to the Unbounded_String
representing the slice at positions Low through High in the string represented by Source. Both routines
propagate Index_Error if Low > Length(Source)+1 or High > Length(Source).

73

ISO/IEC 8652:1995/WD.1:2004

A.4.7 Wide_String Handling

Replace paragraph 4: [Al195-00161-01]

- - Representation for a set of Wide_Character values:
type Wde_Character_Set is private;

by:
- - Representation for a set of Wide_Character values:
type Wde_Character_Set is private;
pragma Preel aborable_Initializati on(Wde_Character_Set);

Replace paragraph 20: [A195-00161-01]

- - Representation for a Wide_Character to Wide_Character mapping:
type Wde_Character_Mapping is private;

by:

- - Representation for a Wide_Character to Wide_Character mapping:
type Wde_Character_Mapping is private;
pragnma Preel aborable_|Initialization(Wde_Character_Mappi ng);

A.5.2 Random Number Generation

Insert after paragraph 15: [AlI95-00360-01]

private
- - not specified by the language
end Ada. Nurreri cs. Fl oat _Random

the new paragraph:

The type Generator needs finalization (see 7.6).

Insert after paragraph 27: [Al95-00360-01]

private
- - not specified by the language
end Ada. Nuneri cs. Di screte_Random

the new paragraph:

The type Generator needs finalization (see 7.6) in every instantiation of Discrete_Random.

A.5.3 Attributes of Floating Point Types

Insert after paragraph 41: [AI95-00267-01]

The function yields the integral value nearest to X, rounding toward the even integer if X lies exactly
halfway between two integers. A zero result has the sign of X when S'Signed Zerosis True.

the new paragraphs:

S'Machine_Rounding
S'Machine_Rounding denotes a function with the following specification:

function S Machine _Rounding (X : T)
return T

The function yields the integral value nearest to X. If X lies exactly halfway between two integers, one
of thoseintegersisreturned, but which of them isreturned is unspecified. A zero result has the sign

74

ISO/IEC 8652:1995/WD.1:2004

of Xwhen S'Signed_Zerosis True. This function provides access to the rounding behavior whichis
most efficient on the target processor.

A.8 Sequential and Direct Files

Replace paragraph 1: [Al195-00283-01]

Two kinds of accessto external files are defined in this subclause: sequential access and direct access. The
corresponding file types and the associated operations are provided by the generic packages Sequential_10
and Direct_lO. A file object to be used for sequential accessis called asequential file, and oneto be used for
direct accessiscalled adirect file. Accessto stream filesis described in A.12.1.

by:

Two kinds of accessto external files are defined in this subclause: sequential access and direct access. The
corresponding file types and the associated operations are provided by the generic packages Sequential_10
and Direct_lO. A file object to be used for sequential accessis called a sequential file, and one to be used for
direct accessiscalled adirect file. Access to streamfilesisdescribedin A.12.1.

A.8.1 The Generic Package Sequential 1O

Insert after paragraph 16: [AlI95-00360-01]

private
- - not specified by the language
end Ada. Sequential _|I Q
the new paragraph:

Thetype File_Type needsfinalization (see 7.6) in every instantiation of Sequential_IO.

A.8.2 File Management

Replace paragraph 3: [Al195-00283-01]

Establishes anew external file, with the given name and form, and associates this external file with the given
file. Thegiven fileisleft open. The current mode of the given fileis set to the given access mode. The default
access mode is the mode Out_File for sequential and text input-output; it is the mode Inout_File for direct
input-output. For direct access, the size of the created file isimplementation defined.

by:

Establishes anew external file, with the given name and form, and associates this external file with the given
file. The given fileisleft open. The current mode of the given file is set to the given access mode. The default
access mode isthe mode Out_File for sequential, stream, and text input-output; it isthe mode Inout_File for
direct input-output. For direct access, the size of the created file isimplementation defined.

Replace paragraph 22: [A195-00248-01]

Returns a string which uniquely identifies the external file currently associated with the given file (and
may thus be used in an Open operation). If an external environment allows alternative specifications
of the name (for example, abbreviations), the string returned by the function should correspond to a
full specification of the name.

by:

Returns a string which uniquely identifies the external file currently associated with the given file (and
may thus be used in an Open operation).

75

ISO/IEC 8652:1995/WD.1:2004

A.8.4 The Generic Package Direct_IO

Insert after paragraph 19: [AlI95-00360-01]

private
- - not specified by the language
end Ada.Direct _IQ

the new paragraph:

Thetype File_Type needsfinalization (see 7.6) in every instantiation of Direct_|O.

A.10.1 The Package Text_IO

Insert after paragraph 48: [AlI95-00301-01]

procedure Put(File : in File_Type; Item: in String);
procedure Put(ltem: in String);

the new paragraphs:

function Get_Line(File : in File_Type) return String;
function Get_Line return String;

Insert after paragraph 85: [AlI95-00360-01]

Status_Error : exception renanes | O Exceptions. Status_Error;

Mode_Error . exception renames | O Exceptions. Mode_Error;
Nane_Err or . exception renanes | O Exceptions. Nane_Error;
Use_Error . exception renanes | O Exceptions. Use_Error;
Device_Error : exception renanes | O Exceptions. Device_Error;
End_Error . exception renames | O Exceptions. End_Error;
Dat a_Error . exception renanes | O Exceptions.Data_Error;
Layout _Error : exception renames | O Exceptions. Layout_Error;
private

- - not specified by the language
end Ada. Text _IQ

the new paragraph:

Thetype File_Type needsfinalization (see 7.6).

A.10.6 Get and Put Procedures

In paragraph 5replace: [Al95-00223-01]

Input-output of enumeration val ues uses the syntax of the corresponding lexical elements. Any Get procedure
for an enumeration type begins by skipping any leading blanks, or line or page terminators. Get proceduresfor
numeric or enumeration types start by skipping leading blanks, where ablank is defined as a space or a
horizontal tabulation character. Next, characters are input only so long as the sequence input isan initial
sequence of an identifier or of acharacter literal (in particular, input ceases when aline terminator is
encountered). The character or line terminator that causes input to cease remains available for subsequent
input.

by:

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any Get procedure
for an enumeration type begins by skipping any leading blanks, or line or page terminators. A blank is defined
as aspace or ahorizontal tabulation character. Next, characters are input only so long as the sequence input is
aninitial sequence of an identifier or of acharacter literal (in particular, input ceases when aline terminator is

76

ISO/IEC 8652:1995/WD.1:2004

encountered). The character or line terminator that causes input to cease remains available for subsequent
input.

A.10.7 Input-Output of Characters and Strings

Replace paragraph 13: [A195-00301-01]

For an item of type String, the following procedures are provided:
by:

For an item of type String, the following subprograms are provided:

Insert after paragraph 17: [AlI95-00301-01]

Determines the length of the given string and attempts that number of Put operations for successive
characters of the string (in particular, no operationis performed if the string is null).

the new paragraphs:

function Get_Line(File : in File_Type) return String;
function Get_Line return String;

Returns aresult string constructed by reading successive characters from the specified input file, and
assigning them to successive characters of the result string. The result string has alower bound of 1
and an upper bound of the number of characters read. Reading stops when the end of the lineis met;
Skip_Lineisthen (in effect) called with aspacing of 1.

The exception End_Error is propagated if an attempt is made to skip afile terminator.

A.10.11 Input-Output for Unbounded Strings

Insert new clause: [A195-00301-01]
The package Text_|O.Unbounded_10O provides input-output in human-readable form for Unbounded_Strings.
Static Semantics
Thelibrary package Text_10.Unbounded_| O has the following declaration:
wi th Ada. Strings. Unbounded;
package Ada. Text _| O Unbounded_|Ois

procedure Put
(File : in File_Type;
Item: in Strings.Unbounded. Unbounded_String);

procedure Put
(Item: in Strings. Unbounded. Unbounded_Stri ng);

procedure Put_Line
(File : in Text_IQO File_Type;
Item: in Strings.Unbounded. Unbounded_String);

procedure Put_Line
(Item: in Strings. Unbounded. Unbounded_Stri ng);

function Get_Line

(File : in File_Type)
return Strings. Unbounded. Unbounded_Stri ng;

77

ISO/IEC 8652:1995/WD.1:2004

function Get_Line
return Strings. Unbounded. Unbounded_Stri ng;

procedure Get_Line
(File : in File_Type; Item: out Strings.Unbounded. Unbounded_String);

procedure Get_Line
(Item: out Strings. Unbounded. Unbounded_Stri ng);
end Ada. Text | O Unbounded | G

For an item of type Unbounded_String, the following subprograms are provided:

procedure Put
(File : in File_Type;
[tem: in Strings. Unbounded. Unbounded_String);

Equivalent to Text_10.Put (File, Strings.Unbounded.To_String(Item));

procedure Put
(Item: in Strings. Unbounded. Unbounded_String);

Equivalent to Text_10O.Put (Strings.Unbounded.To_String(ltem));

procedure Put_Line
(File : in Text_I O File_Type;
I[tem: in Strings. Unbounded. Unbounded_String);

Equivalent to Text_10O.Put_Line (File, Strings.Unbounded.To_String(ltem));

procedure Put_Line
(Item: in Strings. Unbounded. Unbounded_String);

Equivalent to Text_1O.Put_Line (Strings.Unbounded.To_String(Item));

function Get_Line
(File : in File_Type)
return Strings. Unbounded. Unbounded_Stri ng;

Returns Strings.Unbounded.To_Unbounded_String(Text_10.Get_Line(File));

function Get_Line
return Strings. Unbounded. Unbounded_Stri ng;

Returns Strings.Unbounded. To_Unbounded_String(Text_10.Get_Line);

procedure Get_Line
(File : in File_Type; Item: out Strings. Unbounded. Unbounded_Stri ng);

Equivalent to Item := Get_Line (File);

procedure Get_Line
(Item: out Strings. Unbounded. Unbounded_Stri ng);

Equivalent to Item := Get_Line;

A.11 Wide Text Input-Output

Insert after paragraph 3: [AlI95-00301-01]

Nongeneric equivalents of Wide _Text_|O.Integer IO and Wide_Text_10.Float_IO are provided (asfor
Text_|O) for each predefined numeric type, with names such as Ada.Integer_Wide Text 10,
Ada.Long_Integer Wide Text_|O, Ada.Float_Wide Text |0, Ada.Long_Float_Wide Text_IO.

78

ISO/IEC 8652:1995/WD.1:2004

the new paragraph:

The specification of package Wide_Text_|O0.Wide_Unbounded_10O isthe same asthat for
Text_I0.Unbounded |0, except that any occurrence of Unbounded_String is replaced by
Wide_Unbounded_String, and any occurrence of package Unbounded is replaced by Wide_Unbounded.

A.12.1 The Package Streams.Stream_IO

Insert after paragraph 27: [AlI95-00360-01]
private ...-- not specified by the language end Ada.Streams.Stream_1O;>
the new paragraph:

ThetypeFile_Type needsfinalization (see 7.6).

Replace paragraph 28: [A195-00283-01]

The subprograms Create, Open, Close, Delete, Reset, Mode, Name, Form, Is_Open, and End_of_File have the
same effect as the corresponding subprogramsin Sequential_1O (see A.8.2).

by:
The subprograms given in subclause A.8.2 for the control of external files (Create, Open, Close, Delete, Reset,
Mode, Name, Form, and Is_Open) are available for stream files.
The End_of Filefunction:
Propagates Mode_Error if the mode of thefileisnot In_File;

If positioning is supported for the given external file, the function returns True if the current index
exceeds the size of the external file; otherwiseit returns False;

If positioning is not supported for the given external file, the function returns Trueif no more elements
can be read from the given file; otherwiseit returns False.

Replace paragraph 28.1: [Al195-00085-01]

The Set_Mode procedure changes the mode of thefile. If the new modeis Append_File, thefileis positioned
toits end; otherwise, the position in the file is unchanged.

by:
The Set_Mode procedure sets the mode of thefile. If the new mode is Append_File, thefileis positioned to its
end; otherwise, the position in the file is unchanged.

Replace paragraph 30: [Al95-00256-01]

The procedures Read and Write are equivalent to the corresponding operations in the package Streams. Read
propagates Mode_Error if the mode of Fileisnot In_File. Write propagates M ode_Error if the mode of Fileis
not Out_File or Append_File. The Read procedure with a Positive_Count parameter starts reading at the
specified index. The Write procedure with a Positive_Count parameter starts writing at the specified index.

by:
The procedures Read and Write are equivalent to the corresponding operations in the package Streams. Read
propagates Mode_Error if the mode of Fileisnot In_File. Write propagates Mode_Error if the mode of Fileis
not Out_File or Append_File. The Read procedure with a Positive_Count parameter starts reading at the
specified index. The Write procedure with a Positive_Count parameter starts writing at the specified index. For
afile that supports positioning, Read without a Positive_Count parameter starts reading at the current index,
and Write without a Positive_Count parameter starts writing at the current index.

79

ISO/IEC 8652:1995/WD.1:2004

A.16 The Package Directories

Insert new clause: [A195-00248-01]
The package Ada.Directories provides operations for manipulating files and directories, and their names.
Static Semantics
Thelibrary package Ada.Directories has the following declaration:

with Ada. | O Excepti ons;
W th Ada. Cal endar;
package Ada.Directories is

- - Directory and file operations:

function Current_Directory return String;
procedure Set_Directory (Directory : in String);

procedure Create Directory (New D rectory : in String;
Form: in String :="");

procedure Delete Directory (Directory : in String);

procedure Create_Path (New Directory : in String;
Form: in String :="");

procedure Del ete_Tree (Directory : in String);
procedure Delete_File (Name : in String);
procedure Rename (O d_Name, New Nane : in String);

procedure Copy_File (Source_Name, Target_Name : in String;
Form: in String :="");

- - Fileand directory name operations:
function Full _Name (Nane : in String) return String;
function Sinple_Name (Nane : in String) return String;
function Containing_Directory (Directory : in String) return String;
function Extension (Nane : in String) return String;
function Base_Nanme (Nane : in String) return String;
function Conpose (Containing_Drectory : in String :="";
Name : in String;
Extension : in String :="") return String;
- - Fileand directory queries:
type File_ Kind is (Drectory, Ordinary_File, Special _File);
type File_Size is range O .. implementation-defined,

function Exists (Name : in String) return Bool ean;

80

ISO/IEC 8652:1995/WD.1:2004

function Kind (Name : in String) return File_Kind;
function Size (Name : in String) return File_Size;
function Mdification_Time (Nane : in String) return Ada. Cal endar. Ti ne;
- - Directory searching:
type Directory Entry Type is linmted private;
type Filter_Type is array (File_Kind) of Boolean;
type Search_Type is linited private;
procedure Start_Search (Search : in out Search_Type;
Directory : in String;
Pattern : in String;
Filter : in Filter_Type := (others => True));
procedure End_Search (Search : in out Search_Type);

function Mre_Entries (Search : in Search_Type) return Bool ean;

procedure Get_Next _Entry (Search : in out Search_Type;
Directory_Entry : out Directory_Entry_Type);

- - Operations on Directory Entries:

function Sinple_Nane (Directory Entry : in Directory_Entry_Type)
return String;

function Full_Name (Directory_Entry : in Directory_Entry_Type)
return String;

function Kind (Directory Entry : in Directory Entry_Type)
return File_Kind;

function Size (Directory_Entry : in Directory_Entry_Type)
return File_Size;

function Mdification_Time (Directory Entry : in Directory_Entry_ Type)
return Ada. Cal endar. Ti ne;

Status_Error : exception renanes Ada.| O Exceptions. Status_Error;
Name_Error : exception renanes Ada.| O Exceptions. Name_Error;

Use Error : exception renanes Ada.| O Exceptions. Use Error;

Devi ce_Error : exception renanmes Ada.| O Exceptions. Device_Error;

private
- - Not specified by the language.
end Ada.Directories;

External files may be classified as directories, special files, or ordinary files. A directory isan external filethat is
acontainer for files on the target system. A special fileisan external file that cannot be created or read by a
predefined Ada Input-Output package. External filesthat are not special filesor directories are called ordinary
files.

81

ISO/IEC 8652:1995/WD.1:2004

82

A file name isastring identifying an external file. Similarly, adirectory name isastring identifying a directory.
Theinterpretation of file names and directory namesis implementati on-defined.

The full name of an external fileisafull specification of the name of the file. If the external environment allows
aternative specifications of the name (for example, abbreviations), the full name should not use such
aternatives. A full name typically will include the names of all of directoriesthat contain the item. The simple
name of an external fileisthe name of theitem, not including any containing directory names. Unless otherwise
specified, afile name or directory name parameter to a predefined Adainput-output subprogram can be afull
name, asimple name, or any other form of name supported by the implementation.

The default directory isthe directory that is used if adirectory or file nameisnot afull name (that is, when the
name does not fully identify all of the containing directories).

A directory entry isasingleitem in adirectory, identifying asingle external file (including directories and
special files).

For each function that returns a string, the lower bound of the returned valueis 1.
Thefollowing file and directory operations are provided:

function Current_Directory return String;

Returnsthe full directory name for the current default directory. The name returned shall be suitable
for afuture call to Set_Directory. The exception Use_Error is propagated if adefault directory isnot
supported by the external environment.

procedure Set_Directory (Directory : in String);

Sets the current default directory. The exception Name_Error is propagated if the string given as
Directory does not identify an existing directory. The exception Use_Error is propagated if the external
environment does not support making Directory (inthe absence of Name_Error) adefault directory.

procedure Create_Directory (New Directory : in String;
Form: in String :="");

Creates adirectory with name New_Directory. The Form parameter can be used to give system-
dependent characteristics of the directory; the interpretation of the Form parameter isimplementation-
defined. A null string for Form specifies the use of the default options of the implementation of the
new directory. The exception Name_Error is propagated if the string given as New_Directory does not
alow theidentification of adirectory. The exception Use_Error is propagated if the external
environment does not support the creation of adirectory with the given name (in the absence of
Name_Error) and form.

procedure Delete_Directory (Directory : in String);

Deletes an existing empty directory with name Directory. The exception Name_Error is propagated if
the string given as Directory does not identify an existing directory. The exception Use_Error is
propagated if the external environment does not support the deletion of the directory (or some portion
of its contents) with the given name (in the absence of Name_Etrror).

procedure Create_Path (New Directory : in String;
Form: in String :="");

Creates zero or more directories with name New_Directory. Each non-existent directory named by
New_Directory is created. For example, on atypical Unix system, Create Path ("/usr/me/my"); would
create directory "me" in directory "usr”, then create directory "my" in directory "me". The Form can
be used to give system-dependent characteristics of the directory; the interpretation of the Form
parameter isimplementation-defined. A null string for Form specifies the use of the default options of
the implementation of the new directory. The exception Name_Error is propagated if the string given
asNew_Directory does not allow the identification of any directory. The exception Use_Error is
propagated if the external environment does not support the creation of any directories with the given
name (in the absence of Name_Error) and form.

ISO/IEC 8652:1995/WD.1:2004

procedure Delete_Tree (Directory : in String);

Deletes an existing directory with name Directory. The directory and all of its contents (possibly
including other directories) are deleted. The exception Name_Error is propagated if the string given as
Directory does not identify an existing directory. The exception Use_Error is propagated if the external
environment does not support the deletion of the directory or some portion of its contents with the
given name (in the absence of Name_Error). If Use_Error is propagated, it is unspecified if aportion of
the contents of the directory are del eted.

procedure Delete_File (Name : in String);

Deletes an existing ordinary or special file with Name. The exception Name_Error is propagated if the
string given as Name does not identify an existing ordinary or special external file. The exception
Use_Error is propagated if the external environment does not support the deletion of the file with the
given name (in the absence of Name_Error).

procedure Renarme (O d_Name, New Nane : in String);

Renames an existing external file (including directories) with Old_Name to New_Name. The exception
Name_Error is propagated if the string given as Old_Name does not identify an existing externa file.
The exception Use_Error is propagated if the external environment does not support the renaming of
the file with the given name (in the absence of Name_Error). In particular, Use_Erroris propagated if a
file or directory aready existswith New_Name.

procedure Copy_File (Source_Name, Target _Nanme : in String;
Form: in String);

Copies the contents of the existing external file with Source_Nameto Target Name. The resulting
external fileisaduplicate of the source external file. The Form can be used to give system-dependent
characteristics of the resulting external file; the interpretation of the Form parameter isimplementation-
defined. Exception Name_Error is propagated if the string given as Source_Name does not identify an
existing external ordinary or special file or if the string given as Target_Name does not allow the
identification of an external file. The exception Use_Error is propagated if the external environment
does not support the creating of the file with the name given by Target_ Name and form given by
Form, or copying of the file with the name given by Source_Name (in the absence of Name_Error).

Thefollowing file and directory name operations are provided:
function Full_Name (Nane : in String) return String;

Returns the full name corresponding to the file name specified by Name. The exception Name_Error is
propagated if the string given as Name does not allow the identification of an external file (including
directories and special files).

function Sinple_Nane (Nane : in String) return String;
Returns the simple name portion of the file name specified by Name. The exception Name_Error is

propagated if the string given as Name does not allow the identification of an externd file (including
directories and specid files).

function Containing_Directory (Name : in String) return String;
Returns the name of the containing directory of the external file (including directories) identified by
Name. (If more than one directory can contain Name, the directory name returned isimplementation-
defined.) The exception Name_Error is propagated if the string given as Name does not allow the
identification of an external file. The exception Use_Error is propagated if the external file does not
have a containing directory.

function Extension (Nane : in String) return String;

Returns the extension name corresponding to Name. The extension nameis a portion of asimple name
(not including any separator characters), typically used to identify the file class. If the external
environment does not have extension names, then the null string is returned. The exception

83

ISO/IEC 8652:1995/WD.1:2004

Name_Error is propagated if the string given as Name does not allow the identification of an external
file

function Base_Name (Nane : in String) return String;

Returns the base name corresponding to Name. The base name is the remainder of a simple name after
removing any extension and extension separators. The exception Name_Error is propagated if the
string given as Name does not allow the identification of an external file (including directories and
special files).
function Conpose (Containing_Directory : in String :="";

Name : in String;

Extension : in String :="") return String;
Returns the name of the external file with the specified Containing_Directory, Name, and Extension. If
Extension isthe null string, then Name isinterpreted as a simple name; otherwise Nameis interpreted
as abase name. The exception Name_Error is propagated if the string given as Containing_Directory
isnot null and does not allow the identification of adirectory, or if the string given as Extension is not
null and is not a possible extension, or if the string given as Name is not a possible smple name (if
Extension is null) or base name (if Extension is non-null).

Thefollowing file and directory queries and types are provided:
type File_Kind is (Directory, Ordinary_File, Special _File);
Thetype File_Kind represents the kind of file represented by an external file or directory.
type File_Size is range 0 .. implementation-defined;
Thetype File_Size representsthe size of an external file.
function Exists (Nane : in String) return Bool ean;

Returns Trueif external file represented by Name exists, and False otherwise. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an external
file (including directories and special files).

function Kind (Name : in String) return File_Kind;

Returnsthe kind of external file represented by Name. The exception Name_Error is propagated if the
string given as Name does not allow the identification of an existing external file.

function Size (Name : in String) return File_Size;

Returns the size of the external file represented by Name. The size of an external fileis the number of
stream elements contained in thefile. If the external fileis discontiguous (not all elements exist), the
result isimplementation-defined. If the external fileis not an ordinary file, the result isimplementation-
defined. The exception Name_Error is propagated if the string given as Name does not allow the
identification of an existing external file. The exception Constraint_Error is propagated if thefile sizeis
not avalue of type File_Size.

function Mdification_Tine (Name : in String) return Ada. Cal endar. Ti ne;

Returnsthe time that the external file represented by Name was most recently modified. If the external
fileisnot an ordinary file, the result isimplementation-defined. The exception Name_Error is
propagated if the string given as Name does not allow the identification of an existing external file.
The exception Use_Error is propagated if the external environment does not support the reading the
maodification time of the file with the name given by Name (in the absence of Name_Error).

The following directory searching operations and types are provided:
type Directory_ Entry Type is limted private;
Thetype Directory_Entry_Typerepresents asingleitem in adirectory. These items can only be
created by the Get_Next_Entry procedurein this package. Information about the item can be obtained

84

ISO/IEC 8652:1995/WD.1:2004

from the functions declared in this package. A default initialized object of thistypeisinvalid; objects
returned from Get_Next_Entry are valid.

type Filter_Type is array (File_Kind) of Bool ean;

Thetype Filter_Type specifies which directory entries are provided from a search operation. If the
Directory component is True, directory entries representing directories are provided. If the
Ordinary_File component is True, directory entries representing ordinary files are provided. If the
Special_File component is True, directory entries representing special files are provided.

type Search_Type is linited private;

The type Search_Type contains the state of adirectory search. A default-initialized Search_Type
object has no entries available (More_Entriesreturns False).

procedure Start_Search (Search : in out Search_Type;
Directory : in String;
Pattern : in String;
Filter : in Filter_Type := (others => True));

Starts a search in the directory entry in the directory named by Directory for entries matching Pattern.
Pattern represents a file name matching pattern. If Pattern isnull, all itemsin the directory are matched,;
otherwise, the interpretation of Pattern isimplementation-defined. Only items which match Filter will
be returned. After a successful call on Start_Search, the object Search may have entries available, but
it may have no entries available if no files or directories match Pattern and Filter. The exception
Name_Error ispropagated if the string given by Directory does not identify an existing directory, or if
Pattern does not allow the identification of any possible external file or directory. The exception
Use_Error is propagated if the external environment does not support the searching of the directory
with the given name (in the absence of Name_Error).

procedure End_Search (Search : in out Search_Type);

Ends the search represented by Search. After asuccessful call on End_Search, the object Search will
have no entries available.

function Mre_Entries (Search : in Search_Type) return Bool ean;

Returns True if more entries are available to be returned by acall to Get_Next_Entry for the specified
search object, and Fal se otherwise.

procedure Cet_Next_Entry (Search : in out Search_Type;
Directory_Entry : out Directory_Entry_Type);

Returns the next Directory_Entry for the search described by Search that matches the pattern and
filter. If no further matches are available, Status _Error israised. It isimplementation-defined as to
whether the results returned by thisroutine are altered if the contents of the directory are altered while
the Search object isvalid (for example, by another program). The exception Use_Error is propagated if
the external environment does not support continued searching of the directory represented by
Search.

function Sinple_Nane (Directory_Entry : in Directory_Entry_Type)
return String;

Returns the simple external name of the external file (including directories) represented by
Directory_Entry. The format of the name returned is implementation-defined. The exception
Status_Error ispropagated if Directory_Entry isinvalid.

function Full _Nane (Directory_Entry : in Directory_Entry_Type) return String;

Returnsthe full external name of the external file (including directories) represented by
Directory_Entry. The format of the name returned is implementation-defined. The exception
Status_Error ispropagated if Directory_Entry isinvalid.

function Kind (Directory_Entry : in Directory_Entry_Type) return File_Kind,

85

ISO/IEC 8652:1995/WD.1:2004

86

Returns the kind of external file represented by Directory_Entry. The exception Status_Error is
propagated if Directory_Entry isinvalid.

function Size (Directory_Entry : in Directory_Entry_Type) return File_Size;

Returns the size of the external file represented by Directory Entry. The size of an external fileisthe
number of stream elements contained in thefile. If the external fileis discontiguous (not all elements
exist), the result isimplementation-defined. If the externa file represented by Directory _Entry is not an
ordinary file, the result isimplementation-defined. The exception Status_Error is propagated if
Directory_Entry isinvalid. The exception Constraint_Error is propagated if the file sizeisnot avalue
of type File_Size.

function Mdification_Time (Directory Entry : in Directory_Entry_Type)
return Ada. Cal endar. Ti ne;

Returns the time that the external file represented by Directory_Entry was most recently modified. If
the external file represented by Directory Entry isnot an ordinary file, the result isimplementation-
defined. The exception Status_Error is propagated if Directory_Entry isinvalid. The exception

Use Error is propagated if the external environment does not support the reading the modification
time of the file represented by Directory_Entry.

Implementation Requirements

For Copy_File, if Source_Nameidentifies an existing external ordinary file created by a predefined Ada I nput-
Output package, and Target_Name and Form can be used in the Create operation of that I nput-Output package
with mode Out_File without raising an exception, then Copy_File shall not propagate Use Error.

Implementation Advice

If other information about afileisavailable (such asthe owner or creation date) in adirectory entry, the
implementation should provide functionsin a child package Ada.Directories.Information to retrieveit.

Start_Search should raise Use_Error if Pattern is malformed, but not if it could represent afilein the directory
but does not actually do so.

For Rename, if both New_Name and Old_Name are simple names, then Rename should not propagate
Use Error.

NOTES

37 The file name operations Containing_Directory, Full_Name, Smple_Name, Base Name, Extension, and
Compose operate on file names, not external files. The filesidentified by these operations do not need to exist.
Name_Error israised only if the file name is malformed and cannot possibly identify afile.

38 Using access types, values of Search_Type and Directory_Entry_Type can be saved and queried |ater.
However, another task or application can modify or delete the file represented by a Directory_Entry_Type
value or the directory represented by a Search_Type value; such avalue can only give the information valid at
thetimeit is created. Therefore, long-term storage of these valuesis not recommended.

39 If the target system does not support directories inside of directories, Is_Directory will always return False,
and Containing_Directory will aways raise Use_Error.

40 If the target system does not support creation or deletion of directories, Create_Directory, Create Path,
Delete Directory, and Delete_Tree will always propagate Use Error.

ISO/IEC 8652:1995/WD.1:2004

Annex B: Interface to Other Languages

B.3 Interfacing with C

Replace paragraph 50: [A195-00258-01]

Theresult of To_Cisachar_array value of length Item'Length (if Append_Nul is False) or Item'Length+1 (if
Append_Nul is True). Thelower bound is 0. For each component Item(l), the corresponding component in the
resultisTo_C applied to Item(l). The value nul is appended if Append_Nul is True.

by:
Theresult of To_Cisachar_array value of length Item'Length (if Append_Nul is False) or Item'Length+1 (if
Append_Nul is True). Thelower bound is 0. For each component Item(l), the corresponding component in the
resultisTo_C applied to Item(l). The value nul is appended if Append_Nul is True. If Append_Nul is False
and Item'Length is 0, then To_C propagates Constraint_Error.

Replace paragraph 60.2: [Al195-00216-01]

The€eligibility rulesin B.1 do not apply to convention C_Pass_By_Copy. Instead, atype T iseligible for
convention C_Pass By Copy if T isarecord type that has no discriminants and that only has components
with statically constrained subtypes, and each component is C-compatible.

by:

The€ligibility rulesin B.1 do not apply to convention C_Pass By Copy. Instead, atype T iseligible for
convention C_Pass By Copy if T isan unchecked union type or if T isarecord type that has no discriminants
and that only has components with statically constrained subtypes, and each component is C-compatible.

B.3.1 The Package Interfaces.C.Strings

Replace paragraph 5: [A195-00161-01]
type Chars_Ptr is private;

by:
type Chars_Ptr is private;
pragna Preel aborable Initialization(Chars_Ptr);

Replace paragraph 6: [Al95-00276-01]
type chars_ptr_array is array (size_t range <>) of chars_ptr;
by:

type chars_ptr_array is array (size_t range <>) of aliased chars_ptr;

Replace paragraph 50: [A195-00242-01]
Equivalent to Update(ltem, Offset, To_C(Str), Check).

by:
Equivalent to Update(Item, Offset, To_C(Str, Append_Nul => False), Check).

87

ISO/IEC 8652:1995/WD.1:2004

B.3.3 Pragma Unchecked_Union

Insert new clause: [A195-00216-01]

88

A pragma Unchecked_Union specifies an interface correspondence between a given discriminated type and
some C union. The pragma specifies that the associated type shall be given arepresentation that leaves no
space for its discriminant(s).

Syntax
Theform of a pragma Unchecked _Unionisasfollows:
pragma Unchecked_Union (first_subtype local_name);
Legality Rules
Unchecked_Union is arepresentation pragma, specifying the unchecked union aspect of representation.

Thefirst_subtype local _name of apragma Unchecked Union shall denote an unconstrained discriminated
record subtype having avariant_part.

A typeto which a pragma Unchecked _Union appliesis called an unchecked union type. A subtype of an
unchecked union typeis defined to be an unchecked union subtype. An object of an unchecked union typeis
defined to be an unchecked union object.

All component subtypes of an unchecked union type shall be C-compatible.

If acomponent subtype of an unchecked union type is subject to a per-object constraint, then the component
subtype shall be an unchecked union subtype.

Any name that denotes a discriminant of an object of an unchecked union type shall occur within the
declarative region of the type.

A component declared in avariant_part of an unchecked union type shall not have a controlled, protected, or
task part.

The completion of an incomplete or private type declaration having aknown_discriminant_part shall not be
an unchecked union type.

An unchecked union subtype shall not be passed as a generic actual parameter if the corresponding formal
type has aknown_discriminant_part or isaformal derived type that is not an unchecked union type.

An unchecked union subtype shall only be passed as a generic actual parameter if the corresponding formal
type does not have aknown_discriminant_part, or isaformal derived type that is an unchecked union type.

Static Semantics

An unchecked union typeiseligible for convention C.
Discriminant_Check is suppressed for an unchecked union type.

All objects of an unchecked union type have the same size.
Discriminants of objects of an unchecked union type are of size zero.
Dynamic Semantics

A view of an unchecked union object (including atype conversion or function call) hasinferable
discriminantsif it has a constrained nominal subtype, unless the object isacomponent of an enclosing
unchecked union object that is subject to a per-object constraint and the enclosing object lacks inferable
discriminants.

An expression of an unchecked union type hasinferable discriminantsif it is either aname of anobject with
inferable discriminants or aqualified expression whose subtype_mark denotes a constrained subtype.

Program_Error israised in the following cases:

ISO/IEC 8652:1995/WD.1:2004

Evaluation of the predefined equality operator for an unchecked union typeif either of the operands
lacks inferable discriminants.

Evaluation of the predefined equality operator for atype which has a subcomponent of an unchecked
union type whose nominal subtype is unconstrained.

Evaluation of amembership test if the subtype_mark denotes a constrained unchecked union
subtype and the expression lacks inferabl e discriminants.

Conversion from a derived unchecked union type to an unconstrained non-unchecked-union type if
the operand of the conversion lacks inferable discriminants.

Execution of the default implementation of the Write or Read attribute of an unchecked union type.

Execution of the default implementation of the Output or Input attribute of an unchecked union typeif
the type lacks default discriminant values.

Implementation Permissions

An implementation may require that pragma Controlled be specified for the type of an access subcomponent
of an unchecked union type.

NOTES

15 The use of an unchecked union to obtain the effect of an unchecked conversion results in erroneous execution
(see 11.5). Execution of the following example is erroneous even if Float'Size = Integer'Size:

type T (Flag : Boolean := False) is
record
case Flag is
when Fal se =>
F1 : Float := 0.0;
when True =>
F2 : Integer := 0;
end case;
end record,;
pragma Unchecked_Union (T);

X: T
Y : Integer := X F2; -- erroneous

89

ISO/IEC 8652:1995/WD.1:2004

Annex C: Systems Programming

C.3.1 Protected Procedure Handlers

Replace paragraph 8: [Al195-00253-01]

The Interrupt_Handler pragmais only allowed immediately within a protected_definition. The corresponding
protected_type_declaration shall be alibrary level declaration. In addition, any object_declaration of such a
type shall bealibrary level declaration.

by:

The Interrupt_Handler pragmais only allowed immediately within a protected_definition where the
corresponding subprogram is declared. The corresponding protected_type_declaration or
single_protected_declaration shall be alibrary level declaration. In addition, any object_declaration of such
atypeshall bealibrary level declaration.

C.4 Preelaboration Requirements

Insert after paragraph 4: [AlI95-00161-01]

Any subtype_mark denotes a statically constrained subtype, with statically constrained
subcomponents, if any;

the new paragraph:

No subtype_mark denotes a controlled type, a private type, a private extension, ageneric formal
private type, ageneric formal derived type, or adescendant of such atype;

C.6 Shared Variable Control

Replace paragraph 7: [Al195-00272-01]

An atomic type is one to which a pragma Atomic applies. Anatomic object (including a component) is one to
which a pragma Atomic applies, or acomponent of an array to which a pragma Atomic_Components applies, or
any object of an atomic type.

by:
An atomic type is one to which a pragma Atomic applies. Anatomic object (including a component) is one to
which a pragma Atomic applies, or acomponent of an array to which a pragmaAtomic_Comp onents applies, or
any object of an atomic type, other than objects obtained by evaluating aslice.

Insert after paragraph 21: [AlI95-00259-01]

If apragma Pack appliesto atype any of whose subcomponents are atomic, the implementation shall not pack
the atomic subcomponents more tightly than that for which it can support indivisible reads and updates.

the new paragraphs:

Implementation Advice

A load or store of avolatile object whose size isamultiple of System.Storage Unit and whose alignment is
nonzero, should be implemented by accessing exactly the bits of the object and no others.

A load or store of an atomic object should, where possible, be implemented by asingleload or store
instruction.

90

ISO/IEC 8652:1995/WD.1:2004

Annex D: Real-Time Systems

D.2 Priority Scheduling

Replace paragraph 1: [Al195-00321-01]

This clause describes the rules that determine which task is selected for execution when more than onetask is
ready (see 9.2). The rules have two parts: the task dispatching model (see D.2.1), and a specific task
dispatching policy (see D.2.2).]

by:

This clause describes the rules that determine which task is selected for execution when more than onetask is
ready (see 9).

D.2.1 The Task Dispatching Model

Replace paragraph 1: [Al95-00321-01]

Thetask dispatching model specifies preemptive scheduling, based on conceptual priority-ordered ready
gueues.

by:
The task dispatching model specifies task scheduling, based on conceptual priority-ordered ready queues.

Replace paragraph 2: [Al195-00321-01]

A task runs (that is, it becomes arunning task) only when it isready (see 9.2) and the execution resources
required by that task are available. Processors are allocated to tasks based on each task's active priority.

by:

A task can become arunning task only if it isready (see 9) and the execution resources required by that task
are available. Processors are allocated to tasks based on each task's active priority.

Replace paragraph 4: [Al195-00321-01]

Task dispatching is the process by which one ready task is selected for execution on a processor. This
selection is done at certain points during the execution of atask called task dispatching points. A task reaches
atask dispatching point whenever it becomes blocked, and whenever it becomes ready. In addition, the
completion of anaccept_statement (see 9.5.2), and task termination are task dispatching points for the
executing task. Other task dispatching points are defined throughout this Annex.

by:
Task dispatching is the process by which one ready task is selected for execution on a processor. This
selection is done at certain points during the execution of atask called task dispatching points. A task reaches
atask dispatching point whenever it becomes blocked, and when it terminates. Other task dispatching points
are defined throughout this Annex for specific policies.

Replace paragraph 5: [Al195-00321-01]

Task dispatching policies are specified in terms of conceptual ready queues, task states, and task preemption.
A ready queueisan ordered list of ready tasks. Thefirst positionin aqueueis called the head of the queue,
and the last positionis called the tail of the queue. A task isready if it isin aready queue, or if it is running.
Each processor has one ready queue for each priority value. At any instant, each ready queue of a processor
contains exactly the set of tasks of that priority that are ready for execution on that processor, but are not
running on any processor; that is, those tasks that are ready, are not running on any processor, and can be
executed using that processor and other available resources. A task can be on the ready queues of more than
one processor.

91

ISO/IEC 8652:1995/WD.1:2004

by:

Task dispatching policies are specified in terms of conceptual ready queues and task states. A ready queueis
an ordered list of ready tasks. Thefirst position in aqueueis called the head of the queue, and the last position
iscalled thetail of the queue. A task isready if it isin aready queue, or if it isrunning. Each processor has one
ready queue for each priority value. At any instant, each ready queue of a processor contains exactly the set of
tasks of that priority that are ready for execution on that processor, but are not running on any processor; that
is, those tasks that are ready, are not running on any processor, and can be executed using that processor and
other available resources. A task can be on the ready queues of more than one processor.

Replace paragraph 6: [A195-00321-01]

Each processor also has one running task, which isthe task currently being executed by that processor.
Whenever atask running on a processor reaches atask dispatching point, one task is selected to run on that
processor. The task selected is the one at the head of the highest priority nonempty ready queue; thistask is
then removed from all ready queuesto which it belongs.

by:

Each processor also has one running task, which is the task currently being executed by that processor.
Whenever atask running on a processor reaches atask dispatching point it goes back to one or more ready
queues; atask (possibly the same task) is then selected to run on that processor. The task selected isthe one
at the head of the highest priority nonempty ready queue; thistask is then removed from all ready queues to
which it belongs.

Delete paragraph 7: [A195-00321-01]

A preemptibleresource isaresource that while allocated to one task can be allocated (temporarily) to another
instead. Processors are preemptible resources. Accessto a protected object (see 9.5.1) isanonpreemptible
resource. { preempted task} When a higher-priority task is dispatched to the processor, and the previously
running task is placed on the appropriate ready queue, the latter task is said to be preempted.

Delete paragraph 8: [AlI95-00321-01]

A new running task is also selected whenever there is anonempty ready queue with ahigher priority than the
priority of the running task, or when the task dispatching policy requires arunning task to go back to aready
queue. These are also task dispatching points.

Replace paragraph 9: [Al195-00321-01]

Animplementation is allowed to define additional resources as execution resources, and to define the
corresponding allocation policies for them. Such resources may have an implementation defined effect on task
dispatching (see D.2.2).

by:
Animplementation is allowed to define additional resources as execution resources, and to define the
corresponding allocation policies for them. Such resources may have an implementation-defined effect on task
dispatching.

Insert after paragraph 10: [AlI95-00321-01]

An implementation may place implementation-defined restrictions on tasks whose active priority isin the
Interrupt_Priority range.

the new paragraph:

For optimization purposes, an implementation may alter the points at which task dispatching occurs, in an
implementation-defined manner. However, adelay_statement always correspondsto at |east one task
dispatching point.

92

ISO/IEC 8652:1995/WD.1:2004

Insert after paragraph 16: [Al95-00321-01]

12 The priority of atask is determined by rules specified in this subclause, and under D.1, ““Task Priorities’,
D.3, " Priority Ceiling Locking", and D.5, “"Dynamic Priorities”.

the new paragraph:

13 The setting of atask's base priority as aresult of acall to Set_Priority does not always take effect
immediately when Set_Priority is called. The effect of setting the task's base priority is deferred while the
affected task performs a protected action.

D.2.2 Pragma Task_Dispatching_Policy

Replace the title: [AlI95-00321-01]
The Standard Task Dispatching Policy
by:
Pragma Task_Dispatching_Policy
Replace paragraph 3: [Al195-00321-01]
The policy_identifier shall either be FIFO_Within_Priorities or animplementation-defined identifier.
by:
The policy_identifier shall either be one defined in this Annex or an implementation-defined identifier.
Delete paragraph 5: [AlI95-00321-01]
If the FIFO_Within_Priorities policy is specified for a partition, then the Ceiling_L ocking policy (see D.3) shall
also be specified for the partition.
Delete paragraph 7: [AlI95-00321-01]
The language defines only one task dispatching policy, FIFO_Within_Priorities; when this policy isin effect,
modifications to the ready queues occur only asfollows:
Delete paragraph 8: [Al95-00321-01]
When ablocked task becomes ready, it is added at the tail of the ready queue for its active priority.

Delete paragraph 9: [AlI95-00321-01]

When the active priority of aready task thatis not running changes, or the setting of its base priority
takes effect, the task is removed from the ready queue for its old active priority and is added at the tail
of the ready queue for its new active priority, except in the case where the active priority is lowered
dueto theloss of inherited priority, in which case the task is added at the head of the ready queue for
its new active priority.

Delete paragraph 10: [AlI95-00321-01]
When the setting of the base priority of arunning task takes effect, the task is added to the tail of the
ready queue for its active priority.

Delete paragraph 11: [AI95-00321-01]
When atask executes adelay_statement that does not result in blocking, it is added to thetail of the
ready queuefor itsactive priority.

Delete paragraph 12: [AI95-00321-01]

Each of the events specified above isatask dispatching point (see D.2.1).

93

ISO/IEC 8652:1995/WD.1:2004

Delete paragraph 13: [Al95-00321-01]
In addition, when atask is preempted, it is added at the head of the ready queue for its active priority.

Delete paragraph 14: [AI95-00321-01]
Priority inversion isthe duration for which atask remains at the head of the highest priority ready queue while
the processor executes alower priority task. The implementation shall document:
Delete paragraph 15: [Al95-00321-01]
The maximum priority inversion auser task can experience due to activity of the implementation (on
behalf of lower priority tasks), and
Delete paragraph 16: [Al95-00321-01]
whether execution of atask can be preempted by the implementation processing of delay expirations
for lower priority tasks, and if so, for how long.
Replace paragraph 17: [Al195-00256-01; A195-00321-01]

Implementations are allowed to define other task dispatching policies, but need not support more than one
such policy per partition.

by:
Implementations are allowed to define other task dispatching policies, but need not support more than one task
dispatching policy per partition.

Delete paragraph 18: [Al95-00321-01]

For optimization purposes, an implementation may alter the points at which task dispatching occurs, in an
implementation defined manner. However, adelay_statement always corresponds to at |east one task
dispatching point.

Delete paragraph 19: [AI95-00321-01]

13 If the active priority of arunning task islowered due to loss of inherited priority (asit is on completion of a
protected operation) and there is aready task of the same active priority that is not running, the running task
continues to run (provided that there is no higher priority task).

Delete paragraph 20: [AlI95-00321-01]

14 The setting of atask's base priority as aresult of acall to Set_Priority does not always take effect
immediately when Set_Priority is called. The effect of setting the task's base priority is deferred while the
affected task performs a protected action.

Delete paragraph 21: [AlI95-00321-01]

15 Setting the base priority of aready task causes the task to move to the end of the queue for its active
priority, regardless of whether the active priority of the task actually changes.

D.2.3 Preemptive Dispatching

Insert new clause: [A195-00321-01]
This clause definesthe policy_identifier, FIFO_Within_Priorities.
Post-Compilation Rules

If the FIFO_Within_Priorities policy is specified for apartition, then the Ceiling_L ocking policy (see D.3) shall
also be specified for the partition.

Dynamic Semantics

94

ISO/IEC 8652:1995/WD.1:2004

When FIFO_Within_Prioritiesisin effect, modifications to the ready queues occur only asfollows:
When ablocked task becomesready, it is added at the tail of the ready queue for its active priority.

When the active priority of aready task that is not running changes, or the setting of its base priority
takes effect, the task is removed from the ready queue for its old active priority and is added at the tail
of the ready queue for its new active priority, except in the case where the active priority islowered
due to the loss of inherited priority, in which case the task is added at the head of the ready queue for
its new active priority.

When the setting of the base priority of arunning task takes effect, the task is added to thetail of the
ready queue for its active priority.

When atask executes adelay_statement that does not result in blocking, it is added to the tail of the
ready queue for its active priority.

Each of the events specified above is atask dispatching point (see D.2.1).

A task dispatching point occurs for the currently running task of a processor whenever there is a nonempty
ready queue for that processor with a higher priority than the priority of the running task. The currently
running task is said to be preempted and it is added at the head of the ready queue for its active priority.

Documentation Requirements

Priority inversion is the duration for which atask remains at the head of the highest priority nonempty ready
queue while the processor executes alower priority task. The implementation shall document:

The maximum priority inversion auser task can experience due to activity of the implementation (on
behalf of lower priority tasks), and

whether execution of atask can be preempted by the implementation processing of delay expirations
for lower priority tasks, and if so, for how long.

NOTES

14 If the active priority of arunning task islowered dueto loss of inherited priority (asit is on completion of a
protected operation) and there is aready task of the same active priority that is not running, the running task
continues to run (provided that there is no higher priority task).

15 Setting the base priority of aready task causes the task to move to the tail of the queue for its active priority,
regardless of whether the active priority of the task actually changes.

D.2.4 Non-Preemptive Dispatching

Insert new clause: [Al195-00298-01]

A non-preemptive dispatching policy is defined via policy_identifier
Non_Preemptive FIFO_Within_Priorities.

Legality Rules

Non_Preemptive FIFO_Within_Priorities can be specified asthe policy_identifier of pragma
Task_Dispatching_Policy (seeD.2.2).

Post-Compilation Rules

If the Non_Preemptive FIFO_Within_Prioritiesis specified for a partition then Ceiling_L ocking (see D.3) shall
also be specified for that partition.

Dynamic Semantics

When Non_Preemptive FIFO_Within_Prioritiesisin effect, modifications to the ready queues occur only as
follows:

When ablocked task becomes ready, it is added at the tail of the ready queue for its active priority.

95

ISO/IEC 8652:1995/WD.1:2004

When the active priority of aready task that is not running changes, or the setting of its base priority
takes effect, the task is moved from the ready queue for its old active priority and is added at the tail
of the ready queue for its new active priority.

When atask executes adelay_statement that does not result in blocking, it is added to the tail of the
ready queuefor its active priority. Thisisatask dispatching point (see D.2.1).

Implementation Permissions

Since implementations are alowed to round all ceiling prioritiesin subrange System_Priority to
System_Priority'last (see D.3), an implementation may allow atask to execute within a protected object without
raising its active priority provided the protected object does not contain pragma Interrupt_Priority,
Interrupt_Handler or Attach_Handler.

D.3 Priority Ceiling Locking

Replace paragraph 15: [Al95-00256-01]

Implementations are allowed to define other locking policies, but need not support more than one such policy
per partition.

by:

Implementations are allowed to define other locking policies, but need not support more than one locking
policy per partition.

D.4 Entry Queuing Policies

Replace paragraph 15: [Al95-00256-01]

Implementations are allowed to define other queuing policies, but need not support more than one such policy
per partition.

by:

Implementations are allowed to define other queuing policies, but need not support more than one queuing
policy per partition.

D.7 Tasking Restrictions

Replace paragraph 4: [Al195-00360-01]
No_Nested Finalization
Objects with controlled, protected, or task parts and access types that designate such objects, shall
be declared only at library level.
by:
No_Nested Finalization
Objects of atype that needsfinalization (see 7.6) and access types that designate atype that needs
finalization (see 7.6) shall be declared only at library level.
Insert after paragraph 10: [AlI95-00305-01; AI95-00353-01]

No_Asynchronous_Control
There are no semantic dependences on the package Asynchronous_Task_Control.

the new paragraphs:

No_Calendar
There are no semantic dependencies on package Ada.Calendar.

96

ISO/IEC 8652:1995/WD.1:2004

No_Dynamic_Attachment
Thereisno call to any of the operations defined in package Ada.Interrupts (Is_Reserved,
Is_Attached, Current_Handler, Attach Handler, Exchange_Handler, Detach Handler, and Reference).

No_L ocal_Protected_Objects
Protected objects shall be declared only at library level.

No_Protected_Type_Allocators
There are no allocators for protected types or types containing protected type components.

No_Relative_Delay
There are nodelay_relative_statements.

No_Requeue_Statements
There are norequeue_statements.

No_Select_Statements
There are no select_statements.

No_Synchronous_Control
There are no semantic dependences on the package Synchronous_Task _Control.

No_Task_Attributes_Package
There are no semantic dependencies on package Ada. Task_Attributes.

Simple Barriers
The Boolean expression in an entry barrier shall be either a static Boolean expression or aBoolean
component of the enclosing protected object.
Replace paragraph 15: [A195-00305-01]
This paragraph was deleted
by:
No_Task_Termination
All tasks are non-terminating. It isimplementation-defined what happens if atask attemptsto
terminate.
Insert after paragraph 19: [AI95-00305-01]

Max_Tasks
Specifies the maximum number of task creationsthat may be executed over the lifetime of a partition,
not counting the creation of the environment task. A value of zero prevents any task creation and, if a
program contains atask creation, itisillegal. If an implementation chooses to detect a violation of this
restriction, Storage_Error should be raised; otherwise, the behavior isimplementation defined.

the new paragraph:

Max_Entry_Queue_Length
Max_Entry_Queue_L ength defines the maximum number of callsthat are queued on an entry.
Violation of thisrestriction resultsin the raising of Program_Error at the point of the call.

D.13 Run-time Profiles and the Ravenscar Profile

Insert new clause: [A195-00249-01; A195-00297-01]
This clause specifies a mechanism for defining run-time profiles. It al so defines one such profile, Ravenscar.
Syntax

Theform of apragmaProfileisasfollows:

pragma Profile (profile_identifier [profile_argument_associations]);

97

ISO/IEC 8652:1995/WD.1:2004

profile_argument_associations ::= pragma_argument_association, {pragma_argument_association}
Legality Rules

The profile_identifier shall be either Ravenscar or an implementation-defined identifier. For profile_identifier
Ravenscar, there shall be no profile_argument_associations. For other profile_identifiers, the semantics of
any profile_argument_associations areimplementation-defined.

Satic Semantics

A profileis equivalent to the set of configuration pragmasthat is defined for each profile_identifier. The
profile_identifier Ravenscar is equivalent to the following set of pragmas:

pragma Task_Dispatching _Policy (FIFOWthin_Priorities);

pragma Locki ng_Policy (Ceiling_Locking);

pragma Det ect Bl ocki ng;

pragma Restrictions (
Max_Entry_Queue Length => 1,
Max_Protected Entries => 1,
Max_Task_Entries => 0,
No_Abort_Statenents,
No_Asynchr onous_Control ,
No_Cal endar,
No_Dynam c_Att achment ,
No_Dynam c_Priorities,
No_Inplicit_Heap Al locations,
No_Local _Ti m ng_Events,
No_Local _Protected_Ohjects,
No_Prot ected_Type_Al |l ocators,
No_Rel ati ve_Del ay,
No_Requeue_St at enent s,
No_Sel ect _Statenents,
No_Task_ Al | ocat or s,
No_Task_Attri butes_Package,
No_Task_Hi erarchy,
No_Task_Term nati on,
Sinple_Barriers);

Post-Compilation Rules
A pragma Profileis a configuration pragma. There may be more than one pragma Profile for a partition.
NOTES

37 The effect of the Max_Entry_Queue_Length => 1 restriction applies only to protected entry queues due to
the accompanying restriction of Max_Task_Entries=> 0.

98

ISO/IEC 8652:1995/WD.1:2004

Annex E: Distributed Systems

E.2.2 Remote Types Library Units

Replace paragraph 8: [Al195-00240-01]

if the full view of atype declared in the visible part of the library unit has a part that is of a non-remote
access type, then that access type, or the type of some part that includes the access type
subcomponent, shall have user-specified Read and Write attributes.

by:

if the full view of atype declared in the visible part of the library unit has a part that is of a non-remote
access type, then that access type, or the type of some part that includes the access type
subcomponent, shall have Read and Write attributes specified by avisible
attribute_definition_clause.

Replace paragraph 14: [A195-00240-01]

The primitive subprograms of the corresponding specific limited private type shall only have access
parametersif they are controlling formal parameters; each non-controlling formal parameter shall have
either anonlimited type or atype with Read and Write attributes specified viaan
attribute_definition_clause;

by:

The primitive subprograms of the corresponding specific limited private type shall only have access
parametersif they are controlling formal parameters; each non-controlling formal parameter shall have
either anonlimited type or atype with available Read and Write attributes (see 13.13.2);

E.2.3 Remote Call Interface Library Units

Replace paragraph 14: [Al195-00240-01]

it shall not be, nor shall itsvisible part contain, a subprogram (or access-to-subprogram) declaration
whose profile has an access parameter, or aformal parameter of alimited type unlessthat limited type
has user-specified Read and Write attributes;

by:

it shall not be, nor shall its visible part contain, a subprogram (or access-to-subprogram) declaration
whose profile has an access parameter, or aformal parameter of alimited type unlessthat limited type
has available Read and Write attributes (see 13.13.2);

E.5 Partition Communication Subsystem

Replace paragraph 1: [Al195-00273-01]

The Partition Communication Subsystem (PCS) provides facilities for supporting communication between the
active partitions of adistributed program. The package System.RPC is alanguage-defined interface to the PCS.
An implementation conforming to this Annex shall use the RPC interface to implement remote subprogram
cals.

by:

The Partition Communication Subsystem (PCS) provides facilities for supporting communication between the
active partitions of adistributed program. The package System.RPC is alanguage-defined interface to the PCS.

99

ISO/IEC 8652:1995/WD.1:2004

Insert after paragraph 27: [Al95-00273-01]
A body for the package System.RPC need not be supplied by the implementation.
the new paragraph:

An alternative declaration is allowed for package System.RPC aslong asit provides a set of operationsthat is
substantially equivalent to the specification defined in this clause.

100

ISO/IEC 8652:1995/WD.1:2004

Annex F: Information Systems

No changesin this section.

101

ISO/IEC 8652:1995/WD.1:2004

Annex G: Numerics

G.1.1 Complex Types

Replace paragraph 4: [Al195-00161-01]
type Imaginary is private;
by:

type I maginary is private;
pragnma Preel aborable_|nitialization(lnmaginary);

G.1.2 Complex Elementary Functions

Replace paragraph 15: [Al95-00185-01]

Thereal (resp., imaginary) component of the result of the Arcsin and Arccos (resp., Arctanh)
functionsis discontinuous as the parameter X crossesthereal axisto theleft of -1.0 or theright of 1.0.

by:
Theimaginary component of the result of the Arcsin, Arccos, and Arctanh functions is discontinuous
asthe parameter X crosses the real axisto theleft of -1.0 or theright of 1.0.

Replace paragraph 16: [Al95-00185-01]

Thereal (resp., imaginary) component of the result of the Arctan (resp., Arcsinh) functionis
discontinuous as the parameter X crosses the imaginary axis below -i or abovei.

by:

The real component of the result of the Arctan and Arcsinh functionsis discontinuous as the
parameter X crosses theimaginary axis below -i or abovei.

Replace paragraph 17: [Al95-00185-01]
Therea component of the result of the Arccot function is discontinuous as the parameter X crosses
the imaginary axis between-i andi.

by:
Thereal component of the result of the Arccot function is discontinuous as the parameter X crosses
theimaginary axisbelow -i or abovei.

Replace paragraph 20: [Al95-00185-01]

The computed results of the mathematically multivalued functions are rendered single-valued by the following
conventions, which are meant to imply the principal branch:

by:

The computed results of the mathematically multivalued functions are rendered single-valued by the following
conventions, which are meant to imply that the principal branch is an analytic continuation of the
corresponding real-valued function in Ada.Numerics.Generic_Elementary Functions. (For Arctan and Arccot,
the single-argument function in question is that obtained from the two-argument version by fixing the second
argument to beits default value.)

102

ISO/IEC 8652:1995/WD.1:2004

G.1.3 Complex Input-Output

Insert before paragraph 10: [AI95-00328-01]
The semantics of the Get and Put procedures are as follows:
the new paragraph:

Thelibrary package Complex_Text_|1O defines the same subprograms as Text_|O.Complex_l0O, except that the
predefined type Float is systematically substituted for Real, and the type Numerics.Complex_Types.Complex is
systematically substituted for Complex throughout. Non-generic equivalents of Text 10.Complex_1O
corresponding to each of the other predefined floating point types are defined similarly, with the names
Short_Complex_Text_10, Long_Complex_Text_|O, etc.

G.2.2 Model-Oriented Attributes of Floating Point Types

Replace paragraph 3: [Al195-00256-01]

Yields the number of digitsin the mantissa of the canonical form of the model numbersof T (see A.5.3). The
value of this attribute shall be greater than or equal to Ceiling(d * 1og(10) / log(T'Machine_Radix)) + 1, whered
isthe reguested decimal precision of T. In addition, it shall be lessthan or equal to the value of
T'Machine_Mantissa. This attribute yields avalue of the type universal_integer.

by:

Yields the number of digitsin the mantissa of the canonical form of the model numbers of T (see A.5.3). The
value of this attribute shall be greater than or equal to

ceiling(d * 1og(10) / log(T'Machine_Radix)) + g

whered isthe requested decimal precision of T, and g isOif Machine_Radix is apositive power of 10 and 1
otherwise. In addition, it shall be less than or equal to the value of TMachine_Mantissa. This attribute yields a
value of the type universal_integer.

G.3 Vector and Matrix Manipulation

Insert new clause: [A195-00296-01]

Types and operations for the manipulation of real vectors and matrices are provided in Generic_Real _Arrays,
whichisdefined in G.3.1. Types and operations for the manipulation of complexvectors and matrices are
provided in Generic_Complex_Arrays, which is defined in G.3.2. Both of these library units are generic children
of the predefined package Numerics (see A.5). Nongeneric equivalents of these packages for each of the
predefined floating point types are also provided as children of Numerics.

G.3.1 Real Vectors and Matrices

Insert new clause: [A195-00296-01]
Static Semantics
The generic library package Numerics.Generic_Real_Arrays has the following declaration:

generic
type Real is digits <>;

package Ada. Nurerics. Generic_Real _Arrays is
pragma Pure(Generic_Real _Arrays);

-- Types
type Real Vector is array (Integer range <>) of Real'Base;

103

ISO/IEC 8652:1995/WD.1:2004

type Real _Matrix is array (Integer range <> Integer range <>) of Real'Base;
- - Subprograms for Real_Vector types

- - Real_Vector arithmetic operations

function "+" (Right : Real _Vector) return Real _Vector;
function "-" (Right : Real _Vector) return Real _Vector;
function "abs" (R ght : Real _Vector) return Real _Vector;

function "+" (Left, Right : Real Vector) return Real Vector;
function "-" (Left, Right : Real Vector) return Real Vector;

function "*" (Left, Right : Real _Vector) return Real'Base;

- - Real_Vector scaling operations

function "*" (Left : Real'Base; Right : Real Vector) return Real Vector;
function "*" (Left : Real _Vector; R ght : Real'Base) return Real Vector;

function "/" (Left : Real _Vector; R ght : Real'Base) return Real Vector;

- - Other Real_Vector operations

function Unit_Vector (Index : Integer;
Order : Positive;
First : Integer := 1) return Real _Vector;

- - Subprograms for Real_Matrix types

- - Real_Matrix arithmetic operations

function "+" (Right : Real _Matrix) return Real _Matri x;
function "-" (Right : Real _Matrix) return Real _Matri x;
function "abs" (Right : Real _Matrix) return Real _Matri x;
function Transpose (X : Real _Matrix) return Real _Matrix;

function "+" (Left, Right : Real _Matrix) return Real _Matrix;
function "-" (Left, Right : Real _Matrix) return Real _Matrix;
function "*" (Left, Right : Real _Matrix) return Real _Matrix;

function "*" (Left, Right : Real _Vector) return Real _Matrix;

function "*" (Left : Real _Vector; Right : Real _Mtrix) return Real _Vector;
function "*" (Left : Real _Matrix; Right : Real Vector) return Real _Vector;

- - Real_Matrix scaling operations

function "*" (Left : Real' Base; Right : Real _Matrix) return Real _Matrix;
function "*" (Left : Real _Matrix; R ght : Real' Base) return Real Matrix;
function "/" (Left : Real _Matrix; R ght : Real' Base) return Real Matrix;

- - Real_Matrix inversion and related operations

function Solve (A : Real _Matrix; X Real _Vector) return Real Vector;
function Solve (A, X : Real _Matrix) return Real Matrix;

function Inverse (A : Real Matrix) return Real Matrix;

function Determinant (A : Real _Mtrix) return Real' Base;

104

ISO/IEC 8652:1995/WD.1:2004

- - Eigenvalues and vectors of a real symmetric matrix
function E genval ues(A : Real _Matrix) return Real _Vector;

procedure Ei gensysten(A :in Real _Matrix;
Values : out Real Vector;
Vectors : out Real _Matrix);

- - Other Real_Matrix operations

function Unit_Matrix (Order . Positive;
First_1, First_2 : Integer := 1)
return Real _Matri x;

end Ada. Nurreri cs. Generi c_Real _Arrays;

Thelibrary package Numerics.Real_Arraysis declared pure and defines the same types and subprograms as
Numerics.Generic_Real_Arrays, except that the predefined type Float is systematically substituted for
Real'Base throughout. Nongeneric equivalents for each of the other predefined floating point types are defined
similarly, with the names Numerics.Short_Real_Arrays, Numerics.Long_Real_Arrays, etc.

Two types are defined and exported by Ada.Numerics.Generic_Real_Arrays. The composite type Real_Vector
isprovided to represent a vector with components of type Real; it is defined as an unconstrained, one-
dimensional array with anindex of type Integer. The composite type Real_Matrix is provided to represent a
matrix with components of type Real; it is defined as an unconstrained, two-dimensional array with indices of

type Integer.
The effect of the various functionsis as described below. In most cases the functions are described in terms of
corresponding scalar operations of the type Real; any exception raised by those operations is propagated by

the array operation. Moreover the accuracy of the result for each individual component is as defined for the
scalar operation unless stated otherwise.

In the case of those operations which are defined to involve an inner product, Constraint_Error may be raised if
an intermediate result is outside the range of Real'Base even though the mathematical final result would not be.

function "+" (Right : Real _Vector) return Real Vector;
function "-" (Right : Real _Vector) return Real Vector;
function "abs" (R ght : Real Vector) return Real Vector;

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Right. The index range of the result is Right'Range.

function "+" (Left, Right : Real _Vector) return Real Vector;
function "-" (Left, Right : Real Vector) return Real Vector;

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Left and the matching component of Right. The index range of the result is Left'Range.
The exception Constraint_Error israised if Left'Length is not equal to Right'Length.

function "*" (Left, Right : Real _Vector) return Real'Base;

This operation returns the inner product of Left and Right. The exception Constraint_Error israised if
Left'Length isnot equal to Right'Length. This operation involves an inner product.

function "*" (Left : Real'Base; R ght : Real _Vector) return Real Vector;

This operation returns the result of multiplying each component of Right by the scalar Left using the
"*" operation of the type Real. Theindex range of the result is Right'Range.

function "*" (Left : Real _Vector; R ght : Real' Base) return Real Vector;
function "/" (Left : Real _Vector; R ght : Real'Base) return Real Vector;

105

ISO/IEC 8652:1995/WD.1:2004

106

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Left and to the scalar Right. The index range of theresult is Left'Range.

function Unit_Mector (Index : Integer;
Order : Positive;
First : Integer := 1) return Real Vector;

This function returns a"unit vector" with Order components and alower bound of First. All
components are set to 0.0 except for the Index component which is set to 1.0. The exception
Constraint_Error israised if Index < First, Index > First + Order - 1 or if First + Order - 1 > Integer'Last.

function "+" (Right : Real _Matrix) return Real _Matri x;
function "-" (Right : Real _Matrix) return Real _Matri x;
function "abs" (Rght : Real _Matrix) return Real _Matrix;

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Right. The index ranges of the result are those of Right.

function Transpose (X : Real _Matrix) return Real _Matrix;

This function returns the transpose of amatrix X. The first and second index ranges of the result are
X'Range(2) and X'Range(1) respectively.

function "+" (Left, Right : Real Matrix) return Real Matrix;
function "-" (Left, Right : Real Matrix) return Real Matrix;

Each operation returns the result of applying the corresponding operation of type Real to each
component of Left and the matching component of Right. The index ranges of the result are those of
Left. The exception Constraint_Error israised if Left'Length(1) isnot equal to Right'Length(1) or
Left'Length(2) isnot equal to Right'Length(2).

function "*" (Left, Right : Real _Matrix) return Real Matrix;

This operation provides the standard mathematical operation for matrix multiplication. The first and
second index ranges of the result are Left'Range(1) and Right'Range(2) respectively. The exception
Constraint_Error israised if Left'Length(2) isnot equal to Right'Length(1). This operation involves
inner products.

function "*" (Left, Right : Real Vector) return Real Matrix;

This operation returns the outer product of a (column) vector Left by a (row) vector Right using the
appropriate operation "*" of the type Real for computing the individual components. The first and
second index ranges of the matrix result are Left'Range and Right'Range respectively.

function "*" (Left : Real _Vector; R ght : Real _Mtrix) return Real _Vector;

This operation provides the standard mathematical operation for multiplication of a (row) vector Left
by amatrix Right. Theindex range of the (row) vector result is Right'Range(2). The exception
Constraint_Error israised if Left'Length is not equal to Right'Length(1). This operation involvesinner
products.

function "*" (Left : Real _Matrix; R ght : Real _Vector) return Real _Vector;

This operation provides the standard mathematical operation for multiplication of amatrix Left by a
(column) vector Right. Theindex range of the (column) vector result is Left'Range(1). The exception
Constraint_Error israised if Left'Length(2) isnot equal to Right'Length. This operation involvesinner
products.

function "*" (Left : Real' Base; Right : Real _Matrix) return Real _Matrix;

This operation returns the result of multiplying each component of Right by the scalar Left using the
"*" operation of the type Real. Theindex ranges of the matrix result are those of Right.

function "*" (Left : Real _Matrix; R ght : Real' Base) return Real _Matrix;
function "/" (Left : Real _Matrix; R ght : Real' Base) return Real _Matrix;

ISO/IEC 8652:1995/WD.1:2004

Each operation returns the result of applying the corresponding operation of the type Real to each
component of Left and to the scalar Right. The index ranges of the matrix result are those of Left.

function Solve (A : Real _Matrix; X Real _Vector) return Real Vector;

Thisfunction returnsavector Y such that X is (nearly) equal to A * Y. Thisisthe standard
mathematical operation for solving asingle set of linear equations. The index range of theresult is
X'Range. Constraint_Error israised if A'Length(1), A'Length(2) and X'Length are not equal.
Constraint_Error israised if the matrix A isill-conditioned.

function Solve (A X : Real _Matrix) return Real _Matri x;

Thisfunction returnsamatrix Y such that X is (nearly) equal to A * Y. Thisisthe standard
mathematical operation for solving several sets of linear equations. The index ranges of the result are
those of X. Constraint_Error israised if A'Length(1), A'Length(2) and X'Length(1) are not equal.
Constraint_Error israised if the matrix A isill-conditioned.

function Inverse (A: Real _Matrix) return Real _Matri x;

Thisfunction returnsamatrix B such that A * B is (nearly) the unit matrix. The index ranges of the
result are those of A. Constraint_Error israised if A'Length(1) isnot equal to A'Length(2).
Constraint_Error israised if the matrix A isill-conditioned.

function Determnant (A : Real _Matrix) return Real ' Base;

Thisfunction returns the determinant of the matrix A. Constraint_Error israised if A'Length(1) is not
equal to A'Length(2).

function Eigenval ues(A : Real _Matrix) return Real _Vector;

This function returns the eigenval ues of the symmetric matrix A as avector sorted into order with the
largest first. The exception Constraint_Error israised if A'Length(1) isnot equal to A'Length(2). The
index range of theresult is A'Range(1). The exception Argument_Error israised if the matrix A isnot
symmetric.

procedure Ei gensysten(A :in Real _Matrix;
Values : out Real _Vector;
Vectors : out Real _Matrix);

This procedure computes both the eigenval ues and eigenvectors of the symmetric matrix A. The out
parameter Valuesisthe same as that obtained by calling the function Eigenvalues. The out parameter
Vectorsisamatrix whose columns are the eigenvectors of the matrix A. The order of the columns
corresponds to the order of the eigenvalues. The eigenvectors are normalized and mutually
orthogonal (they are orthonormal), including when there are repeated eigenvalues. The exception
Constraint_Error is raised if A'Length(1) is not equal to A'Length(2). The index ranges of the
parameter Vectors are those of A. The exception Argument_Error israised if the matrix A is not
symmetric.

function Unit_Matrix (Order . Positive;
First_1, First_2 : Integer := 1) return Real _Matrix;

This function returns a square "unit matrix" with Order** 2 components and lower bounds of First_1
and First_2 (for thefirst and second index ranges respectively). All components are set to 0.0 except
for the main diagonal, whose components are set to 1.0. The exception Constraint_Error israised if
First_1+ Order - 1> Integer'Last or First_2 + Order - 1 > Integer'Last.

Implementation Requirements

Accuracy reguirements for the subprograms Solve, Inverse, Determinant, Eigenval ues and Eigensystem are
implementation defined.

For operations not involving an inner product, the accuracy requirements are those of the corresponding
operations of the type Real in both the strict mode and the relaxed mode (see G.2).

107

ISO/IEC 8652:1995/WD.1:2004

For operationsinvolving an inner product, no requirements are specified in the relaxed mode. In the strict mode
the modulus of the absolute error of the inner product X*Y shall not exceed g* abs(X)*abs(Y) wheregis
defined as

g = X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa)
Documentation Requirements

Implementations shall document any techniques used to reduce cancellation errors such as extended precision
arithmetic.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for the
appropriate predefined type.

Implementation Advice

Implementations should implement the Solve and Inverse functions using established techniques such as LU
decomposition with row interchanges followed by back and forward substitution. Implementations are
recommended to refine the result by performing an iteration on the residuals; if thisis done then it should be
documented.

It isnot the intention that any special provision should be made to determine whether amatrix isill-conditioned
or not. The naturally occurring overflow (including division by zero) which will result from executing these
functions with an ill-conditioned matrix and thus raise Constraint_Error is sufficient.

Thetest that amatrix is symmetric may be performed by using the equality operator to compare the relevant
components.

G.3.2 Complex Vectors and Matrices

Insert new clause: [A195-00296-01]

108

Static Semantics
The generic library package Numerics.Generic_Complex_Arrays has the following declaration:

wi th Ada. Nunerics. Generi c_Real _Arrays, Ada. Nurerics. Generi c_Conpl ex_Types;
generic
wi th package Real _Arrays i s new Ada. Nunerics. Generi c_Real _Arrays (<>);
use Real _Arrays;
wi th package Conpl ex_Types i s new Ada. Nuneri cs. Generi c_Conpl ex_Types (Real);
use Conpl ex_Types;
package Ada. Nurerics. Generic_Conpl ex_Arrays is
pragma Pure(Generic_Conpl ex_Arrays);

-- Types
type Conplex_Vector is array (Integer range <>) of Conpl ex;

type Conplex_Matrix is array (Integer range <>,
I nteger range <>) of Conpl ex;

- - Subprograms for Complex_Vector types

- - Complex_Vector selection, conversion and composition operations

function Re (X : Conplex_Vector) return Real Vector;
function Im (X : Conplex_Vector) return Real Vector;

procedure Set_Re (X : in out Conplex_Vector;
Re : in Real Vector);

procedure Set_Im (X

function
function

function
function

function

function

function

function

ISO/IEC 8652:1995/WD.1:2004

in out Conpl ex_Vector;
m: in Real _Vector);

Conpose_From Cartesi an (Re : Real _Vector) return Conpl ex_Vector;
Conpose_From Cartesian (Re, Im: Real Vector) return Conpl ex_Vector;

Modul us (X : Conpl ex_Vector) return Real Vector;
"abs" (R ght : Conplex_Vector) return Real _Vector
renanes Modul us;
Argument (X : Conpl ex_Vector) return Real Vector;
Argument (X . Conpl ex_Vector;
Cycle : Real ' Base) return Real _Vector;
Conpose_From Pol ar (Mdul us, Argunent : Real Vector)

return Conpl ex_Vect or;

Conpose_From Pol ar (Mddul us, Argunent : Real _Vector;

Cycl e . Real ' Base)
return Conpl ex_Vector;

- - Complex_Vector arithmetic operations

function
function
function

function
function

function

" (Right : Conplex_Vector) return Conpl ex_Vector;
(Right : Conplex_Vector) return Conpl ex_Vector;
Conj ugate (X : Conpl ex_Vector) return Conpl ex_Vector;
"+" (Left, R ght : Conplex_Vector) return Conpl ex_Vector;
"-" (Left, R ght : Conplex_Vector) return Conpl ex_Vector;
"*" (Left, Right : Conplex_Vector) return Conpl ex;

- - Mixed Real_Vector and Complex_Vector arithmetic operations

function "+" (Left

function

function

function

function
function

"

wgn

wgn

Ri ght
(Left
Ri ght
(Left
Ri ght
(Left
Ri ght

(Left
(Left

Real Vector;

Conpl ex_Vector) return Conpl ex_Vector;
Conpl ex_Vect or;

Real _Vect or) return Conpl ex_Vector;
Real Vector;

Conpl ex_Vector) return Conpl ex_Vector;

Conpl ex_Vect or;

Real _Vect or) return Conpl ex_Vector;

Real _Vect or; Ri ght : Conpl ex_Vector) return Conpl ex;

Conpl ex_Vector; Right : Real _Vector) return Conpl ex;

- - Complex_Vector scaling operations

function "*" (Left

function

function

function

function

"wgn

n/u

"agn

"agn

Ri ght
(Left

Ri ght
(Left

Ri ght

(Left
Ri ght
(Left

Conpl ex;

Conpl ex_Vector) return Conpl ex_Vector;
Conpl ex_Vect or;

Conpl ex) return Conpl ex_Vector;
Conpl ex_Vect or;

Conpl ex) return Conpl ex_Vector;
Real ' Base;

Conpl ex_Vector) return Conpl ex_Vector;
Conpl ex_Vect or;

109

ISO/IEC 8652:1995/WD.1:2004

110

R ght Real '
function "/" (Left Conpl
R ght Real '

- - Other Complex_Vector operations

function Unit_MVector (Index :

O der
First

Base)
ex_Vector;
Base)

I nt eger;
Positive;
Integer :=

- - Subprograms for Complex_Matrix types

1)

return Conpl ex_Vector;

return Conpl ex_Vector;

return Conpl ex_Vect or;

- - Complex_Matrix selection, conversion and composition operations

function Re (X :
function Im (X :

procedure Set_Re (X

Re : in Real _Matri x);
procedure Set_Im (X in out Conplex_Matrix;
Im: in Real _Matri x);
function Conpose_From Cartesian (Re Real _Matrix) return Conplex_Matri x;
function Conpose_From Cartesian (Re, Im: Real _Mtrix) return Conplex_Matrix;
function Mdulus (X Conpl ex_Matrix) return Real _Matri x;
function "abs" (R ght Conpl ex_Matrix) return Real _Matrix
renanes Modul us;
function Argunent (X Conpl ex_Matrix) return Real _Matri x;
function Argunent (X : Conpl ex_Matri x;
Cycl e : Real ' Base) return Real _Matri x;
function Conpose_From Pol ar (Mbdul us, Argunent Real _Matri x)
return Conpl ex_Matri x;
function Conpose_From Pol ar (Mbdul us, Argunent Real _Matri x;
Cycl e Real ' Base)

Conpl ex_Matri x)
Conpl ex_Matri x)

- - Complex_Matrix arithmetic operations

function "+" (R ght
function "-" (R ght
function Conjugate (X

function Transpose (X
function "+" (Left, Right
function "-" (Left, Right
function "*" (Left, Right
function "*" (Left, R ght
function "*" (Left Conpl
Ri ght Conpl
function "*" (Left Conpl
Ri ght Conpl

Conpl ex_Matri
Conpl ex_Matri
Conpl ex_Matri
Conpl ex_Matri

Conpl ex_Matri
Conpl ex_Matri
Conpl ex_Matri

X)
X)
X)
X)

X)
X)
X)

Conpl ex_Vect or)

ex_Vector;
ex_Matri x)
ex_Matrix;
ex_Vector)

in out Conplex_Matrix;

return Conpl ex_Matri x;

return
return
return
return

return
return

return

return

return Real _Matrix;
return Real _Matrix;

Conpl ex_Matri
Conpl ex_Matri
Conpl ex_Matri
Conpl ex_Matri

Conpl ex_Matri
Conpl ex_Matri
Conpl ex_Matri

Conpl ex_Matri

return Conpl ex_Vect or;

return Conpl ex_Vect or;

X X X X

function

function
function
function
function

function

function

function

function

function
function

function

"+ (Left
Ri ght
(Left
Ri ght
(Left
Ri ght
(Left
Ri ght
(Left
Ri ght
(Left
Ri ght

"
wn

wgn

wgn

(Left
Ri ght

(Left
Ri ght

wgn

wgn

(Left
Ri ght
(Left
Ri ght
(Left
Ri ght
(Left
Ri ght

wgn

wgn

wgn

Real Matri x;
Conpl ex_Matri x)
Conpl ex_Matri x;
Real _Matri x)
Real Matri x;
Conpl ex_Matri x)
Conpl ex_Matri x;
Real _Matri x)
Real Matri x;
Conpl ex_Matri x)
Conpl ex_Matri x;
Real _Matri x)

Real Vector;
Conpl ex_Vect or)
Conpl ex_Vect or;
Real _Vector)

Real Vector;
Conpl ex_Matri x)
Conpl ex_Vector;
Real _Matri x)
Real _Matri x;
Conpl ex_Vector)
Conpl ex_Matri x;
Real Vector)

- - Complex_Matrix scaling operations

function

function

function

function

function

function

"*" o (Left
Ri ght

(Left
Ri ght

(Left
Ri ght

"agn

n/u

"agn

(Left
Ri ght

(Left
Ri ght

(Left
Ri ght

"agn

n/n

Conpl ex;
Conpl ex_Matri x)
Conpl ex_Matri x;
Conpl ex)
Conpl ex_Matri x;
Conpl ex)

Real ' Base;
Conpl ex_Matri x)
Conpl ex_Matri x;

Real ' Base)
Conpl ex_Matri x;
Real ' Base)

- - Complex_Matrix inversion and related operations

function
function
function
function

function E genval ues(A :

Solve (A :
Solve (A X:
Inverse (A :

Determ nant (A :

Conpl ex_Matri x;

Conpl ex_Matri x)
Conpl ex_Matri x)
Conpl ex_Matr

Eigenvalues and vectors of a Hermitian matrix

Conpl ex_Matri x)

return

return

return

return

return

return

return

return

return

return

return

return

return

return

return

return

return

return

X: Conpl ex_Vect or)

ISO/IEC 8652:1995/WD.1:2004

Mixed Real_Matrix and Complex_Matrix arithmetic operations

Conpl ex_Matri x;
Conpl ex_Matri x;
Conpl ex_Matri x;
Conpl ex_Matri x;
Conpl ex_Matri x;

Conpl ex_Matri x;

Conpl ex_Matri x;

Conpl ex_Matri x;

Conpl ex_Vector;
Conpl ex_Vector;
Conpl ex_Vector;

Conpl ex_Vector;

Conpl ex_Matri x;
Conpl ex_Matri x;

Conpl ex_Matri x;

Conpl ex_Matri x;
Conpl ex_Matri x;

Conpl ex_Matri x;

return Conpl ex_Matri x;

return
i X)

Conpl ex_Matri x;

return Conpl ex;

return Real Vector;

return Conpl ex_Vector;

ISO/IEC 8652:1995/WD.1:2004

112

procedure Ei gensysten(A :in Conplex_Mtrix;
Values : out Real _Vector;
Vectors : out Conplex_Matrix);

- - Other Complex_Matrix operations

function Unit_Matrix (O der . Positive;
First_1, First_2 : Integer := 1)
return Conpl ex_Matri x;

end Ada. Nurreri cs. Generi c_Conpl ex_Arrays;

Thelibrary package Numerics.Complex_Arraysis declared pure and defines the same types and subprograms
as Numerics.Generic_Complex_Arrays, except that the predefined type Float is systematically substituted for
Real'Base, and the Real_Vector and Real_Matrix types exported by Numerics.Real_Arrays are systematically
substituted for Real_Vector and Real_Matrix, and the Complex type exported by Numerics.Complex_Typesis
systematically substituted for Complex, throughout. Nongeneric equivalents for each of the other predefined
floating point types are defined similarly, with the names Numerics.Short_ Complex_Arrays,
Numerics.Long_Complex_Arrays, €tc.

Two types are defined and exported by Ada.Numerics.Generic_Complex_Arrays. The composite type
Complex_Vector is provided to represent a vector with components of type Complex; it is defined as an
unconstrained one-dimensional array with an index of type Integer. The composite type Complex_Matrix is
provided to represent amatrix with components of type Complex; it is defined as an unconstrained, two-
dimensional array with indices of type Integer.

The effect of the various subprogramsis as described below. In many cases they are described in terms of
corresponding scalar operationsin Numerics.Generic_Complex_Types. Any exception raised by those
operationsis propagated by the array subprogram. Moreover any constraints on the parameters and the
accuracy of the result for each individual component is as defined for the scalar operation.

In the case of those operations which are defined to involve an inner product, Constraint_Error may be raised if
an intermediate result has a component outside the range of Real'Base even though the final mathematical
result would not.

function Re (X : Conplex_Vector) return Real Vector;
function Im (X : Conplex_Vector) return Real Vector;

Each function returns avector of the specified cartesian components of X. Theindex range of the
result is X'Range.

procedure Set_Re (X : in out Conplex Vector; Re : in Real Vector);
procedure Set_Im (X : in out Conplex Vector; Im: in Real Vector);

Each procedure replaces the specified (cartesian) component of each of the components of X by the
value of the matching component of Re or Im; the other (cartesian) component of each of the
components is unchanged. The exception Constraint_Error israised if X'Length isnot equal to
Re'Length or Im'Length.

function Conpose From Cartesi an (Re . Real _Vector) return Conpl ex_Vector;
function Conpose_From Cartesian (Re, Im: Real Vector) return Conpl ex_Vector;

Each function constructs a vector of Complex results (in cartesian representation) formed from given
vectors of cartesian components; when only the real components are given, imaginary components of
zero are assumed. Theindex range of the result is Re'Range. The exception Constraint_Error israised
if Re'Length isnot equal to Im'Length.

function Mdulus (X . Conpl ex_Vector) return Real Vector;
function "abs" (Right : Conplex_Vector) return Real Vector renames Modul us;
function Argunent (X . Conpl ex_Vector) return Real Vector;

ISO/IEC 8652:1995/WD.1:2004

function Argument (X . Conpl ex_Vector;
Cycl e : Real ' Base) return Real Vector;

Each function calculates and returns a vector of the specified polar components of X or Right using
the corresponding function in Numerics.Generic_Complex_Types. The index range of theresultis
X'Range or Right'Range.

function Conpose_From Pol ar (Mddul us, Argunent : Real Vector)
return Conpl ex_Vector;

function Conpose_From Pol ar (Mdul us, Argument : Real Vector; Cycle : Real' Base)
return Conpl ex_Vector;

Each function constructs a vector of Complex results (in cartesian representation) formed from given
vectors of polar components using the corresponding function in Numerics.Generic_Complex_Types
on matching components of Modulus and Argument. The index range of the result is ModulusRange.
The exception Constraint_Error israised if Modulus'Length is not equal to Argument'Length.

function "+" (Right : Conpl ex_Vector) return Conpl ex_Vector;
function "-" (Right : Conpl ex_Vector) return Conpl ex_Vector;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of Right. The index range of theresult is
Right'Range.

function Conjugate (X : Conpl ex_Vector) return Conpl ex_Vector;

This function returns the result of applying the appropriate function Conjugatein
Numerics.Generic_Complex_Typesto each component of X. The index range of the result is X'Range.

function "+" (Left, Right : Conplex_Vector) return Conpl ex_Vector;
function "-" (Left, Right : Conplex_Vector) return Conpl ex_Vector;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Typesto each component of Left and the matching component of Right.
Theindex range of the result is Left'Range. The exception Constraint_Error israised if Left'Lengthis
not equal to Right'Length.

function "*" (Left, Right : Conpl ex_Vector) return Conpl ex;

This operation returns the inner product of Left and Right. The exception Constraint_Error israised if
Left'Length isnot equal to Right'Length. This operation involves an inner product.

function "+" (Left : Real _Vector;

Ri ght : Conpl ex_Vector) return Conpl ex_Vector;
function "+" (Left : Conpl ex_Vector;

Right : Real _Vector) return Conpl ex_Vect or;
function "-" (Left : Real _Vector;

Ri ght : Conpl ex_Vector) return Conpl ex_Vect or;
function "-" (Left : Conpl ex_Vector;

Right : Real _Vector) return Conpl ex_Vect or;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of Left and the matching component of Right.
Theindex range of the result is Left'Range. The exception Constraint_Error israised if Left'Lengthis
not equal to Right'Length.

function "*" (Left : Real _Vector; Ri ght : Conpl ex_Vector) return Conpl ex;
function "*" (Left : Conpl ex_Vector; Right : Real _Vector) return Conpl ex;

Each operation returns the inner product of Left and Right. The exception Constraint_Error israised if
Left'Length is not equal to Right'Length. These operationsinvolve aninner product.

function "*" (Left : Conplex; R ght : Conplex_Vector) return Conpl ex_Vector;

113

ISO/IEC 8652:1995/WD.1:2004

114

This operation returns the result of multiplying each component of Right by the complex number L eft
using the appropriate operation "*" in Numerics.Generic_Complex_Types. The index range of the
result is Right'Range.

function "*" (Left : Conplex_Vector; R ght : Conplex) return Conpl ex_Vector;
function "/" (Left : Conplex_Vector; R ght : Conplex) return Conpl ex_Vector;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of the vector Left and the complex number
Right. The index range of the result is Left'Range.

function "*" (Left : Real'Base; R ght : Conplex_Vector) return Conpl ex_Vector;

This operation returns the result of multiplying each component of Right by the real number Left
using the appropriate operation "*" in Numerics.Generic_Complex_Types. The index range of the
result is Right'Range.

function "*" (Left : Conplex_Vector; R ght : Real'Base) return Conpl ex_Vector;
function "/" (Left : Conplex_Vector; R ght : Real'Base) return Conpl ex_Vector;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of the vector Left and the real number Right.
Theindex range of the result is Left'Range.

function Unit_Mector (Index : Integer;
Order : Positive;
First : Integer := 1) return Conpl ex_Vector;

This function returns a"unit vector" with Order components and alower bound of First. All
components are set to (0.0,0.0) except for the Index component which is set to (1.0,0.0). The exception
Constraint_Error israised if Index < First, Index > First + Order - 1, or if First + Order - 1 > Integer'L ast.

function Re (X : Conplex_Matrix) return Real _Matrix;
function Im (X : Conplex_Matrix) return Real _Matrix;

Each function returns a matrix of the specified cartesian components of X. Theindex ranges of the
result are those of X.

procedure Set_Re (X : in out Conplex_Matrix; Re : in Real _Matrix);
procedure Set_Im (X : in out Conplex_Matrix; Im: in Real _Matrix);

Each procedure replaces the specified (cartesian) component of each of the components of X by the
value of the matching component of Re or Im; the other (cartesian) component of each of the
components is unchanged. The exception Constraint_Error israised if X'Length(1) is not equal to
Re'Length(1) or Im'Length(1) or if X'Length(2) isnot equal to Re'Length(2) or Im'Length(2).

function Conpose From Cartesian (Re : Real _Matrix) return Conpl ex_Matri x;
function Conpose_From Cartesian (Re, Im: Real _Matrix) return Conpl ex_Matri x;

Each function constructs amatrix of Complex results (in cartesian representation) formed from given
matrices of cartesian components; when only the real components are given, imaginary components
of zero are assumed. Theindex ranges of the result are those of Re. The exception Constraint_Error is
raised if Re'lLength(1) is not equal to Im'Length(1) or Re'Length(2) is not equal to Im'Length(2).

function Mdulus (X : Conplex_Matrix) return Real _Matrix;
function "abs" (Right : Conplex_Matrix) return Real _Matrix renames Mdul us;
function Argunent (X : Conplex_Matrix) return Real _Matrix;
function Argunent (X . Conpl ex_Matrix;
Cycl e : Real ' Base) return Real Matri x;

Each function cal culates and returns a matrix of the specified polar components of X or Right using
the corresponding function in Numerics.Generic_Complex_Types. Theindex ranges of the result are
those of X or Right.

ISO/IEC 8652:1995/WD.1:2004

function Conpose_From Pol ar (Mdul us, Argunent : Real _Matrix)
return Conpl ex_Matri x;
function Conpose_From Pol ar (Mdul us, Argunent : Real Matrix;
Cycl e . Real ' Base)
return Conpl ex_Matri x;

Each function constructs amatrix of Complex results (in cartesian representation) formed from given
matrices of polar components using the corresponding function in Numerics.Generic_Complex_Types
on matching components of Modulus and Argument. The index ranges of the result are those of
Modulus. The exception Constraint_Error israised if ModulusLength(1) is not equal to
Argument'Length(1) or ModulusLength(2) is not equal to Argument’Length(2).

function "+" (Right : Conplex_Matrix) return Conplex_Matrix;
function "-" (Right : Conplex_Matrix) return Conplex_Matrix;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Typesto each component of Right. The index ranges of the result are
those of Right.

function Conjugate (X : Conplex_Matrix) return Conplex_Matri x;

This function returns the result of applying the appropriate function Conjugate in
Numerics.Generic_Complex_Typesto each component of X. The indexranges of the result are those
of X.

function Transpose (X : Conplex_Matrix) return Conplex_Matri x;

This function returns the transpose of amatrix X. The first and second index ranges of the result are
X'Range(2) and X'Range(1) respectively.

function "+" (Left, Right : Conplex_Matrix) return Conpl ex_Matri x;
function "-" (Left, Right : Conplex_Matrix) return Conpl ex_Matri x;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of Left and the matching component of Right.
Theindex ranges of the result are those of Left. The exception Constraint_Error israised if
Left'Length(1) isnot equal to Right'Length(1) or Left'Length(2) is not equal to Right'Length(2).

function "*" (Left, Right : Conplex_Matrix) return Conpl ex_Matri x;

This operation provides the standard mathematical operation for matrix multiplication. The first and
second index ranges of the result are Left'Range(1) and Right'Range(2) respectively. The exception
Constraint_Error israised if Left'Length(2) isnot equal to Right'Length(1). This operation involves
inner products.

function "*" (Left, Right : Conplex_ Vector) return Conpl ex_Matri x;

This operation returns the outer product of a (column) vector Left by a (row) vector Right using the
appropriate operation "*" in Numerics.Generic_Complex_Types for computing the individual
components. The first and second index ranges of the matrix result are Left'Range and Right'Range
respectively.

function "*" (Left : Conplex_Vector;
Ri ght : Conpl ex_Matrix) return Conpl ex_Vector;

This operation provides the standard mathematical operation for multiplication of a (row) vector L eft
by amatrix Right. Theindex range of the (row) vector result is Right'Range(2). The exception
Constraint_Error israised if Left'Length is not equal to Right'Length(1). This operation involvesinner
products.

function "*" (Left : Conplex_Matrix;
Ri ght : Conpl ex_Vector) return Conpl ex_Vector;

115

ISO/IEC 8652:1995/WD.1:2004

116

This operation provides the standard mathematical operation for multiplication of amatrix Left by a
(column) vector Right. Theindex range of the (column) vector result is Left'Range(1). The exception
Constraint_Error israised if Left'Length(2) is not equal to Right'Length. This operation involvesinner
products.

function "+" (Left : Real _Matrix;

Right : Conpl ex_Matrix) return Conpl ex_Matri x;
function "+" (Left : Conplex_Matrix;

Right : Real _Matrix) return Conpl ex_Matri x;

function "-" (Left : Real _Matrix;
Right : Conpl ex_Matrix) return Conpl ex_Matri x;
function "-" (Left : Conplex_Mtrix;

Right : Real _Matrix) return Conpl ex_Matri x;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Typesto each component of Left and the matching component of Right.
Theindex ranges of the result are those of Left. The exception Constraint_Error israised if
Left'Length(1) is not equal to Right'Length(1) or Left'Length(2) isnot equal to Right'Length(2).

function "*" (Left : Real _Matrix;

Right : Conpl ex_Matrix) return Conpl ex_Matri x;
function "*" (Left : Conplex_Mtrix;

Right : Real _Matrix) return Conpl ex_Matri x;

Each operation provides the standard mathematical operation for matrix multiplication. The first and
second index ranges of the result are Left'Range(1) and Right'Range(2) respectively. The exception
Constraint_Error israised if Left'Length(2) isnot equal to Right'Length(1). These operationsinvolve
inner products.

function "*" (Left : Real _Vector;
Ri ght : Conpl ex_Vector) return Conpl ex_Matri x;
function "*" (Left : Conpl ex_Vector;

Right : Real _Vector) return Conpl ex_Matri x;

Each operation returns the outer product of a (column) vector Left by a (row) vector Right using the
appropriate operation "*" in Numerics.Generic_Complex_Types for computing the individual
components. The first and second index ranges of the matrix result are L eft' Range and Right'Range
respectively.

function "*" (Left : Real _Vector;
Right : Conpl ex_Matrix) return Conpl ex_Vector;
function "*" (Left : Conpl ex_Vector;

Right : Real _Matrix) return Conpl ex_Vect or;

Each operation provides the standard mathematical operation for multiplication of a (row) vector Left
by amatrix Right. Theindex range of the (row) vector result is Right'Range(2). The exception
Constraint_Error israised if Left'Length is not equal to Right'Length(1). These operationsinvolve
inner products.

function "*" (Left : Real _Matrix;

Ri ght : Conpl ex_Vector) return Conpl ex_Vector;
function "*" (Left : Conplex_Mtrix;

Ri ght : Real _Vector) return Conpl ex_Vector;

Each operation provides the standard mathematical operation for multiplication of amatrix Left by a
(column) vector Right. Theindex range of the (column) vector result is Left'Range(1). The exception
Constraint_Error israised if Left'Length(2) isnot equal to Right'L ength. These operationsinvolve
inner products.

function "*" (Left : Conplex; R ght : Conplex_Matrix) return Conplex_Matrix;

ISO/IEC 8652:1995/WD.1:2004

This operation returns the result of multiplying each component of Right by the complex number Left
using the appropriate operation "*" in Numerics.Generic_Complex_Types. The index ranges of the
result are those of Right.

function "*" (Left : Conplex_Matrix; Right : Conplex) return Conplex_MatriXx;
function "/" (Left : Conplex_Matrix; Right : Conplex) return Conplex_Matrix;

Each operation returns the result of applying the corresponding operation in
Numerics.Generic_Complex_Types to each component of the matrix Left and the complex number
Right. Theindex ranges of the result are those of L eft.

function "*" (Left : Real ' Base; R ght : Conplex_Mtrix) return Conplex_MtriXx;

This operation returns the result of multiplying each component of Right by the real number Left
using the appropriate operation "*" in Numerics.Generic_Complex_Types. Theindex ranges of the
result are those of Right.

function "*" (Left : Conplex_Mtrix; R ght : Real'Base) return Conplex_MtriXx;
function "/" (Left : Conplex_Matrix; R ght : Real'Base) return Conplex_MtriXx;

Each operation returns the result of applying the corresponding operation in
NumericsGeneric_Complex_Typesto each component of the matrix Left and the scalar Right. The
index ranges of the result are those of Left.

function Solve (A : Conplex_Matrix; X Conplex_Vector) return Conpl ex_Vector;

Thisfunction returns avector Y such that X is (nearly) equal to A * Y. Thisisthe standard
mathematical operation for solving asingle set of linear equations. The index range of theresult is
X'Range. Constraint_Error israised if A'Length(1), A'Length(2) and X'Length are not equal .
Constraint_Error israised if thematrix A isill-conditioned.

function Solve (A X : Conplex_Mtrix) return Conplex_Matrix;

Thisfunction returnsamatrix Y such that X is (nearly) equal to A * Y. Thisisthe standard
mathematical operation for solving several sets of linear equations. The index ranges of the result are
those of X. Constraint_Error israised if A'Length(1), A'Length(2) and X'Length(1) are not equal.
Constraint_Error israised if the matrix A isill-conditioned.

function Inverse (A : Conplex_Mtrix) return Conplex_Matrix;

Thisfunction returns amatrix B such that A * B is (nearly) the unit matrix. The index ranges of the
result are those of A. Constraint_Error israised if A'Length(1) is not equal to A'Length(2).
Constraint_Error israised if the matrix A isill-conditioned.

function Determnant (A : Conpl ex_Mtrix) return Conpl ex;

Thisfunction returns the determinant of the matrix A. Constraint_Error israised if A'Length(1) is not
equal to A'Length(2).

function Eigenval ues(A : Conpl ex_Matrix) return Real _Vector;

This function returns the eigenval ues of the Hermitian matrix A as avector sorted into order with the
largest first. The exception Constraint_Error israised if A'Length(1) is not equal to A'Length(2). The

index range of the result is A'Range(1). The exception Argument_Error israised if the matrix A isnot

Hermitian.

procedure Ei gensysten(A :in Conplex_Mtrix;
Values : out Real Vector;
Vectors : out Conplex_Matrix);

This procedure computes both the eigenval ues and eigenvectors of the Hermitian matrix A. The out
parameter Valuesisthe same as that obtained by calling the function Eigenvalues. The out parameter
Vectorsis amatrix whose columns are the eigenvectors of the matrix A. The order of the columns
corresponds to the order of the eigenvalues. The eigenvectors are mutually orthonormal, including

117

ISO/IEC 8652:1995/WD.1:2004

118

when there are repeated eigenvalues. The exception Constraint_Error israised if A'Length(1) is not
equal to A'Length(2). The index ranges of the parameter Vectors are those of A. The exception
Argument_Error israised if the matrix A isnot Hermitian.

function Unit_Matrix (Order . Positive;
First_1, First_2 : Integer := 1)
return Conpl ex_Matri x;

This function returns a square "unit matrix" with Order** 2 components and lower bounds of First_1
and First_2 (for thefirst and second index ranges respectively). All components are set to (0.0,0.0)
except for the main diagonal, whose components are set to (1.0,0.0). The exception Constraint_Error is
raised if First_1+ Order - 1 > Integer'Last or First_2 + Order - 1 > Integer'L ast.

Implementation Requirements

Accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigenvalues and Eigensystem are
implementation defined.

For operations not involving an inner product, the accuracy requirements are those of the corresponding
operations of the type Real'Base and Complex in both the strict mode and the relaxed mode (see G.2).

For operations involving an inner product, no requirements are specified in the relaxed mode. In the strict mode
the modulus of the absolute error of theinner product X*Y shall not exceed g*abs(X)*abs(Y) wheregis
defined as
g = X'Length * Real'Machine_Radix** (1-Real'Machine_Mantissa) for mixed complex and real
operands
g=srt(2.0) * X'Length * Real'Machine_Radix**(1-Real'Machine_Mantissa) for two complex
operands

Documentation Requirements

Implementations shall document any techniques used to reduce cancellation errors such as extended precision
arithmetic.

Implementation Permissions

The nongeneric equivalent packages may, but need not, be actual instantiations of the generic package for the
appropriate predefined type.

Although many operations are defined in terms of operations from Numerics.Generic_Complex_Types, they
need not be implemented by calling those operations provided that the effect is the same.

I mplementation Advice

Implementations should implement the Solve and Inverse functions using established techniques.
Implementations are recommended to refine the result by performing an iteration on the residuals; if thisis
donethen it should be documented.

Itisnot theintention that any special provision should be made to determine whether amatrix isill-conditioned
or not. The naturally occurring overflow (including division by zero) which will result from executing these
functions with an ill-conditioned matrix and thus raise Constraint_Error is sufficient.

Thetest that amatrix is Hermitian may use the equality operator to compare the real components and negation
followed by equality to compare the imaginary components (see G.2.1).

Implementations should not perform operations on mixed complex and real operands by first converting the real
operand to complex. See G.1.1.

ISO/IEC 8652:1995/WD.1:2004

Annex H: Safety and Security
Replace the title: [AlI95-00347-01]
Safety and Security
by:
High Integrity Systems
Replace paragraph 1: [Al195-00347-01]

This Annex addresses requirements for systems that are safety critical or have security constraints. It provides
facilities and specifies documentation requirements that relate to several needs:

by:

This Annex addresses requirements for high integrity systems (including safety-critical systems and security-
critical systems). It provides facilities and specifies documentation requirements that relate to several needs:

H.3.1 Pragma Reviewable

Replace paragraph 8: [Al195-00209-01]

For each reference to a scalar object, an identification of the reference as either “"known to be
initialized," or “"possibly uninitialized," independent of whether pragma Normalize_Scalars applies;

by:

For each read of ascalar object, an identification of the read as either ““known to beinitialized," or
““possibly uninitialized," independent of whether pragma Normalize_Scalars applies;

H.3.2 Pragma Inspection_Point

Replace paragraph 9: [Al195-00209-01]

The implementation is not allowed to perform *“dead store elimination” on the last assignment to a variable prior
to apoint where the variable is inspectable. Thus an inspection point has the effect of an implicit reference to
each of itsinspectable objects.

by:

Theimplementation is not allowed to perform ““dead store elimination" on the last assignment to avariable prior
to apoint where the variable isinspectable. Thus an inspection point has the effect of an implicit read of each
of itsinspectable objects.

H.4 Safety and Security Restrictions

Replace the title: [AlI95-00347-01]
Safety and Security Restrictions

by:
High Integrity Restrictions

Replace paragraph 2: [Al195-00347-01]

Thefollowing restrictions, the same asin D.7, apply inthis Annex: No_Task_Hierarchy, No_Abort_Statement,
No_Implicit_Heap_Allocation, Max_Task Entriesis0, Max_Asynchronous_Select Nesting is 0, and
Max_Tasksis0. Thelast threerestrictions are checked prior to program execution.

119

ISO/IEC 8652:1995/WD.1:2004

by:

Thefollowing restrictions, the same asin D.7, apply in thisAnnex: No_Task_Hierarchy, No_Abort_Statement,
No_Implicit_Heap_Allocation, Max_Task_Entriesis 0, Max_Asynchronous_Select_Nesting is 0, and
Max_Tasksis 0. Thelast three restrictions are checked prior to program execution. Pragma Profile(Ravenscar)
appliesin this Annex.

H.5 Pragma Detect_Blocking

Insert new clause: [A195-00305-01]

The following pragma forces an implementation to detect potentially blocking operations within a protected
operation.

Syntax

Theform of apragma Detect_Blocking is asfollows:
pragma Detect_Blocking;

Dynamic Semantics

Animplementation isrequired to detect a potentially blocking operation within a protected operation, and to
raise Program_Error (see 9.5.1).

Post-Compilation Rules
A pragma Detect_Blocking is a configuration pragma.
I mplementation Permissions

Animplementation is allowed to reject acompilation_unit if a potentially blocking operation is present directly
within anentry_body or the body of a protected subprogram.

NOTES

10 An operation that causes atask to be blocked within aforeign language domain is not defined to be potentialy
blocking, and need not be detected.

H.6 Pragma Partition_Elaboration_Policy

Insert new clause: [A195-00265-01]

120

This clause defines a pragma for user control over elaboration policy.
Syntax
Theform of apragma Partition_Elaboration_Policy isasfollows:
pragma Partition_Elaboration_Policy (policy_identifier);
The policy_identifier shall be either Sequential, Concurrent or an implementation-defined identifier.
Post-Compilation Rules
The pragma is a configuration pragma. It appliesto all compilation unitsin a partition.

If the Sequential policy is specified for a partition then pragma Restrictions (No_Task_Hierarchy) shall also be
specified for the partition.

Dynamic Semantics

Notwithstanding what this International Standard says el sewhere, thispragma allows partition elaboration
rules concerning task activation and interrupt attachment to be changed. If the policy_identifier is Concurrent,
or if thereisno pragma Partition_Elaboration_Policy defined for the partition, then the rules defined el sewhere
in this Standard apply.

ISO/IEC 8652:1995/WD.1:2004

If the partition elaboration policy is Sequential, al task activationsfor library-level tasks and all interrupt
handler attachments for library-level interrupt handlers are deferred. The deferred task activations and handler
attachments occur after the elaboration of all library_items prior to calling the main subprogram. At this point
the Environment task is suspended until all deferred task activations and handler attachments are compl ete.

If any deferred task activation fails, Tasking_Error israised in the Environment task. The Environment task and
all taskswhose activations fail are terminated. If anumber of dynamic interrupt handler attachments for the
same interrupt are deferred then the most recent call of Attach_Handler or Exchange Handler determines which
handler is attached.

Implementation Advice

If the partition elaboration policy is Sequential and the Environment task becomes permanently blocked during
elaboration then the partition is deadlocked and it is recommended that the partition be immediately terminated.

Implementation Permission

If the partition elaboration policy is Sequential and any task activation failsthen an implementation may
immediately terminate the active partition to mitigate the hazard posed by continuing to execute with a subset
of the tasks being active.

121

ISO/IEC 8652:1995/WD.1:2004

An

nex J: Obsolescent Features

J.10 Specific Suppression of Checks

Inse

J.1

rt new clause: [A195-00224-01]
Pragma Suppress can be used to suppress checks on specific entities.
Syntax
The form of a specific Suppresspragma is asfollows:
pragma Suppress(identifier, [On =>] name);
Legality Rules
The identifier shall be the name of acheck (see 11.5). The name shall statically denote some entity.

For a specific Suppress pragma that isimmediately within apackage_specification, the name shall denote an
entity (or several overloaded subprograms) declared immediately within the package_specification.

Static Semantics

A specific Suppress pragma applies to the named check from the place of the pragma to the end of the
innermost enclosing declarative region, or, if the pragma isgiven in apackage_specification, to the end of
the scope of the named entity. The pragma applies only to the named entity, or, for a subtype, on objects and
values of itstype. A specific Suppresspragma suppresses the named check for any entitiesto which it applies
(see 11.5). Which checks are associated with a specific entity is not defined by this International Standard.

Implementation Permissions
Animplementation is allowed to place restrictions on specific Suppresspragmas.
NOTES

3 Animplementation may support asimilar On parameter on pragma Unsuppress (see 11.5).

1 The Class Attribute of Untagged Incomplete Types

Insert new clause: [A195-00326-01]

122

For the first subtype S of atype T declared by anincomplete_type_declaration that is not tagged, the
following attribute is defined:

SClass
Denotes the first subtype of the incomplete class-wide type rooted at T. The completion of T shall
declare atagged type. Such an attribute reference shall occur in the same library unit asthe
incomplete_type_declaration.

