
Information technology —Programming languages —
Ada

AMENDMENT 1 (Draft 3)

Technologies de l'information —Langages de programmation — Ada

AMENDEMENT 1

Amendment 1 to International Standard ISO/IEC 8652:1995 was prepared by AXE Consultants.

© 2002, AXE Consultants. All Rights Reserved.

This document may be copied, in whole or in part, in any form or by any means, as is, or with alterations,
provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy. Compiled copies of standard library units and examples need not contain this
copyright notice so long as the notice is included in all copies of the source code and documentation. Any
other use or distribution of this document is prohibited without the prior express permission of AXE.

ISO/IEC 8652:1995/WD.1:2002

2

Introduction

International Standard ISO/IEC 8652:1995 defines the Ada programming language.

This amendment modifies Ada by making changes and additions that improve:

• The safety of applications written in Ada;

• The portability of applications written in Ada;

• Interoperability with other languages and systems; and

• Accessibility and ease of transition from idioms in other programming and modeling languages.

This amendment incorporates the following major additions to the International Standard:

• Type stubs to allow mutually dependent types (see clause 3.10.1);

• File directory and name management functions (see clause A.16);

• The Ravenscar profile to provide a simplified tasking system for high-integrity systems (see clause D.13);

• A mechanism for writing C unions to make interfaces with C systems easier (see clause B.3.3); and

• Control of overriding to eliminate errors (see clause 8.3).

This Amendment is organized by sections corresponding to those in the International Standard. These sections
include wording changes and additions to the International Standard. Clause and subclause headings are given for
each clause that contains a wording change. Clauses and subclauses that do not contain any change or addition
are omitted.

For each change, an anchor paragraph from the International Standard (as corrected by Technical Corrigendum 1)
is given. New or revised text and instructions are given with each change. The anchor paragraph can be replaced or
deleted, or text can be inserted before or after it. When a heading immediately precedes the anchor paragraph, any
text inserted before the paragraph is intended to appear under the heading.

Typographical conventions:

Instructions about the text changes are in this font. The actual text changes are in the same fonts as the
International Standard - this font for text, this font for syntax, and this font for Ada source code.

Disclaimer:

This document is a draft of a possible amendment to Ada 95 (International Standard ISO/IEC
8652:1995). This draft contains only proposals substantially approved by the ISO/IEC JTC 1/SC
22/WG 9 Ada Rapporteur Group (ARG). Many other important proposals are under consideration
by the ARG. Neither the ARG nor any other group has determined which, if any, of these
proposals will be included in the amendment. Any proposal may be substantially changed or
withdrawn before this document begins standardization, and other proposals may be added.
This document is not an official publication or work product of the ARG.

ISO/IEC 8652:1995/WD.1:2002

3

Section 1: General

No changes in this section.

ISO/IEC 8652:1995/WD.1:2002

4

Section 2: Lexical Elements

2.9 Reserved Words

Replace paragraph 2: [AI95-00284-01]

The following are the reserved words (ignoring upper/lower case distinctions):

by:

The following are the keywords (ignoring upper/lower case distinctions):

Replace paragraph 3: [AI95-00284-01]

NOTES

6 The reserved words appear in lower case boldface in this International Standard, except when used in the
designator of an attribute (see 4.1.4). Lower case boldface is also used for a reserved word in a string_literal
used as an operator_symbol. This is merely a convention — programs may be written in whatever typeface is
desired and available.

by:

Keywords are categorized into reserved keywords and nonreserved keywords. <Empty> are the nonreserved
keywords. All other keywords are reserved.

Reserved keywords are also referred to as reserved words in other parts of this International Standard.

NOTES

6 Nonreserved keywords can be used as identifiers.

7 The keywords appear in lower case boldface in this International Standard, except when used in the
designator of an attribute (see 4.1.4). Lower case boldface is also used for a keyword in a string_literal used as
an operator_symbol. This is merely a convention — programs may be written in whatever typeface is desired
and available.

ISO/IEC 8652:1995/WD.1:2002

5

Section 3: Declarations and Types

3.9.2 Dispatching Operations of Tagged Types

Replace paragraph 17: [AI95-00196-01]

If all of the controlling operands are tag-indeterminate, then:

by:

If all of the controlling operands (if any) are tag-indeterminate, then:

Insert after paragraph 18: [AI95-00196-01]

• If the call has a controlling result and is itself a (possibly parenthesized or qualified) controlling
operand of an enclosing call on a dispatching operation of type T, then its controlling tag value is
determined by the controlling tag value of this enclosing call;

the new paragraph:

• If the call has a controlling result and is the (possibly parenthesized or qualified) expression of an
assignment statement whose target is of a class-wide type, then its controlling tag value is determined
by the target;

3.10 Access Types

Replace paragraph 9: [AI95-00225-01]

A view of an object is defined to be aliased if it is defined by an object_declaration or component_definition
with the reserved word aliased, or by a renaming of an aliased view. In addition, the dereference of an access-
to-object value denotes an aliased view, as does a view conversion (see 4.6) of an aliased view. Finally, the
current instance of a limited type, and a formal parameter or generic formal object of a tagged type are defined
to be aliased. Aliased views are the ones that can be designated by an access value. If the view defined by an
object_declaration is aliased, and the type of the object has discriminants, then the object is constrained; if its
nominal subtype is unconstrained, then the object is constrained by its initial value. Similarly, if the object
created by an allocator has discriminants, the object is constrained, either by the designated subtype, or by its
initial value.

by:

A view of an object is defined to be aliased if it is defined by an object_declaration or component_definition
with the reserved word aliased, or by a renaming of an aliased view. In addition, the dereference of an access-
to-object value denotes an aliased view, as does a view conversion (see 4.6) of an aliased view. A current
instance of a limited tagged type, a protected type, a task type, or a type that has the reserved word limited in
its full definition is also defined to be aliased. Finally, a formal parameter or generic formal object of a tagged
type is defined to be aliased. Aliased views are the ones that can be designated by an access value. If the view
defined by an object_declaration is aliased, and the type of the object has discriminants, then the object is
constrained; if its nominal subtype is unconstrained, then the object is constrained by its initial value.
Similarly, if the object created by an allocator has discriminants, the object is constrained, either by the
designated subtype, or by its initial value.

3.10.1 Incomplete Type Declarations

Replace paragraph 2: [AI95-00217-04]

incomplete_type_declaration ::= type defining_identifier [discriminant_part];

ISO/IEC 8652:1995/WD.1:2002

6

by:

incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged];

 | type_stub

type_stub ::= type defining_identifier [discriminant_part] is [tagged]

 separate in package_specifier;

package_specifier ::= identifier | package_specifier . identifier

Replace paragraph 3: [AI95-00217-04]

An incomplete_type_declaration requires a completion, which shall be a full_type_declaration. If the
incomplete_type_declaration occurs immediately within either the visible part of a package_specification or
a declarative_part, then the full_type_declaration shall occur later and immediately within this visible part or
declarative_part. If the incomplete_type_declaration occurs immediately within the private part of a given
package_specification, then the full_type_declaration shall occur later and immediately within either the
private part itself, or the declarative_part of the corresponding package_body.

by:

An incomplete_type_declaration other than a type_stub requires a completion, which shall be a
full_type_declaration. If the incomplete_type_declaration occurs immediately within either the visible part of
a package_specification or a declarative_part, then the full_type_declaration shall occur later and
immediately within this visible part or declarative_part. If the incomplete_type_declaration occurs
immediately within the private part of a given package_specification, then the full_type_declaration shall
occur later and immediately within either the private part itself, or the declarative_part of the corresponding
package_body.

A type_stub includes a package_specifier which specifies the full expanded name of the package in which its
completion is expected to occur. Certain uses (see below) of a name that denotes the type_stub or a value of
an access type that designates the type_stub, require that the completion exist. In these cases, the completion
shall occur in the visible part of the specified package, and be a type_declaration other than an
incomplete_type_declaration; the package_specifier shall be the full expanded name of this package
(starting with a root library unit, and using no renaming declarations), and the package shall be a library
package.

Replace paragraph 4: [AI95-00217-04]

If an incomplete_type_declaration has a known_discriminant_part, then a full_type_declaration that
completes it shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1). If an
incomplete_type_declaration has no discriminant_part (or an unknown_discriminant_part), then a
corresponding full_type_declaration is nevertheless allowed to have discriminants, either explicitly, or
inherited via derivation.

by:

If an incomplete_type_declaration includes the keyword tagged, then a type_declaration that completes it
shall declare a tagged type. If an incomplete_type_declaration has a known_discriminant_part, then a
type_declaration that completes it shall have a fully conforming (explicit) known_discriminant_part (see
6.3.1). If an incomplete_type_declaration has no discriminant_part (or an unknown_discriminant_part),
then a corresponding type_declaration is nevertheless allowed to have discriminants, either explicitly, or
inherited via derivation. In the case of a type_stub, these checks are performed no later than when a construct
requires the completion to be available.

Replace paragraph 5: [AI95-00217-04]

The only allowed uses of a name that denotes an incomplete_type_declaration are as follows:

by:

A name that denotes an incomplete_type_declaration may be used as follows:

ISO/IEC 8652:1995/WD.1:2002

7

Replace paragraph 8: [AI95-00217-04]

• as the subtype_mark in an access_definition;

by:

• as the subtype_mark in an access_definition.

A name that denotes an incomplete_type_declaration that includes the keyword tagged may also be used as
follows:

• as the subtype_mark defining the subtype of a parameter in a formal_part;

Replace paragraph 9: [AI95-00217-04]

• as the prefix of an attribute_reference whose attribute_designator is Class; such an
attribute_reference is similarly restricted to the uses allowed here; when used in this way, the
corresponding full_type_declaration shall declare a tagged type, and the attribute_reference shall
occur in the same library unit as the incomplete_type_declaration.

by:

• as the prefix of an attribute_reference whose attribute_designator is Class; such an
attribute_reference is restricted to the uses allowed above.

If a name that denotes an incomplete_type_declaration is used in other contexts, the
incomplete_type_declaration shall be a type_stub, and the completion shall be available at the place of use,
as defined by either of the following conditions:

• the place of use is within the immediate scope of the completion of the type_stub; or

• the place of use is within the scope of a with_clause that mentions the package specified by the
package_specifier of the type_stub.

The completion of an incomplete_type_declaration that is not a type_stub is defined to be available
throughout the (extended) scope of the completion. The completion of an incomplete class-wide type is
available wherever the completion of the root of the class is available.

Replace paragraph 10: [AI95-00217-04]

A dereference (whether implicit or explicit -- see 4.1) shall not be of an incomplete type.

by:

A dereference (implicit or explicit -- see 4.1) of a value of an access type whose designated type D is incomplete
is allowed only in the following contexts:

• in a place where the completion of D is available (see above);

• in a context where the expected type is E and

• E covers the completion of D,

• E is tagged and covers D,

• E covers D'Class or its completion, or

• E'Class covers D or its completion;

• as the target of an assignment_statement where the type of the value being assigned is V, and V or
V'Class is the completion of D.

In these contexts, the incomplete type is defined to be the same type as completion, and its first subtype
statically matches the first subtype of its completion.

ISO/IEC 8652:1995/WD.1:2002

8

Replace paragraph 11: [AI95-00217-04]

An incomplete_type_declaration declares an incomplete type and its first subtype; the first subtype is
unconstrained if a known_discriminant_part appears.

by:

An incomplete_type_declaration declares an incomplete type and its first subtype; the incomplete type is
tagged if the keyword tagged appears; the first subtype is unconstrained if a known_discriminant_part
appears. Two type_stubs are defined to be the same type if they have the same defining identifier, the same
sequence of identifiers in their package_specifiers, and their first subtypes match statically.

3.10.2 Operations of Access Types

Replace paragraph 2: [AI95-00235-01]

For an attribute_reference with attribute_designator Access (or Unchecked_Access -- see 13.10), the
expected type shall be a single access type; the prefix of such an attribute_reference is never interpreted as
an implicit_dereference. If the expected type is an access-to-subprogram type, then the expected profile of the
prefix is the designated profile of the access type.

by:

For an attribute_reference with attribute_designator Access (or Unchecked_Access -- see 13.10), the
expected type shall be a single access type A such that:

• A is an access-to-object type with designated type D and the type of the prefix is D'Class or is
covered by D, or

• A is an access-to-subprogram type whose designated profile is type conformant with that of the
prefix.

The prefix of such an attribute_reference is never interpreted as an implicit_dereference or parameterless
function_call (see 4.1.4). The designated type or profile of the expected type of the attribute_reference is the
expected type or profile for the prefix.

Replace paragraph 32: [AI95-00229-01]

P'Access yields an access value that designates the subprogram denoted by P. The type of P'Access
is an access-to-subprogram type (S), as determined by the expected type. The accessibility level of P
shall not be statically deeper than that of S. In addition to the places where Legality Rules normally
apply (see 12.3), this rule applies also in the private part of an instance of a generic unit. The profile of
P shall be subtype-conformant with the designated profile of S, and shall not be Intrinsic. If the
subprogram denoted by P is declared within a generic body, S shall be declared within the generic
body.

by:

P'Access yields an access value that designates the subprogram denoted by P. The type of P'Access
is an access-to-subprogram type (S), as determined by the expected type. The accessibility level of P
shall not be statically deeper than that of S. In addition to the places where Legality Rules normally
apply (see 12.3), this rule applies also in the private part of an instance of a generic unit. The profile of
P shall be subtype-conformant with the designated profile of S, and shall not be Intrinsic. If the
subprogram denoted by P is declared within a generic unit, and the expression P'Access occurs within
the body of that generic unit or within the body of a generic unit declared within the declarative
region of the generic, then the ultimate ancestor of S shall be a non-formal type declared within the
generic unit.

ISO/IEC 8652:1995/WD.1:2002

9

Section 4: Names and Expressions

4.6 Type Conversions

Replace paragraph 9: [AI95-00246-01]

If the target type is an array type, then the operand type shall be an array type. Further:

by:

If the target type is an array type, then the operand type shall be an array type. The target type and operation
type shall have a common ancestor, or:

Replace paragraph 12: [AI95-00246-01]

• The component subtypes shall statically match; and

by:

• The component subtypes shall statically match;

Replace paragraph 12.1: [AI95-00246-01]

• In a view conversion, the target type and the operand type shall both or neither have aliased
components.

by:

• Neither the target type nor the operand type shall be limited; and

• In a view conversion: the target type and the operand type shall both or neither have aliased
components; and the operand type shall not have a tagged, private, or volatile subcomponent.

4.9 Static Expressions and Static Subtypes

Replace paragraph 26: [AI95-00263-01]

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose type is not a descendant of a formal scalar type, or a constrained scalar
subtype formed by imposing a compatible static constraint on a static scalar subtype. A static string subtype
is an unconstrained string subtype whose index subtype and component subtype are static (and whose type is
not a descendant of a formal array type), or a constrained string subtype formed by imposing a compatible
static constraint on a static string subtype. In any case, the subtype of a generic formal object of mode in out,
and the result subtype of a generic formal function, are not static.

by:

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose type is not a descendant of a formal type, or a constrained scalar subtype
formed by imposing a compatible static constraint on a static scalar subtype. A static string subtype is an
unconstrained string subtype whose index subtype and component subtype are static, or a constrained string
subtype formed by imposing a compatible static constraint on a static string subtype. In any case, the subtype
of a generic formal object of mode in out, and the result subtype of a generic formal function, are not static.

Replace paragraph 38: [AI95-00268-01]

For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal scalar type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
value is exactly half-way between two machine numbers, any rounding shall be performed away from zero. If

ISO/IEC 8652:1995/WD.1:2002

10

the expected type is a descendant of a formal scalar type, no special rounding or truncating is required - normal
accuracy rules apply (see Annex G).

by:

For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal scalar type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
value is exactly half-way between two machine numbers, the rounding performed is implementation-defined. If
the expected type is a descendant of a formal scalar type, no special rounding or truncating is required - normal
accuracy rules apply (see Annex G).

Implementation Advice

For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal scalar type, the rounding should be the same as the default rounding for the target
system.

ISO/IEC 8652:1995/WD.1:2002

11

Section 5: Statements

No changes in this section.

ISO/IEC 8652:1995/WD.1:2002

12

Section 6: Subprograms

No changes in this section.

ISO/IEC 8652:1995/WD.1:2002

13

Section 7: Packages

7.6 User-Defined Assignment and Finalization

Replace paragraph 5: [AI95-00161-01]

 type Controlled is abstract tagged private;

by:

 type Controlled is abstract tagged private;
 pragma Preelaborable_Initialization(Controlled);

Replace paragraph 7: [AI95-00161-01]

 type Limited_Controlled is abstract tagged limited private;

by:

 type Limited_Controlled is abstract tagged limited private;
 pragma Preelaborable_Initialization(Limited_Controlled);

Replace paragraph 21: [AI95-00147-01]

• For an aggregate or function call whose value is assigned into a target object, the implementation
need not create a separate anonymous object if it can safely create the value of the aggregate or
function call directly in the target object. Similarly, for an assignment_statement , the implementation
need not create an anonymous object if the value being assigned is the result of evaluating a name
denoting an object (the source object) whose storage cannot overlap with the target. If the source
object might overlap with the target object, then the implementation can avoid the need for an
intermediary anonymous object by exercising one of the above permissions and perform the
assignment one component at a time (for an overlapping array assignment), or not at all (for an
assignment where the target and the source of the assignment are the same object). Even if an
anonymous object is created, the implementation may move its value to the target object as part of the
assignment without re-adjusting so long as the anonymous object has no aliased subcomponents.

by:

• For an aggregate or function call whose value is assigned into a target object, the implementation
need not create a separate anonymous object if it can safely create the value of the aggregate or
function call directly in the target object. Similarly, for an assignment_statement , the implementation
need not create an anonymous object if the value being assigned is the result of evaluating a name
denoting an object (the source object) whose storage cannot overlap with the target. If the source
object might overlap with the target object, then the implementation can avoid the need for an
intermediary anonymous object by exercising one of the above permissions and perform the
assignment one component at a time (for an overlapping array assignment), or not at all (for an
assignment where the target and the source of the assignment are the same object).

Furthermore, an implementation is permitted to omit implicit Initialize, Adjust, and Finalize calls and associated
assignment operations on an object of nonlimited controlled type provided that:

• any omitted Initialize call is not a call on a user-defined Initialize procedure, and

• any usage of the value of the object after the implicit Initialize or Adjust call and before any
subsequent Finalize call on the object does not change the external effect of the program, and

• after the omission of such calls and operations, any execution of the program that executes an
Initialize or Adjust call on an object or initializes an object by an aggregate will also later execute a
Finalize call on the object and will always do so prior to assigning a new value to the object, and

• the assignment operations associated with omitted Adjust calls are also omitted.

ISO/IEC 8652:1995/WD.1:2002

14

This permission applies to Adjust and Finalize calls even if the implicit calls have additional external effects.

ISO/IEC 8652:1995/WD.1:2002

15

Section 8: Visibility Rules

8.3 Visibility

Insert after paragraph 23: [AI95-00195-01]

• A declaration is also hidden from direct visibility where hidden from all visibility.

the new paragraph:

An attribute_definition_clause is visible at a place if a declaration at the point of the
attribute_definition_clause would be immediately visible at the place.

Insert after paragraph 26: [AI95-00218-01]

A non-overridable declaration is illegal if there is a homograph occurring immediately within the same
declarative region that is visible at the place of the declaration, and is not hidden from all visibility by the non-
overridable declaration. In addition, a type extension is illegal if somewhere within its immediate scope it has
two visible components with the same name. Similarly, the context_clause for a subunit is illegal if it mentions
(in a with_clause) some library unit, and there is a homograph of the library unit that is visible at the place of
the corresponding stub, and the homograph and the mentioned library unit are both declared immediately
within the same declarative region. These rules also apply to dispatching operations declared in the visible part
of an instance of a generic unit. However, they do not apply to other overloadable declarations in an instance;
such declarations may have type conformant profiles in the instance, so long as the corresponding
declarations in the generic were not type conformant.

the new paragraphs:

Syntax

The form of a pragma Explicit_Overriding is as follows:

 pragma Explicit_Overriding;

The form of a pragma Overriding is as follows:

 pragma Overriding [(designator)];

The form of a pragma Optional_Overriding is as follows:

 pragma Optional_Overriding [(designator)];

Pragma Explicit_Overriding is a configuration pragma.

Legality Rules

Pragmas Overriding and Optional_Overriding shall immediately follow (except for other pragmas) the explicit
declaration of a primitive operation. The optional designator of a pragma Overriding or Optional_Overriding
shall be the same as the designator of the operation which it follows. Only one of the pragmas Overriding and
Optional_Overriding shall be given for a single primitive operation.

A primitive operation to which pragma Overriding applies shall override another operation. In addition to the
places where Legality Rules normally apply, this rule also applies in the private part of an instance of a generic
unit.

The configuration pragma Explicit_Overriding applies to all declarations within compilation units to which it
applies, except that in an instance of a generic unit, Explicit_Overriding applies if and only if it applies to the
generic unit. At a place where a pragma Explicit_Overriding applies, an explicit subprogram_declaration to
which neither pragma Overriding nor Optional_Overriding applies shall not be an overriding declaration. In
addition to the places where Legality Rules normally apply, this rule also applies in the private part of an
instance of a generic unit.

ISO/IEC 8652:1995/WD.1:2002

16

Section 9: Tasks and Synchronization

9.6 Delay Statements, Duration, and Time

Replace paragraph 10: [AI95-00161-01]

package Ada.Calendar is
 type Time is private;

by:

package Ada.Calendar is
 type Time is private;
 pragma Preelaborable_Initialization(Time);

ISO/IEC 8652:1995/WD.1:2002

17

Section 10: Program Structure and Compilation Issues

10.1.2 Context Clauses - With Clauses

Replace paragraph 4: [AI95-00262-01]

with_clause ::= with library_unit_name {, library_unit_name}

by:

with_clause ::= [private] with library_unit_name {, library_unit_name}

Replace paragraph 8: [AI95-00220-01; AI95-00262-01]

If a with_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be either the declaration of a private descendant of that library unit or the body or a
subunit of a (public or private) descendant of that library unit.

by:

If a with_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be one of:

• the declaration, body, or subunit of a private descendant of that library unit;

• the body or subunit of a public descendant of that library unit, but not a subprogram body acting as a
subprogram declaration (see 10.1.4); or

• the declaration of a public descendant of that library unit, and the with_clause shall include the
keyword private.

A name denoting a library item that is visible only due to being mentioned in with_clauses that include the
keyword private shall appear only within

• a private part,

• a body, but not within the subprogram_specification of a library subprogram body,

• a private descendant of the unit on which one of these with_clauses appear, or

• a pragma within a context clause.

10.1.3 Subunits of Compilation Units

Replace paragraph 8: [AI95-00243-01]

The parent body of a subunit is the body of the program unit denoted by its parent_unit_name. The term
subunit is used to refer to a subunit and also to the proper_body of a subunit.

by:

The parent body of a subunit is the body of the program unit denoted by its parent_unit_name. The term
subunit is used to refer to a subunit and also to the proper_body of a subunit. A subunit of a program unit
includes subunits declared directly in the program unit as well as any subunits declared in those subunits
(recursively).

10.1.5 Pragmas and Program Units

Replace paragraph 9: [AI95-00212-01]

An implementation may place restrictions on configuration pragmas, so long as it allows them when the
environment contains no library_items other than those of the predefined environment.

ISO/IEC 8652:1995/WD.1:2002

18

by:

An implementation may require that configuration pragmas that select partition-wide or system-wide options
be compiled when the environment contains no library_items other than those of the predefined environment.
In this case, the implementation must still accept configuration pragmas in individual compilations that confirm
the initially selected partition-wide or system-wide options.

10.2.1 Elaboration Control

Insert after paragraph 4: [AI95-00161-01]

A pragma Preelaborate is a library unit pragma.

the new paragraphs:

The form of pragma Preelaborable_Initialization is as follows:

 pragma Preelaborable_Initialization (direct_name);

Replace paragraph 9: [AI95-00161-01]

• The creation of a default-initialized object (including a component) of a descendant of a private type,
private extension, controlled type, task type, or protected type with entry_declarations; similarly the
evaluation of an extension_aggregate with an ancestor subtype_mark denoting a subtype of such
a type.

by:

• The creation of an object (including a component) of a type which does not have preelaborable
initialization. Similarly the evaluation of an extension_aggregate with an ancestor subtype_mark
denoting a subtype of such a type.

Insert after paragraph 11: [AI95-00161-01]

If a pragma Preelaborate (or pragma Pure -- see below) applies to a library unit, then it is preelaborated. If a
library unit is preelaborated, then its declaration, if any, and body, if any, are elaborated prior to all non-
preelaborated library_items of the partition. The declaration and body of a preelaborated library unit, and all
subunits that are elaborated as part of elaborating the library unit, shall be preelaborable. In addition to the
places where Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance of
a generic unit. In addition, all compilation units of a preelaborated library unit shall depend semantically only
on compilation units of other preelaborated library units.

the new paragraphs:

The following rules specify which entities have preelaborable initialization:

• The partial view of a private type or private extension, a protected type without entry_declarations, a
generic formal private type, or a generic formal derived type, have preelaborable initialization if and
only if the pragma Preelaborable_Initialization has been applied to them.

• A component (including a discriminant) of a record or protected type has preelaborable initialization if
its declaration includes a default_expression whose execution does not perform any actions
prohibited in preelaborable constructs as described above, or if its declaration does not include a
default expression and its type has preelaborable initialization.

• A derived type has preelaborable initialization if its parent type has preelaborable initialization and (in
the case of a derived record or protected type) if the non-inherited components all have preelaborable
initialization. Moreover, a user-defined controlled type with an overridding Initialize procedure does
not have preelaborable initialization.

• A view of a type has preelaborable initialization if it is an elementary type, an array type whose
component type has preelaborable initialization, or a record type whose components all have
preelaborable initialization.

ISO/IEC 8652:1995/WD.1:2002

19

A pragma Preelaborable_Initialization specifies that a type has preelaborable initialization. This pragma shall
appear in the visible part of a package or generic package.

If the pragma appears in the first list of declarative_items of a package_specification, then the direct_name
shall denote the first subtype of a private type, private extension, or protected type without
entry_declarations, and the type shall be declared within the same package as the pragma. If the pragma is
applied to a private type or a private extension, the full view of the type shall have preelaborable initialization. If
the pragma is applied to a protected type, each component of the protected type shall have preelaborable
initialization. In addition to the places where Legality Rules normally apply, these rules apply also in the private
part of an instance of a generic unit.

If the pragma appears in a generic_formal_part, then the direct_name shall denote a generic formal private
type or a generic formal derived type declared in the same generic_formal_part as the pragma. In a
generic_instantiation the corresponding actual type shall have preelaborable initialization.

ISO/IEC 8652:1995/WD.1:2002

20

Section 11: Exceptions

11.4.1 The Package Exceptions

Replace paragraph 14: [AI95-00241-01]

Raise_Exception and Reraise_Occurrence have no effect in the case of Null_Id or Null_Occurrence.
Exception_Message, Exception_Identity, Exception_Name, and Exception_Information raise Constraint_Error
for a Null_Id or Null_Occurrence.

by:

Raise_Exception and Reraise_Occurrence have no effect in the case of Null_Id or Null_Occurrence.
Exception_Name raises Constraint_Error for a Null_Id. Exception_Message, Exception_Name, and
Exception_Information raise Constraint_Error for a Null_Occurrence. Exception_Identity applied to
Null_Occurrence returns Null_Id.

ISO/IEC 8652:1995/WD.1:2002

21

Section 12: Generic Units

12.4 Formal Objects

Replace paragraph 9: [AI95-00255-01]

A formal_object_declaration declares a generic formal object. The default mode is in. For a formal object of
mode in, the nominal subtype is the one denoted by the subtype_mark in the declaration of the formal. For a
formal object of mode in out, its type is determined by the subtype_mark in the declaration; its nominal
subtype is nonstatic, even if the subtype_mark denotes a static subtype.

by:

A formal_object_declaration declares a generic formal object. The default mode is in. For a formal object of
mode in, the nominal subtype is the one denoted by the subtype_mark in the declaration of the formal. For a
formal object of mode in out, its type is determined by the subtype_mark in the declaration; its nominal
subtype is nonstatic, even if the subtype_mark denotes a static subtype; for a composite type, its nominal
subtype is unconstrained if the first subtype of the type is unconstrained, even if the subtype_mark denotes
a constrained subtype.

12.5 Formal Types

Replace paragraph 8: [AI95-00233-01]

The formal type also belongs to each class that contains the determined class. The primitive subprograms of
the type are as for any type in the determined class. For a formal type other than a formal derived type, these
are the predefined operators of the type. For an elementary formal type, the predefined operators are implicitly
declared immediately after the declaration of the formal type. For a composite formal type, the predefined
operators are implicitly declared either immediately after the declaration of the formal type, or later in its
immediate scope according to the rules of 7.3.1. In an instance, the copy of such an implicit declaration declares
a view of the predefined operator of the actual type, even if this operator has been overridden for the actual
type. The rules specific to formal derived types are given in 12.5.1.

by:

The formal type also belongs to each class that contains the determined class. The primitive subprograms of
the type are as for any type in the determined class. For a formal type other than a formal derived type, these
are the predefined operators of the type. For an elementary formal type, the predefined operators are implicitly
declared immediately after the declaration of the formal type. For a composite formal type, the predefined
operators are implicitly declared either immediately after the declaration of the formal type, or later immediately
within the declarative region in which the type is declared according to the rules of 7.3.1. In an instance, the
copy of such an implicit declaration declares a view of the predefined operator of the actual type, even if this
operator has been overridden for the actual type. The rules specific to formal derived types are given in 12.5.1.

12.5.1 Formal Private and Derived Types

Replace paragraph 20: [AI95-00233-01]

If the ancestor type is a composite type that is not an array type, the formal type inherits components from the
ancestor type (including discriminants if a new discriminant_part is not specified), as for a derived type
defined by a derived_type_definition (see 3.4).

by:

If the ancestor type is a composite type that is not an array type, the formal type inherits components from the
ancestor type (including discriminants if a new discriminant_part is not specified), as for a derived type
defined by a derived_type_definition (see 3.4 and 7.3.1).

ISO/IEC 8652:1995/WD.1:2002

22

Replace paragraph 21: [AI95-00233-01]

For a formal derived type, the predefined operators and inherited user-defined subprograms are determined by
the ancestor type, and are implicitly declared at the earliest place, if any, within the immediate scope of the
formal type, where the corresponding primitive subprogram of the ancestor is visible (see 7.3.1). In an instance,
the copy of such an implicit declaration declares a view of the corresponding primitive subprogram of the
ancestor of the formal derived type, even if this primitive has been overridden for the actual type. When the
ancestor of the formal derived type is itself a formal type, the copy of the implicit declaration declares a view of
the corresponding copied operation of the ancestor. In the case of a formal private extension, however, the tag
of the formal type is that of the actual type, so if the tag in a call is statically determined to be that of the formal
type, the body executed will be that corresponding to the actual type.

by:

For a formal derived type, the predefined operators and inherited user-defined subprograms are determined by
the ancestor type, and are implicitly declared at the earliest place, if any, immediately within the declarative
region in which the formal type is declared, where the corresponding primitive subprogram of the ancestor is
visible (see 7.3.1). In an instance, the copy of such an implicit declaration declares a view of the corresponding
primitive subprogram of the ancestor of the formal derived type, even if this primitive has been overridden for
the actual type. When the ancestor of the formal derived type is itself a formal type, the copy of the implicit
declaration declares a view of the corresponding copied operation of the ancestor. In the case of a formal
private extension, however, the tag of the formal type is that of the actual type, so if the tag in a call is statically
determined to be that of the formal type, the body executed will be that corresponding to the actual type.

ISO/IEC 8652:1995/WD.1:2002

23

Section 13: Representation Issues

13.3 Representation Attributes

Delete paragraph 26: [AI95-00247-01]

If an Alignment is specified for a composite subtype or object, this Alignment shall be equal to the
least common multiple of any specified Alignments of the subcomponent subtypes, or an integer
multiple thereof.

13.7 The Package System

Replace paragraph 12: [AI95-00161-01]

 type Address is implementation-defined;
 Null_Address : constant Address;

by:

 type Address is implementation-defined;
 pragma Preelaborable_Initialization(Address);
 Null_Address : constant Address;

In paragraph 15 replace: [AI95-00221-01]

 Default_Bit_Order : constant Bit_Order;

by:

 Default_Bit_Order : constant Bit_Order := implementation-defined;

Replace paragraph 35: [AI95-00221-01]

See 13.5.3 for an explanation of Bit_Order and Default_Bit_Order.

by:

See 13.5.3 for an explanation of Bit_Order and Default_Bit_Order. Default_Bit_Order shall be a static constant.

13.11 Storage Management

Replace paragraph 6: [AI95-00161-01]

 type Root_Storage_Pool is
 abstract new Ada.Controlled.Limited_Controlled with private;

by:

 type Root_Storage_Pool is
 abstract new Ada.Controlled.Limited_Controlled with private;
 pragma Preelaborable_Initialization(Root_Storage_Pool);

13.12 Pragma Restrictions

Insert after paragraph 7: [AI95-00257-01]

The set of restrictions is implementation defined.

ISO/IEC 8652:1995/WD.1:2002

24

the new paragraphs:

The following restriction_identifiers are language-defined (additional restrictions are defined in the Specialized
Needs Annexes):

No_Implementation_Attributes
There are no implementation-defined attributes. This restriction applies only to the current
compilation or environment, not the entire partition.

No_Implementation_Pragmas
There are no implementation-defined pragmas or pragma arguments. This restriction applies only to
the current compilation or environment, not the entire partition.

13.13.1 The Package Streams

Replace paragraph 3: [AI95-00161-01]

 type Root_Stream_Type is abstract tagged limited private;

by:

 type Root_Stream_Type is abstract tagged limited private;
 pragma Preelaborable_Initialization(Root_Stream_Type);

Replace paragraph 8: [AI95-00227-01]

The Read operation transfers Item'Length stream elements from the specified stream to fill the array Item. The
index of the last stream element transferred is returned in Last. Last is less than Item'Last only if the end of the
stream is reached.

by:

The Read operation transfers stream elements from the specified stream to fill the array Item. Elements are
transferred until Item'Length elements have been transferred, or until the end of the stream is reached. If any
elements are transferred, the index of the last stream element transferred is returned in Last. Otherwise,
Item'First - 1 is returned in Last. Last is less than Item'Last only if the end of the stream is reached.

Insert after paragraph 10: [AI95-00227-01]

See A.12.1, ``The Package Streams.Stream_IO'' for an example of extending type Root_Stream_Type.

the new paragraph:

If the end of stream has been reached, and Item'First is Stream_Element_Offset'First, Read will raise
Constraint_Error.

13.13.2 Stream-Oriented Attributes

Replace paragraph 9: [AI95-00195-01]

For elementary types, the representation in terms of stream elements is implementation defined. For composite
types, the Write or Read attribute for each component is called in canonical order, which is last dimension
varying fastest for an array, and positional aggregate order for a record. Bounds are not included in the stream
if T is an array type. If T is a discriminated type, discriminants are included only if they have defaults. If T is a
tagged type, the tag is not included. For type extensions, the Write or Read attribute for the parent type is
called, followed by the Write or Read attribute of each component of the extension part, in canonical order. For
a limited type extension, if the attribute of any ancestor type of T has been directly specified and the attribute
of any ancestor type of the type of any of the extension components which are of a limited type has not been
specified, the attribute of T shall be directly specified.

ISO/IEC 8652:1995/WD.1:2002

25

by:

For elementary types, the representation in terms of stream elements is implementation defined. For composite
types, the Write or Read attribute for each component is called in canonical order, which is last dimension
varying fastest for an array, and positional aggregate order for a record. Bounds are not included in the stream
if T is an array type. If T is a discriminated type, discriminants are included only if they have defaults. If T is a
tagged type, the tag is not included. For type extensions, the Write or Read attribute for the parent type is
called, followed by the Write or Read attribute of each component of the extension part, in canonical order. For
a limited type extension, if the attribute of the parent type of T is available anywhere within the immediate
scope of T, and the attribute of the type of any of the extension components which are of a limited type, L, is
not available at the freezing point of T, then the attribute of T shall be directly specified.

Replace paragraph 27: [AI95-00195-01]

S'Output then calls S'Write to write the value of Item to the stream. S'Input then creates an object (with the
bounds or discriminants, if any, taken from the stream), initializes it with S'Read, and returns the value of the
object.

by:

S'Output then calls S'Write to write the value of Item to the stream. S'Input then creates an object (with the
bounds or discriminants, if any, taken from the stream), passes it to S'Read, and returns the value of the object.
Normal default initialization and finalization take place for this object (see 3.3.1, 7.6, 7.6.1).

Insert after paragraph 28: [AI95-00260-01]

For every subtype S'Class of a class-wide type T'Class:

the new paragraphs:

S'Class'Tag_Write

S'Class'Tag_Write denotes a procedure with the following specification:

 procedure S'Class'Tag_Write (
 Stream : access Streams.Root_Stream_Type'Class;
 Tag : Ada.Tags.Tag);

S'Class'Tag_Write writes the value of Tag to Stream.

S'Class'Tag_Read

S'Class'Tag_Read denotes a function with the following specification:

 function S'Class'Tag_Write (
 Stream : access Streams.Root_Stream_Type'Class)
 return Ada.Tags.Tag;

S'Class'Tag_Read reads a tag from Stream, and returns its value.

The default implementations of the Tag_Write and Tag_Read operate as follows:

• If T is a derived type with parent type P, the default implementation of Tag_Write calls
P'Class'Tag_Write, and the default implementation of Tag_Read calls P'Class'Tag_Read;

• Otherwise, the default implementation of Tag_Write calls String'Output(Stream,
Tags.External_Tag(Tag)) -- see 3.9. The default implementation of Tag_Read returns the value of
Tags.Internal_Tag(String'Input(Stream)).

Replace paragraph 31: [AI95-00260-01]

First writes the external tag of Item to Stream (by calling String'Output(Tags.External_Tag(Item'Tag) -- see 3.9)
and then dispatches to the subprogram denoted by the Output attribute of the specific type identified by the
tag.

ISO/IEC 8652:1995/WD.1:2002

26

by:

First writes the external tag of Item to Stream (by calling S'Tag_Write(Stream, Item'Tag)) and then dispatches
to the subprogram denoted by the Output attribute of the specific type identified by the tag.

Replace paragraph 34: [AI95-00260-01]

First reads the external tag from Stream and determines the corresponding internal tag (by calling
Tags.Internal_Tag(String'Input(Stream)) -- see 3.9) and then dispatches to the subprogram denoted by the
Input attribute of the specific type identified by the internal tag; returns that result.

by:

First reads the external tag from Stream and determines the corresponding internal tag (by calling
S'Tag_Read(Stream)) and then dispatches to the subprogram denoted by the Input attribute of the specific
type identified by the internal tag; converts that result to S'Class and returns it.

Replace paragraph 35: [AI95-00195-01]

In the default implementation of Read and Input for a composite type, for each scalar component that is a
discriminant or whose component_declaration includes a default_expression, a check is made that the value
returned by Read for the component belongs to its subtype. Constraint_Error is raised if this check fails. For
other scalar components, no check is made. For each component that is of an access type, if the
implementation can detect that the value returned by Read for the component is not a value of its subtype,
Constraint_Error is raised. If the value is not a value of its subtype and this error is not detected, the
component has an abnormal value, and erroneous execution can result (see 13.9.1).

by:

In the default implementation of Read and Input for a composite type, for each scalar component that is a
discriminant or whose component_declaration includes a default_expression, a check is made that the value
returned by Read for the component belongs to its subtype. Constraint_Error is raised if this check fails. For
other scalar components, no check is made. For each component that is of an access type, if the
implementation can detect that the value returned by Read for the component is not a value of its subtype,
Constraint_Error is raised. If the value is not a value of its subtype and this error is not detected, the
component has an abnormal value, and erroneous execution can result (see 13.9.1). In the default
implementation of Read for a composite type with defaulted discriminants, if the actual parameter of Read is
constrained, a check is made that the discriminants read from the stream are equal to those of the actual
parameter. Constraint_Error is raised if this check fails.

It is unspecified at which point and in which order these checks are performed. In particular, if Constraint_Error
is raised due to the failure of one of these checks, it is unspecified how many stream elements have been read
from the stream.

Replace paragraph 36: [AI95-00195-01]

The stream-oriented attributes may be specified for any type via an attribute_definition_clause. All nonlimited
types have default implementations for these operations. An attribute_reference for one of these attributes is
illegal if the type is limited, unless the attribute has been specified by an attribute_definition_clause or (for a
type extension) the attribute has been specified for an ancestor type. For an attribute_definition_clause
specifying one of these attributes, the subtype of the Item parameter shall be the base subtype if scalar, and
the first subtype otherwise. The same rule applies to the result of the Input function.

by:

The stream-oriented attributes may be specified for any type via an attribute_definition_clause. The
subprogram name given in such a clause shall not denote an abstract subprogram.

A stream-oriented attribute for a subtype of a specific type T is available at places where one of the following
conditions is true:

• The attribute_designator is Read, Write or Output, and T is nonlimited.

ISO/IEC 8652:1995/WD.1:2002

27

• The attribute_designator is Input, and T is nonlimited and not abstract.

• The attribute_designator is Read (resp. Write) and T is a limited record extension, and the attribute
Read (resp. Write) is available for the parent type of T and for the types of all of the extension
components.

• The attribute_designator is Input (resp. Output), and T is a limited type, and the attribute Read (resp.
Write) is available for T.

• The attribute has been specified via an attribute_definition_clause, and the
attribute_definition_clause is visible.

A stream-oriented attribute for a subtype of a class-wide type T'Class is available at places where one of the
following conditions is true:

• T is nonlimited; or

• The attribute has been specified via an attribute_definition_clause, and the
attribute_definition_clause is visible; or

• where the corresponding attribute of T is available, provided that if T has a partial view, the
corresponding attribute is available at the end of the visible part where T is declared.

An attribute_reference for one of the stream-oriented attributes is illegal unless the attribute is available at the
place of the attribute_reference.

In the parameter_and_result_profiles for the stream-oriented attributes, the subtype of the Item parameter is
the base subtype of T if T is a scalar type, and the first subtype otherwise. The same rule applies to the result
of the Input attribute.

For an attribute_definition_clause specifying one of these attributes, the subtype of the Item parameter shall
be the base subtype if scalar, and the first subtype otherwise. The same rule applies to the result of the Input
function.

Insert after paragraph 36.1: [AI95-00195-01]

For every subtype S of a language-defined nonlimited specific type T, the output generated by S'Output or
S'Write shall be readable by S'Input or S'Read, respectively. This rule applies across partitions if the
implementation conforms to the Distributed Systems Annex.

the new paragraphs:

If Constraint_Error is raised during a call to Read because of failure of one the above checks, the
implementation must ensure that the discriminants of the actual parameter of Read are not modified.

Implementation Permissions

The number of calls performed by the predefined implementation of the stream- oriented attributes on the Read
and Write operations of the stream type is unspecified. An implementation may take advantage of this
permission to perform internal buffering. However, all the calls on the Read and Write operations of the stream
type needed to implement an explicit invocation of a stream-oriented attribute must take place before this
invocation returns. An explicit invocation is one appearing explicitly in the program text, possibly through a
generic instantiation (see 12.3).

Insert after paragraph 38: [AI95-00260-01]

User-specified attributes of S'Class are not inherited by other class-wide types descended from S.

the new paragraph:

User-specified Tag_Read and Tag_Write attributes should raise an exception if presented with a tag value not
in S'Class.

ISO/IEC 8652:1995/WD.1:2002

28

Annex A: Predefined Language Environment

A.4.2 The Package Strings.Maps

Replace paragraph 4: [AI95-00161-01]

 -- Representation for a set of Wide_Character values:
 type Wide_Character_Set is private;

by:

 -- Representation for a set of Wide_Character values:
 type Wide_Character_Set is private;
 pragma Preelaborable_Initialization(Wide_Character_Set);

Replace paragraph 4: [AI95-00161-01]

 -- Representation for a set of character values:
 type Character_Set is private;

by:

 -- Representation for a set of character values:
 type Character_Set is private;
 pragma Preelaborable_Initialization(Character_Set);

Replace paragraph 20: [AI95-00161-01]

 -- Representation for a Wide_Character to Wide_Character mapping:
 type Wide_Character_Mapping is private;

by:

 -- Representation for a Wide_Character to Wide_Character mapping:
 type Wide_Character_Mapping is private;
 pragma Preelaborable_Initialization(Wide_Character_Mapping);

Replace paragraph 20: [AI95-00161-01]

 -- Representation for a character to character mapping:
 type Character_Mapping is private;

by:

 -- Representation for a character to character mapping:
 type Character_Mapping is private;
 pragma Preelaborable_Initialization(Character_Mapping);

A.4.4 Bounded-Length String Handling

Replace paragraph 101: [AI95-00238-01]

Returns the slice at positions Low through High in the string represented by Source; propagates Index_Error if
Low > Length(Source)+1 or High > Length(Source).

by:

Returns the slice at positions Low through High in the string represented by Source; propagates Index_Error if
Low > Length(Source)+1 or High > Length(Source). The bounds of the returned string are Low and High.

ISO/IEC 8652:1995/WD.1:2002

29

A.4.5 Unbounded-Length String Handling

Replace paragraph 4: [AI95-00161-01]

 type Unbounded_String is private;

by:

 type Unbounded_String is private;
 pragma Preelaborable_Initialization(Unbounded_String);

A.5.3 Attributes of Floating Point Types

Insert after paragraph 41: [AI95-00267-01]

The function yields the integral value nearest to X, rounding toward the even integer if X lies exactly
halfway between two integers. A zero result has the sign of X when S'Signed_Zeros is True.

the new paragraphs:

S'Machine_Rounding
S'Machine_Rounding denotes a function with the following specification:

 function S'Machine_Rounding (X : T)
 return T

The function yields the integral value nearest to X. If X lies exactly halfway between two integers, one
of those integers is returned, but which of them is returned is unspecified. A zero result has the sign
of X when S'Signed_Zeros is True. This function provides access to the rounding behavior which is
most efficient on the target processor.

A.8.2 File Management

Replace paragraph 22: [AI95-00248-01]

Returns a string which uniquely identifies the external file currently associated with the given file (and
may thus be used in an Open operation). If an external environment allows alternative specifications
of the name (for example, abbreviations), the string returned by the function should correspond to a
full specification of the name.

by:

Returns a string which uniquely identifies the external file currently associated with the given file (and
may thus be used in an Open operation).

A.10.6 Get and Put Procedures

In paragraph 5 replace: [AI95-00223-01]

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any Get procedure
for an enumeration type begins by skipping any leading blanks, or line or page terminators. Get procedures for
numeric or enumeration types start by skipping leading blanks, where a blank is defined as a space or a
horizontal tabulation character. Next, characters are input only so long as the sequence input is an initial
sequence of an identifier or of a character literal (in particular, input ceases when a line terminator is
encountered). The character or line terminator that causes input to cease remains available for subsequent
input.

by:

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any Get procedure
for an enumeration type begins by skipping any leading blanks, or line or page terminators. A blank is defined

ISO/IEC 8652:1995/WD.1:2002

30

as a space or a horizontal tabulation character. Next, characters are input only so long as the sequence input is
an initial sequence of an identifier or of a character literal (in particular, input ceases when a line terminator is
encountered). The character or line terminator that causes input to cease remains available for subsequent
input.

A.12.1 The Package Streams.Stream_IO

Replace paragraph 28.1: [AI95-00085-01]

The Set_Mode procedure changes the mode of the file. If the new mode is Append_File, the file is positioned
to its end; otherwise, the position in the file is unchanged.

by:

The Set_Mode procedure sets the mode of the file. If the new mode is Append_File, the file is positioned to its
end; otherwise, the position in the file is unchanged.

A.16 The Package Directories

Insert new clause: [AI95-00248-01]

The package Ada.Directories provides operations for manipulating files and directories, and their names.

Static Semantics

The library package Ada.Directories has the following declaration:

with Ada.IO_Exceptions;
with Ada.Calendar;
package Ada.Directories is

 -- Directory and file operations:

 function Current_Directory return String;
 procedure Set_Directory (Directory : in String);

 procedure Create_Directory (New_Directory : in String;
 Form : in String := "");

 procedure Delete_Directory (Directory : in String);

 procedure Create_Path (New_Directory : in String;
 Form : in String := "");

 procedure Delete_Tree (Directory : in String);

 procedure Delete_File (Name : in String);

 procedure Rename (Old_Name, New_Name : in String);

 procedure Copy_File (Source_Name, Target_Name : in String;
 Form : in String := "");

 -- File and directory name operations:

 function Full_Name (Name : in String) return String;

 function Simple_Name (Name : in String) return String;

ISO/IEC 8652:1995/WD.1:2002

31

 function Containing_Directory (Directory : in String) return String;

 function Extension (Name : in String) return String;

 function Base_Name (Name : in String) return String;

 function Compose (Containing_Directory : in String := "";
 Name : in String;
 Extension : in String := "") return String;

 -- File and directory queries:

 type File_Kind is (Directory, Ordinary_File, Special_File);

 type File_Size is range 0 .. implementation-defined;

 function Exists (Name : in String) return Boolean;

 function Kind (Name : in String) return File_Kind;

 function Size (Name : in String) return File_Size;

 function Modification_Time (Name : in String) return Ada.Calendar.Time;

 -- Directory searching:

 type Directory_Entry_Type is limited private;

 type Filter_Type is array (File_Kind) of Boolean;

 type Search_Type is limited private;

 procedure Start_Search (Search : in out Search_Type;
 Directory : in String;
 Pattern : in String;
 Filter : in Filter_Type := (others => True));

 procedure End_Search (Search : in out Search_Type);

 function More_Entries (Search : in Search_Type) return Boolean;

 procedure Get_Next_Entry (Search : in out Search_Type;
 Directory_Entry : out Directory_Entry_Type);

 -- Operations on Directory Entries:

 function Simple_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

 function Full_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

 function Kind (Directory_Entry : in Directory_Entry_Type)
 return File_Kind;

 function Size (Directory_Entry : in Directory_Entry_Type)
 return File_Size;

ISO/IEC 8652:1995/WD.1:2002

32

 function Modification_Time (Directory_Entry : in Directory_Entry_Type)
 return Ada.Calendar.Time;

 Status_Error : exception renames Ada.IO_Exceptions.Status_Error;
 Name_Error : exception renames Ada.IO_Exceptions.Name_Error;
 Use_Error : exception renames Ada.IO_Exceptions.Use_Error;
 Device_Error : exception renames Ada.IO_Exceptions.Device_Error;

private
 -- Not specified by the language.
end Ada.Directories;

External files may be classified as directories, special files, or ordinary files. A directory is an external file that is
a container for files on the target system. A special file is an external file that cannot be created or read by a
predefined Ada Input-Output package. External files that are not special files or directories are called ordinary
files.

A file name is a string identifying an external file. Similarly, a directory name is a string identifying a directory.
The interpretation of file names and directory names is implementation-defined.

The full name of an external file is a full specification of the name of the file. If the external environment allows
alternative specifications of the name (for example, abbreviations), the full name should not use such
alternatives. A full name typically will include the names of all of directories that contain the item. The simple
name of an external file is the name of the item, not including any containing directory names. Unless otherwise
specified, a file name or directory name parameter to a predefined Ada input-output subprogram can be a full
name, a simple name, or any other form of name supported by the implementation.

The default directory is the directory that is used if a directory or file name is not a full name (that is, when the
name does not fully identify all of the containing directories).

A directory entry is a single item in a directory, identifying a single external file (including directories and
special files).

For each function that returns a string, the lower bound of the returned value is 1.

The following file and directory operations are provided:

function Current_Directory return String;

Returns the full directory name for the current default directory. The name returned shall be suitable
for a future call to Set_Directory. The exception Use_Error is propagated if a default directory is not
supported by the external environment.

procedure Set_Directory (Directory : in String);

Sets the current default directory. The exception Name_Error is propagated if the string given as
Directory does not identify an existing directory. The exception Use_Error is propagated if the external
environment does not support making Directory (in the absence of Name_Error) a default directory.

procedure Create_Directory (New_Directory : in String;
 Form : in String := "");

Creates a directory with name New_Directory. The Form parameter can be used to give system-
dependent characteristics of the directory; the interpretation of the Form parameter is implementation-
defined. A null string for Form specifies the use of the default options of the implementation of the
new directory. The exception Name_Error is propagated if the string given as New_Directory does not
allow the identification of a directory. The exception Use_Error is propagated if the external
environment does not support the creation of a directory with the given name (in the absence of
Name_Error) and form.

procedure Delete_Directory (Directory : in String);

ISO/IEC 8652:1995/WD.1:2002

33

Deletes an existing empty directory with name Directory. The exception Name_Error is propagated if
the string given as Directory does not identify an existing directory. The exception Use_Error is
propagated if the external environment does not support the deletion of the directory (or some portion
of its contents) with the given name (in the absence of Name_Error).

procedure Create_Path (New_Directory : in String;
 Form : in String := "");

Creates zero or more directories with name New_Directory. Each non-existent directory named by
New_Directory is created. For example, on a typical Unix system, Create_Tree ("/usr/me/my"); would
create directory "me" in directory "usr", then create directory "my" in directory "me". The Form can
be used to give system-dependent characteristics of the directory; the interpretation of the Form
parameter is implementation-defined. A null string for Form specifies the use of the default options of
the implementation of the new directory. The exception Name_Error is propagated if the string given
as New_Directory does not allow the identification of any directory. The exception Use_Error is
propagated if the external environment does not support the creation of any directories with the given
name (in the absence of Name_Error) and form.

procedure Delete_Tree (Directory : in String);

Deletes an existing directory with name Directory. The directory and all of its contents (possibly
including other directories) are deleted. The exception Name_Error is propagated if the string given as
Directory does not identify an existing directory. The exception Use_Error is propagated if the external
environment does not support the deletion of the directory or some portion of its contents with the
given name (in the absence of Name_Error). If Use_Error is propagated, it is unspecified if a portion of
the contents of the directory are deleted.

procedure Delete_File (Name : in String);

Deletes an existing ordinary or special file with Name. The exception Name_Error is propagated if the
string given as Name does not identify an existing ordinary or special external file. The exception
Use_Error is propagated if the external environment does not support the deletion of the file with the
given name (in the absence of Name_Error).

procedure Rename (Old_Name, New_Name : in String);

Renames an existing external file (including directories) with Old_Name to New_Name. The exception
Name_Error is propagated if the string given as Old_Name does not identify an existing external file.
The exception Use_Error is propagated if the external environment does not support the renaming of
the file with the given name (in the absence of Name_Error). In particular, Use_Error is propagated if a
file or directory already exists with New_Name.

procedure Copy_File (Source_Name, Target_Name : in String;
 Form : in String);

Copies the contents of the existing external file with Source_Name to Target_Name. The resulting
external file is a duplicate of the source external file. The Form can be used to give system-dependent
characteristics of the resulting external file; the interpretation of the Form parameter is implementation-
defined. Exception Name_Error is propagated if the string given as Source_Name does not identify an
existing external ordinary or special file or if the string given as Target_Name does not allow the
identification of an external file. The exception Use_Error is propagated if the external environment
does not support the creating of the file with the name given by Target_Name and form given by
Form, or copying of the file with the name given by Source_Name (in the absence of Name_Error).

The following file and directory name operations are provided:

function Full_Name (Name : in String) return String;

Returns the full name corresponding to the file name specified by Name. The exception Name_Error is
propagated if the string given as Name does not allow the identification of an external file (including
directories and special files).

ISO/IEC 8652:1995/WD.1:2002

34

function Simple_Name (Name : in String) return String;

Returns the simple name portion of the file name specified by Name. The exception Name_Error is
propagated if the string given as Name does not allow the identification of an external file (including
directories and special files).

function Containing_Directory (Name : in String) return String;

Returns the name of the containing directory of the external file (including directories) identified by
Name. (If more than one directory can contain Name, the directory name returned is implementation-
defined.) The exception Name_Error is propagated if the string given as Name does not allow the
identification of an external file. The exception Use_Error is propagated if the external file does not
have a containing directory.

function Extension (Name : in String) return String;

Returns the extension name corresponding to Name. The extension name is a portion of a simple name
(not including any separator characters), typically used to identify the file class. If the external
environment does not have extension names, then the null string is returned. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an external
file.

function Base_Name (Name : in String) return String;

Returns the base name corresponding to Name. The base name is the remainder of a simple name after
removing any extension and extension separators. The exception Name_Error is propagated if the
string given as Name does not allow the identification of an external file (including directories and
special files).

function Compose (Containing_Directory : in String := "";
 Name : in String;
 Extension : in String := "") return String;

Returns the name of the external file with the specified Containing_Directory, Name, and Extension. If
Extension is the null string, then Name is interpreted as a simple name; otherwise Name is interpreted
as a base name. The exception Name_Error is propagated if the string given as Containing_Directory
is not null and does not allow the identification of a directory, or if the string given as Extension is not
null and is not a possible extension, or if the string given as Name is not a possible simple name (if
Extension is null) or base name (if Extension is non-null).

The following file and directory queries and types are provided:

type File_Kind is (Directory, Ordinary_File, Special_File);

The type File_Kind represents the kind of file represented by an external file or directory.

type File_Size is range 0 .. implementation-defined;

The type File_Size represents the size of an external file.

function Exists (Name : in String) return Boolean;

Returns True if external file represented by Name exists, and False otherwise. The exception
Name_Error is propagated if the string given as Name does not allow the identification of an external
file (including directories and special files).

function Kind (Name : in String) return File_Kind;

Returns the kind of external file represented by Name. The exception Name_Error is propagated if the
string given as Name does not allow the identification of an existing external file.

function Size (Name : in String) return File_Size;

Returns the size of the external file represented by Name. The size of an external file is the number of
stream elements contained in the file. If the external file is discontiguous (not all elements exist), the

ISO/IEC 8652:1995/WD.1:2002

35

result is implementation-defined. If the external file is not an ordinary file, the result is implementation-
defined. The exception Name_Error is propagated if the string given as Name does not allow the
identification of an existing external file. The exception Constraint_Error is propagated if the file size is
not a value of type File_Size.

function Modification_Time (Name : in String) return Ada.Calendar.Time;

Returns the time that the external file represented by Name was most recently modified. If the external
file is not an ordinary file, the result is implementation-defined. The exception Name_Error is
propagated if the string given as Name does not allow the identification of an existing external file.
The exception Use_Error is propagated if the external environment does not support the reading the
modification time of the file with the name given by Name (in the absence of Name_Error).

The following directory searching operations and types are provided:

type Directory_Entry_Type is limited private;

The type Directory_Entry_Type represents a single item in a directory. These items can only be
created by the Get_Next_Entry procedure in this package. Information about the item can be obtained
from the functions declared in this package. A default initialized object of this type is invalid; objects
returned from Get_Next_Entry are valid.

type Filter_Type is array (File_Kind) of Boolean;

The type Filter_Type specifies which directory entries are provided from a search operation. If the
Directory component is True, directory entries representing directories are provided. If the
Ordinary_File component is True, directory entries representing ordinary files are provided. If the
Special_File component is True, directory entries representing special files are provided.

type Search_Type is limited private;

The type Search_Type contains the state of a directory search. A default-initialized Search_Type
object has no entries available (More_Entries returns False).

procedure Start_Search (Search : in out Search_Type;
 Directory : in String;
 Pattern : in String;
 Filter : in Filter_Type := (others => True));

Starts a search in the directory entry in the directory named by Directory for entries matching Pattern.
Pattern represents a file name matching pattern. If Pattern is null, all items in the directory are matched;
otherwise, the interpretation of Pattern is implementation-defined. Only items which match Filter will
be returned. After a successful call on Start_Search, the object Search may have entries available, but
it may have no entries available if no files or directories match Pattern and Filter. The exception
Name_Error is propagated if the string given by Directory does not identify an existing directory, or if
Pattern does not allow the identification of any possible external file or directory. The exception
Use_Error is propagated if the external environment does not support the searching of the directory
with the given name (in the absence of Name_Error).

procedure End_Search (Search : in out Search_Type);

Ends the search represented by Search. After a successful call on End_Search, the object Search will
have no entries available.

function More_Entries (Search : in Search_Type) return Boolean;

Returns True if more entries are available to be returned by a call to Get_Next_Entry for the specified
search object, and False otherwise.

procedure Get_Next_Entry (Search : in out Search_Type;
 Directory_Entry : out Directory_Entry_Type);

Returns the next Directory_Entry for the search described by Search that matches the pattern and
filter. If no further matches are available, Status_Error is raised. It is implementation-defined as to

ISO/IEC 8652:1995/WD.1:2002

36

whether the results returned by this routine are altered if the contents of the directory are altered while
the Search object is valid (for example, by another program). The exception Use_Error is propagated if
the external environment does not support continued searching of the directory represented by
Search.

function Simple_Name (Directory_Entry : in Directory_Entry_Type)
 return String;

Returns the simple external name of the external file (including directories) represented by
Directory_Entry. The format of the name returned is implementation-defined. The exception
Status_Error is propagated if Directory_Entry is invalid.

function Full_Name (Directory_Entry : in Directory_Entry_Type) return String;

Returns the full external name of the external file (including directories) represented by
Directory_Entry. The format of the name returned is implementation-defined. The exception
Status_Error is propagated if Directory_Entry is invalid.

function Kind (Directory_Entry : in Directory_Entry_Type) return File_Kind;

Returns the kind of external file represented by Directory_Entry. The exception Status_Error is
propagated if Directory_Entry is invalid.

function Size (Directory_Entry : in Directory_Entry_Type) return File_Size;

Returns the size of the external file represented by Directory_Entry. The size of an external file is the
number of stream elements contained in the file. If the external file is discontiguous (not all elements
exist), the result is implementation-defined. If the external file represented by Directory_Entry is not an
ordinary file, the result is implementation-defined. The exception Status_Error is propagated if
Directory_Entry is invalid. The exception Constraint_Error is propagated if the file size is not a value
of type File_Size.

function Modification_Time (Directory_Entry : in Directory_Entry_Type)
 return Ada.Calendar.Time;

Returns the time that the external file represented by Directory_Entry was most recently modified. If
the external file represented by Directory_Entry is not an ordinary file, the result is implementation-
defined. The exception Status_Error is propagated if Directory_Entry is invalid. The exception
Use_Error is propagated if the external environment does not support the reading the modification
time of the file represented by Directory_Entry.

Implementation Requirements

For Copy_File, if Source_Name identifies an existing external ordinary file created by a predefined Ada Input-
Output package, and Target_Name and Form can be used in the Create operation of that Input-Output package
with mode Out_File without raising an exception, then Copy_File shall not propagate Use_Error.

Implementation Advice

If other information about a file is available (such as the owner or creation date) in a directory entry, the
implementation should provide functions in a child package Ada.Directories.Information to retrieve it.

Start_Search should raise Use_Error if Pattern is malformed, but not if it could represent a file in the directory
but does not actually do so.

For Rename, if both New_Name and Old_Name are simple names, then Rename should not propagate
Use_Error.

NOTES

37 The file name operations Containing_Directory, Full_Name, Simple_Name, Base_Name, Extension, and
Compose operate on file names, not external files. The files identified by these operations do not need to exist.
Name_Error is raised only if the file name is malformed and cannot possibly identify a file.

ISO/IEC 8652:1995/WD.1:2002

37

38 Values of Search_Type and Directory_Entry_Type can be saved and queried later. However, another task or
application can modify or delete the file represented by a Directory_Entry_Type value or the directory
represented by a Search_Type value; such a value can only give the information valid at the time it is created.
Therefore, long-term storage of these values is not recommended.

39 If the target system does not support directories inside of directories, Is_Directory will always return False,
and Containing_Directory will always raise Use_Error.

40 If the target system does not support creation or deletion of directories, Create_Directory, Create_Path,
Delete_Directory, and Delete_Tree will always propagate Use_Error.

ISO/IEC 8652:1995/WD.1:2002

38

Annex B: Interface to Other Languages

B.3 Interfacing with C

Replace paragraph 50: [AI95-00258-01]

The result of To_C is a char_array value of length Item'Length (if Append_Nul is False) or Item'Length+1 (if
Append_Nul is True). The lower bound is 0. For each component Item(I), the corresponding component in the
result is To_C applied to Item(I). The value nul is appended if Append_Nul is True.

by:

The result of To_C is a char_array value of length Item'Length (if Append_Nul is False) or Item'Length+1 (if
Append_Nul is True). The lower bound is 0. For each component Item(I), the corresponding component in the
result is To_C applied to Item(I). The value nul is appended if Append_Nul is True. If Append_Nul is False
and Item'Length is 0, then To_C propagates Constraint_Error.

B.3.1 The Package Interfaces.C.Strings

Replace paragraph 5: [AI95-00161-01]

 type Chars_Ptr is private;

by:

 type Chars_Ptr is private;
 pragma Preelaborable_Initialization(Chars_Ptr);

Replace paragraph 6: [AI95-00276-01]

type chars_ptr_array is array (size_t range <>) of chars_ptr;

by:

type chars_ptr_array is array (size_t range <>) of aliased chars_ptr;

Replace paragraph 50: [AI95-00242-01]

Equivalent to Update(Item, Offset, To_C(Str), Check).

by:

Equivalent to Update(Item, Offset, To_C(Str, Append_Nul => False), Check).

ISO/IEC 8652:1995/WD.1:2002

39

Annex C: Systems Programming

C.3.1 Protected Procedure Handlers

Replace paragraph 8: [AI95-00253-01]

The Interrupt_Handler pragma is only allowed immediately within a protected_definition. The corresponding
protected_type_declaration shall be a library level declaration. In addition, any object_declaration of such a
type shall be a library level declaration.

by:

The Interrupt_Handler pragma is only allowed immediately within a protected_definition where the
corresponding subprogram is declared. The corresponding protected_type_declaration or
single_protected_declaration shall be a library level declaration. In addition, any object_declaration of such
a type shall be a library level declaration.

C.4 Preelaboration Requirements

Insert after paragraph 4: [AI95-00161-01]

• Any subtype_mark denotes a statically constrained subtype, with statically constrained
subcomponents, if any;

the new paragraph:

• No subtype_mark denotes a controlled type, a private type, a private extension, a generic formal
private type, a generic formal derived type, or a descendant of such a type;

C.6 Shared Variable Control

Replace paragraph 7: [AI95-00272-01]

An atomic type is one to which a pragma Atomic applies. An atomic object (including a component) is one to
which a pragma Atomic applies, or a component of an array to which a pragma Atomic_Components applies, or
any object of an atomic type.

by:

An atomic type is one to which a pragma Atomic applies. An atomic object (including a component) is one to
which a pragma Atomic applies, or a component of an array to which a pragma Atomic_Components applies, or
any object of an atomic type, other than objects obtained by evaluating a slice.

ISO/IEC 8652:1995/WD.1:2002

40

Annex D: Real-Time Systems

D.7 Tasking Restrictions

Insert after paragraph 10: [AI95-00305-01]

No_Asynchronous_Control
There are no semantic dependences on the package Asynchronous_Task_Control.

the new paragraphs:

No_Calendar
There are no semantic dependencies on package Ada.Calendar.

No_Dynamic_Attachment
There is no call to any of the operations defined in package Ada.Interrupts (Is_Reserved,
Is_Attached, Current_Handler, Attach_Handler, Exchange_Handler, Detach_Handler, and Reference).

No_Local_Protected_Objects
Protected objects shall be declared only at library level.

No_Protected_Type_Allocators
There are no allocators for protected types or types containing protected type components.

No_Relative_Delay
There are no delay_relative_statements.

No_Requeue_Statements
There are no requeue_statements.

No_Select_Statements
There are no select_statements.

No_Task_Attributes_Package
There are no semantic dependencies on package Ada.Task_Attributes.

Simple_Barriers
The Boolean expression in an entry barrier shall be either a static Boolean expression or a Boolean
component of the enclosing protected object.

Replace paragraph 15: [AI95-00305-01]

This paragraph was deleted

by:

No_Task_Termination
All tasks are non-terminating. It is implementation-defined what happens if a task attempts to
terminate.

Insert after paragraph 19: [AI95-00305-01]

Max_Tasks
Specifies the maximum number of task creations that may be executed over the lifetime of a partition,
not counting the creation of the environment task. A value of zero prevents any task creation and, if a
program contains a task creation, it is illegal. If an implementation chooses to detect a violation of this
restriction, Storage_Error should be raised; otherwise, the behavior is implementation defined.

the new paragraph:

Max_Entry_Queue_Length
Max_Entry_Queue_Length defines the maximum number of calls that are queued on an entry.
Violation of this restriction results in the raising of Program_Error at the point of the call.

ISO/IEC 8652:1995/WD.1:2002

41

D.13 Run-time Profiles and the Ravenscar Profile

Insert new clause: [AI95-00249-01]

This clause specifies a mechanism for defining run-time profiles. It also defines one such profile, Ravenscar.

Syntax

The form of a pragma Profile is as follows:

pragma Profile (profile_identifier [profile_argument_associations]);

profile_argument_associations ::= pragma_argument_association, {pragma_argument_association}

Legality Rules

The profile_identifier shall be either Ravenscar or an implementation-defined identifier. For profile_identifier
Ravenscar, there shall be no profile_argument_associations. For other profile_identifiers, the semantics of
any profile_argument_associations are implementation-defined.

Static Semantics

A profile is equivalent to the set of configuration pragmas that is defined for each profile_identifier. The
profile_identifier Ravenscar is equivalent to the following set of pragmas:

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (
 Max_Entry_Queue_Length => 1,
 Max_Protected_Entries => 1,
 Max_Task_Entries => 0,
 No_Abort_Statements,
 No_Asynchronous_Control,
 No_Calendar,
 No_Dynamic_Attachment,
 No_Dynamic_Priorities,
 No_Implicit_Heap_Allocations,
 No_Local_Protected_Objects,
 No_Protected_Type_Allocators,
 No_Relative_Delay,
 No_Requeue_Statements,
 No_Select_Statements,
 No_Task_Allocators,
 No_Task_Attributes_Package,
 No_Task_Hierarchy,
 No_Task_Termination,
 Simple_Barriers);

Post-Compilation Rules

A pragma Profile is a configuration pragma. There may be more than one pragma Profile for a partition.

NOTES

37 The effect of the Max_Entry_Queue_Length => 1 restriction applies only to protected entry
queues due to the accompanying restriction of Max_Task_Entries => 0.

ISO/IEC 8652:1995/WD.1:2002

42

Annex E: Distributed Systems

E.2.2 Remote Types Library Units

Replace paragraph 8: [AI95-00240-01]

• if the full view of a type declared in the visible part of the library unit has a part that is of a non-remote
access type, then that access type, or the type of some part that includes the access type
subcomponent, shall have user-specified Read and Write attributes.

by:

• if the full view of a type declared in the visible part of the library unit has a part that is of a non-remote
access type, then that access type, or the type of some part that includes the access type
subcomponent, shall have Read and Write attributes specified by a visible
attribute_definition_clause.

Replace paragraph 14: [AI95-00240-01]

• The primitive subprograms of the corresponding specific limited private type shall only have access
parameters if they are controlling formal parameters; each non-controlling formal parameter shall have
either a nonlimited type or a type with Read and Write attributes specified via an
attribute_definition_clause;

by:

• The primitive subprograms of the corresponding specific limited private type shall only have access
parameters if they are controlling formal parameters; each non-controlling formal parameter shall have
either a nonlimited type or a type with available Read and Write attributes (see 13.13.2);

E.2.3 Remote Call Interface Library Units

Replace paragraph 14: [AI95-00240-01]

• it shall not be, nor shall its visible part contain, a subprogram (or access-to-subprogram) declaration
whose profile has an access parameter, or a formal parameter of a limited type unless that limited type
has user-specified Read and Write attributes;

by:

• it shall not be, nor shall its visible part contain, a subprogram (or access-to-subprogram) declaration
whose profile has an access parameter, or a formal parameter of a limited type unless that limited type
has available Read and Write attributes (see 13.13.2);

E.5 Partition Communication Subsystem

Replace paragraph 1: [AI95-00273-01]

The Partition Communication Subsystem (PCS) provides facilities for supporting communication between the
active partitions of a distributed program. The package System.RPC is a language-defined interface to the PCS.
An implementation conforming to this Annex shall use the RPC interface to implement remote subprogram
calls.

by:

The Partition Communication Subsystem (PCS) provides facilities for supporting communication between the
active partitions of a distributed program. The package System.RPC is a language-defined interface to the PCS.

ISO/IEC 8652:1995/WD.1:2002

43

Insert after paragraph 27: [AI95-00273-01]

A body for the package System.RPC need not be supplied by the implementation.

the new paragraph:

An alternative declaration is allowed for package System.RPC as long as it provides a set of operations that is
substantially equivalent to the specification defined in this clause.

ISO/IEC 8652:1995/WD.1:2002

44

Annex F: Information Systems

No changes in this section.

ISO/IEC 8652:1995/WD.1:2002

45

Annex G: Numerics

G.1.1 Complex Types

Replace paragraph 4: [AI95-00161-01]

 type Imaginary is private;

by:

 type Imaginary is private;
 pragma Preelaborable_Initialization(Imaginary);

G.1.2 Complex Elementary Functions

Replace paragraph 15: [AI95-00185-01]

The real (resp., imaginary) component of the result of the Arcsin and Arccos (resp., Arctanh)
functions is discontinuous as the parameter X crosses the real axis to the left of -1.0 or the right of 1.0.

by:

The imaginary component of the result of the Arcsin, Arccos, and Arctanh functions is discontinuous
as the parameter X crosses the real axis to the left of -1.0 or the right of 1.0.

Replace paragraph 16: [AI95-00185-01]

The real (resp., imaginary) component of the result of the Arctan (resp., Arcsinh) function is
discontinuous as the parameter X crosses the imaginary axis below -i or above i.

by:

The real component of the result of the Arctan and Arcsinh functions is discontinuous as the
parameter X crosses the imaginary axis below -i or above i.

Replace paragraph 17: [AI95-00185-01]

The real component of the result of the Arccot function is discontinuous as the parameter X crosses
the imaginary axis between -i and i.

by:

The real component of the result of the Arccot function is discontinuous as the parameter X crosses
the imaginary axis below -i or above i.

Replace paragraph 20: [AI95-00185-01]

The computed results of the mathematically multivalued functions are rendered single-valued by the following
conventions, which are meant to imply the principal branch:

by:

The computed results of the mathematically multivalued functions are rendered single-valued by the following
conventions, which are meant to imply that the principal branch is an analytic continuation of the
corresponding real-valued function in Ada.Numerics.Generic_Elementary_Functions. (For Arctan and Arccot,
the single-argument function in question is that obtained from the two-argument version by fixing the second
argument to be its default value.)

ISO/IEC 8652:1995/WD.1:2002

46

Annex H: Safety and Security

H.5 Pragma Detect_Blocking

Insert new clause: [AI95-00305-01]

The following pragma forces an implementation to detect potentially blocking operations within a protected
operation.

Syntax

The form of a pragma Detect_Blocking is as follows:

pragma Detect_Blocking;

Dynamic Semantics

An implementation is required to detect a potentially blocking operation within a protected operation, and to
raise Program_Error (see 9.5.1).

Post-Compilation Rules

A pragma Detect_Blocking is a configuration pragma.

Implementation Permissions

An implementation is allowed to reject a compilation_unit if a potentially blocking operation is present directly
within an entry_body or the body of a protected subprogram.

NOTES

10 An operation that causes a task to be blocked within a foreign language domain is not defined to
be potentially blocking, and need not be detected.

ISO/IEC 8652:1995/WD.1:2002

47

Annex J: Obsolescent Features

J.10 The Class Attribute of Non-tagged Incomplete Types

Insert new clause: [AI95-00217-04]

For the first subtype S of a type T declared by an incomplete_type_declaration that is not tagged and is not a
type stub, the following attribute is defined:

S'Class
Denotes the first subtype of the incomplete class-wide type rooted at T. The completion of T shall
declare a tagged type. Such an attribute reference shall occur in the same library unit as the
incomplete_type_declaration.

