

THE
ADA CONFORMITY ASSESSMENT TEST SUITE

(ACATS)
VERSION 4.1

USER'S GUIDE

June 29, 2016

Prepared by:
Ada Conformity Assessment Authority
Randall L. Brukardt, Technical Agent

621 N. Sherman Ave., Suite B6
Madison, WI 53704

ACATS 4.1 User's Guide

i 29 June 2016 Table of Contents

Table of Contents
Table of Contents..i
Section 1: Introduction..5

1.1 ACATS Purpose ...6
1.2 ACATS Coverage of Ada...6

Section 2: Changes for ACATS 4.1...9

Section 3: Test Objectives and Coverage..11
3.1 Test Objectives and Rules ..11
3.2 Coverage of the Ada Standard ...11

3.2.1 Coverage Documents..11
3.2.2 General Coverage Guidelines ..12
3.2.3 Coverage Guidelines for Specific Rule Categories..13

Section 4: Configuration Information...17
4.1 Structure...17

4.1.1 Physical Organization ...17
4.1.2 Logical Organization ...18
4.1.3 Legacy Tests..18
4.1.4 Test Foundation Code...19
4.1.5 Special Core Tests ..19
4.1.6 Foreign Language Code ...19

4.2 Test Classes...20
4.2.1 Class A ...20
4.2.2 Class B ...20
4.2.3 Class C ...21
4.2.4 Class D ...21
4.2.5 Class E..21
4.2.6 Class L..21
4.2.7 Foundation Code ...22
4.2.8 Specialized Needs Annex Tests...22

4.3 Naming Convention...22
4.3.1 Legacy Naming ..22
4.3.2 Modern Naming ...24
4.3.3 Multiple File Tests ...26

4.4 Test Program Format ..26
4.5 General Standards...27
4.6 Test Structure ..28
4.7 Delivery Directory Structure ...29
4.8 File Format ...30

Section 5: Using the ACATS ...31
5.1 Installation of the ACATS Test Suite..32

5.1.1 Contents of the ACATS Delivery..32
5.1.2 Guide to Decompressing Files...33
5.1.3 Files With Non-Graphic Characters ...34

5.2 Tailoring the ACATS Test Suite..36
5.2.1 ImpDef Customization...36

ACATS 4.1 User's Guide

Table of Contents 29 June 2016 ii

5.2.2 Macro Defs Customization ... 37
5.2.3 Packages SPPRT13 and FCNDECL ... 37
5.2.4 Modification of Package REPORT ... 38
5.2.5 Allowed Test Modifications .. 38

5.3 Processing the Support Files... 39
5.3.1 Support Files ... 39
5.3.2 "CZ" Acceptance Tests... 39

5.4 Establishing Command Scripts ... 40
5.4.1 Command Scripts.. 40
5.4.2 Dependencies .. 40

5.5 Processing ACATS Tests ... 41
5.5.1 Required Tests .. 41
5.5.2 Test Partitions ... 41
5.5.3 Bundling Test Programs... 41
5.5.4 Processing that may be Omitted ... 42
5.5.5 Tests with Special Processing Requirements.. 42
5.5.6 Focus on Specific Areas... 47

5.6 Grading Test Results .. 47
5.6.1 Expected Results for Executable Tests .. 48
5.6.2 Expected Results for Class B Tests .. 49
5.6.3 Expected Results for Class L Tests .. 49
5.6.4 Inapplicable Tests ... 50
5.6.5 Withdrawn Tests.. 50

5.7 Addressing Problems or Issues... 50
5.7.1 Typical Issues.. 50
5.7.2 Deviation from Expected Results - Petition & Review... 51

5.8 Reprocessing and Regrading... 51
Section 6: ACATS Grading using the Grading Tool ...53

6.1 Using the Grading Tool... 53
6.1.1 Workflow using the Grading Tool.. 53
6.1.2 Annotated Grading Tool Example ... 55
6.1.3 Compiling the Grading Tool and the Test Summary Tool 58
6.1.4 Grading Tool Reference.. 59
6.1.5 Test Summary Tool Reference... 61

6.2 Event Trace Files ... 61
6.2.1 Event Trace File Reference .. 62
6.2.2 Creating an Event Trace directly by the implementation 64
6.2.3 Creating an Event Trace from Listings ... 65

6.3 Test Summary Files... 65
6.3.1 Test Summary File Reference .. 65
6.3.2 Range Indicators ... 67

6.4 Manual Grading Request Files ... 68
6.5 CSV File Reference.. 68

Annex A: Version Description ..71
A.1 Core Test Files .. 71
A.2 Specialized Needs Annex Test Files ... 94
A.3 Foundation Code Files ... 95
A.4 Documentation Files... 96
A.5 Other Files ... 97

ACATS 4.1 User's Guide

iii 29 June 2016 Table of Contents

A.5.1 List of ACATS 4.1 Files...97
A.5.2 Support Units Referenced by Many Tests ..97
A.5.3 Preprocessing Tools and Data ..97
A.5.4 Tests for Reporting Code...98
A.5.5 Test Grading Tools ...98

A.6 Tests With Special Requirements..98
A.7 Test Files Added Since ACATS 4.0..99
A.8 Documentation Files Added Since ACATS 4.0...100
A.9 Support Files Added Since ACATS 4.0 ...100
A.10 Test Files Modified Since ACATS 4.0 ..100
A.11 Support Files Modified Since ACATS 4.0..100
A.12 Documentation Files Modified Since ACATS 4.0 ...100
A.13 Test Files Deleted Since ACATS 4.0..101
A.14 Documentation Files Deleted Since ACATS 4.0 ...101
A.15 Support Files Deleted Since ACATS 4.0 ...102

Annex B: Parameterization Files ..103
B.1 Macro Substitution File...103
B.2 Macro Substitution Tests ...104
B.3 Package ImpDef and Its Children ..104

Annex C: Results of CZ Tests...107
C.1 Sample Output From CZ0004...107
C.2 Sample Output From CZ1101A ..108
C.3 Sample Output From CZ1102A ..109
C.4 Sample Output From CZ1103A ..109

C.4.1 Output When External Files Are Supported ...109
C.4.2 Output When External Files Are Not Supported ..110

Annex D: Test Applicability Criteria ...111
D.1 Compile-Time Inapplicability..111

D.1.1 Type Short_Integer ...111
D.1.2 Type Long_Integer..111
D.1.3 Other Predefined Integer Types...112
D.1.4 Fixed Point Restrictions...112
D.1.5 Non-binary Values of 'Small...112
D.1.6 Compiler Rejection of Supposedly Static Expression ..112
D.1.7 Machine Code Insertions ...112
D.1.8 Illegal External File Names...112
D.1.9 Decimal Types...113
D.1.10 Instantiation of Sequential_IO with indefinite types..113
D.1.11 Package Ada.Directories.Hierarchical_File_Names ..113
D.1.12 Convention C...113
D.1.13 Convention COBOL ..113
D.1.14 Convention Fortran...113
D.1.15 Package Interfaces.C..113
D.1.16 Package Interfaces.C.Strings ..114
D.1.17 Package Interfaces.C.Pointers ..114
D.1.18 Package Interfaces.COBOL ...114
D.1.19 Package Interfaces.Fortran..114
D.1.20 Unchecked Unions..114

ACATS 4.1 User's Guide

Table of Contents 29 June 2016 iv

D.1.21 Special Handling Tests .. 115
D.2 Reported Inapplicability ... 115

D.2.1 Value of Machine_Overflows is False... 115
D.2.2 System.Max_Digits ... 115
D.2.3 Floating Point Overflow ... 115
D.2.4 Type Duration.. 115
D.2.5 Text Files (Non-supported Features) .. 116
D.2.6 Text Files (Supported Features).. 119
D.2.7 Sequential Files (Non-supported Features) ... 119
D.2.8 Sequential Files (Supported Features) ... 120
D.2.9 Direct Files (Non-supported Features) ... 121
D.2.10 Direct Files (Supported Features) ... 122
D.2.11 Stream Files (Non-supported Features) ... 123
D.2.12 Wide Text Files (Non-supported Features) .. 123
D.2.13 Wide Wide Text Files (Non-supported Features)... 123
D.2.14 Directory Operations (Non-supported Features) ... 124
D.2.15 File I/O Tests ... 124
D.2.16 Memory for Allocated Objects... 125
D.2.17 Environment Variables... 126
D.2.18 Task Attributes.. 126
D.2.19 Reserved Interrupts.. 126
D.2.20 Multiprocessor Systems .. 126
D.2.21 Non-binary Machine Radix... 126

Annex E: Guidelines for Test Development ..127

Annex F: Definitions..131

References ...135

Index ...137

ACATS 4.1 User's Guide

5 29 June 2016 Introduction 1

Section 1: Introduction
The Ada Conformity Assessment Test Suite (ACATS) provides the official tests used to check conformity
of an Ada implementation with the Ada programming language standard (ANSI/ISO/IEC 8652:2012 and
later corrigenda, including ANSI/ISO/IEC 8652:2012/COR 1:2016). The ACATS User's Guide is part of
the ACATS and is distributed with the test programs and testing support packages. It explains the
contents and use of the test suite.

The ACATS is an important part of the conformity assessment process described in ISO/IEC-18009, Ada:
Conformity of a Language Processor [ISO99]. This standard provides a framework for testing language
processors, providing a stable and reproducible basis for testing. The Ada Resource Association (ARA)
has sponsored an instantiation of that process since October 1998. The process is managed by the Ada
Conformity Assessment Authority (ACAA).

Prior to the ISO standard, the U.S. Department of Defense sponsored a similar conformity assessment
process under the Ada Joint Program Office (AJPO). The test suite for that process was known as the Ada
Compiler Validation Capability (ACVC). The AJPO developed ACVC versions based on ANSI/MIL-
STD-1815A-1983, ISO/8652:1987 (Ada 83), which were numbered 1.x where x ranged from 1 to 11. It
later developed ACVC versions based on ANSI/ISO/IEC 8652:1995 ([Ada95]), numbered 2.0, 2.0.1, 2.1,
and 2.2.

When the ACAA took over Ada conformity assessment, it adopted the ACVC as the basis for its test
suite. The ACAA determined to continue to use the same version numbering for the test suite in order to
avoid confusion. The version of the ACVC current at the time (2.1) was initially used as ACATS 2.1.
Later, the already developed but unreleased ACVC 2.2 was released and used as ACATS 2.2. The ACAA
later released ACATS 2.3, ACATS 2.4, ACATS 2.5, and then ACATS 2.6 to include maintenance
changes and a few new tests.

In 2007, the ACAA developed ACATS version 3.0 to check for conformity to new language features
defined in ISO/IEC 8652:1995/AMD 1:2007 ([Amend1]), as well as test programs to check for
conformity to language features defined in earlier versions of Ada, including [Ada95] and [Ada83]. The
ACAA later released ACATS 3.1 to improve the coverage and correctness of the ACATS for features
defined in [Amend1].

In 2014, the ACAA developed ACATS version 4.0 to test the enhancements and changes of the third
edition of the Ada Standard, ISO/IEC 8652:2012 ([Ada2012]). This version of the ACATS, version 4.1,
was released to improve the coverage and correctness of the ACATS for features defined in [Ada2012],
including features originally defined in earlier versions of the Ada Standard. Subsequent maintenance or
enhancement versions of the suite, if they are required, will be numbered 4.2, etc.

The ACATS User's Guide describes the set of ACATS tests and how they are to be used in preparation
for conformity assessment. The formal procedures for conformity assessment are described in [Pro31],
and the rules in that document govern all conformity assessments, notwithstanding anything in this
document that may be interpreted differently. Moreover, this guide does not discuss specific requirements
on processing of the ACATS test suite, or submission and grading of results that an Ada Conformity
Assessment Laboratory (ACAL) may impose.

The User's Guide is intended to be used by compiler implementers, software developers who maintain a
version of the ACATS as a quality control or software acceptance tool, and third-party testers (e.g., Ada
Conformity Assessment Laboratories).

Section 2 of the User's Guide for ACATS 4.1 summarizes the changes between ACATS 4.0 and ACATS
4.1. Section 3 describes test objectives and their relationship to ACATS tests and to the rules of the Ada

ACATS 4.1 User's Guide

1 Introduction 29 June 2016 6

Standards documents. Section 4 describes the configuration of the ACATS, including a description of the
ACATS software and delivery files. Section 5 provides step-by-step instructions for installing and using
the test programs and test support packages, and for grading test results. The appendices include other
information that characterizes the ACATS 4.1 release, along with information on test construction.

Refer to Annex F and Section 5.6 for the definition of an acceptable result and the rules for grading
ACATS 4.1 test program results. Section 5.7.2 provides instructions for submitting a petition against a
test program if a user believes that a deviation from the acceptable results for a given test program is in
fact conforming behavior.

The ACATS test suite is available from any ACAL and from the ACAA web site. See http://www.ada-
auth.org/acats.html.

1.1 ACATS Purpose
The purpose of the ACATS is to check whether an Ada compilation system is a conforming
implementation, i.e., whether it produces an acceptable result for every applicable test.

A fundamental goal of conformity assessment (validation) is to promote Ada software portability by
ensuring consistent processing of Ada language features as prescribed by the Ada Standard documents
([Ada2012], [TC1-2012] and any future corrigendum documents). ACATS tests use language features in
contexts and idioms expected in production software. While they exercise a wide range of language
feature uses, they do not and cannot include examples of all possible feature uses and interactions.

It is important to recognize that the ACATS tests do not guarantee compiler correctness. A compilation
system that correctly processes the ACATS tests is not thereby deemed error-free, nor is it thereby
deemed capable of correctly processing all software that is submitted to it.

The ACATS tests do not test the quality of an Ada implementation. In particular, ACATS tests do not
check or report performance parameters (e.g., compile-time capacities or run-time speed). They do not
check or report for characteristics such as the presence and effectiveness of compiler optimization. They
do not investigate or report compiler or implementation choices in cases where the standard allows
options.

1.2 ACATS Coverage of Ada
The ACATS needs to test as many Ada language rules as possible in order to meet the goal of enhancing
Ada software portability. After all, a rule that is not tested is far more likely to be incorrectly implemented
than one that is tested.

Therefore the ACATS strives for complete coverage of the standard. Complete coverage means that every
rule in the Ada standard has one or more associated tests that ensure that the rule is implemented
properly.

Complete coverage is especially important for legality rules and runtime checks. It is easy for
implementers to miss these rules, as their compiler may do something useful in the absence of the checks.
But allowing such incorrect code can be a major portability problem when a program is moved to a
compiler (including a later version of the same compiler) that properly implements the rules and checks.

Of course, complete coverage does not mean that every sentence in the Ada standard has an associated
test. There are many lines in the standard that are not rules at all, such as notes and examples. There are
also many lines in the standard that are not testable; documentation requirements are but one example.
There are also rules in the standard which could be tested, but such tests would be outside of the purpose

ACATS 4.1 User's Guide

7 29 June 2016 ACATS Coverage of Ada 1.2

of the ACATS. Rules which express options for Ada implementations (such as permissions or advice) are
in this category (as the ACATS does not test implementation quality).

It should be obvious that the importance of testing particular rules in the Ada standard vary widely. In
part, that's because the various Ada features themselves have widely varying importance. (For example,
looking at three features that ACATS 4.1 could have tested, proper operation of if expressions is more
important than correct functioning of record equality, which in turn is more important than run-time
accessibility checks for coextensions.) But it's also because of the differing nature of the rules. For
instance, testing of syntax rules is not very important in most cases, as correct syntax will be checked by
tests for other rules, and tests for incorrect syntax require guessing what error a compiler might make in
interpreting syntax. Unless an error seems particularly likely (as might happen from some irregularity in
the syntax), such guessing is unlikely to find actual errors. This makes it impossible for there to be a
definitive set of rules that need to be tested to accomplish complete coverage, as the decision as to
whether a particular rule is usefully testable can be a judgement call.

In any case, complete coverage is a goal for the ACATS. However, it is not expected to be ever be
achieved. As the ACATS gets nearer to the goal, the value of additional tests will drop (since higher value
tests get created earlier), and at some point, the cost of creating and processing new tests would outweigh
their value.

Since exactly which rules need to be tested to accomplish complete coverage will always be a judgement
call, the test coverage analysis of the ACATS is a set of living documents, which will be updated with
new information and tests with each new ACATS version.

Coverage testing will generally not test combinations of features, so problems that only manifest
themselves in such combinations will not be detected. Tests designed primarily to cover language rules
are most useful to prevent gross errors in implementations (such as forgetting to implement checks or
features). As such, the ACATS also supplements those tests with tests written to emulate the patterns of
use of Ada features. Such tests provide tests of common combinations of features, and ensure that
common idioms are implemented properly.

A detailed description of how coverage is determined for the Ada standard can be found in Section 3.2.

ACATS 4.1 User's Guide

9 29 June 2016 Changes for ACATS 4.1 2

Section 2: Changes for ACATS 4.1
Version 4.1 of the ACATS updates version 4.0 with additional tests for features defined in [Ada2012]. It
includes 134 new tests to check features including type invariants, subtype predicates, extended return
statements, new iterator forms, array aggregates, generalized indexing, conditional expressions, aspect
specifications, unchecked unions, Ada.Directories, Ada.Generic_Dispatching_Constructor,
Ada.Environment_Variables, Ada.Text_IO.Bounded_IO and Unbounded_IO, and Ada.Containers.

In addition, 16 additional tests were corrected or removed in to reflect changes in Ada reflected by
[Ada2012], as well as in response to test disputes and ARG issue resolutions.

Finally, ACATS 4.1 introduces a tool to simplify and mostly automate test grading (see 6, “ACATS
Grading using the Grading Tool”). This tool and a supporting tool are provided in 6 Ada source files.

See Annex A, “Version Description” for lists of added, deleted and modified tests, documentation, and
support files.

ACATS 4.1 User's Guide

11 29 June 2016 Test Objectives and Coverage 3

Section 3: Test Objectives and Coverage
Each ACATS test tests one or more test objectives. Test objectives ought to be relatable to rules given in
the Ada Standard documents ([Ada2012]).

The test objectives of modern ACATS tests are gathered into a Test Objectives Document. Each modern
test is listed along with the objectives that it tests (legacy tests aren't included as they use a different form
of objective). This document provides easier searching for particular objectives than a raw search of all of
the test files.

This section provides information on how new test objectives are constructed and how the adequacy of
objectives is checked.

3.1 Test Objectives and Rules
A test objective should relate as directly as possible to the rules of Ada. Ideally, a test objective will test
an individual rule of Ada. Rule means whatever set of sentences makes up a testable statement. A rule
may be as small as a single line, or spread across multiple paragraphs of the standards.
For instance, [Ada2012] contains the rule

The implicit declaration of the limited view of a library package forms an (implicit) compilation unit
whose context_clause is empty.

in subclause 10.1.1. The corresponding test objective is
Check that the context clause of a limited view is empty.

However, virtually all rules require the use of other rules (such as those for definitions of terms) in order
to be testable. For instance, testing the above rule needs the definition of terms like "limited view" and
"context_clause" (among others) in order for a test to be constructed.

As such, a test objective will generally apply to multiple Ada rules. Typically, it will be recorded for a
specific rule. For the purposes of deciding if a rule is appropriately tested, it is necessary to study the
ACATS coverage documents (see 3.2.1).

3.2 Coverage of the Ada Standard
The Ada Standard documents [Ada2012] include many thousands of rules. The ACATS Coverage
Documents (see 3.2.1) record the mapping of test objectives and tests to Ada rules, making it possible to
determine if individual rules are adequately tested. The following clauses discuss these documents and the
rules by which they are constructed.

3.2.1 Coverage Documents
ACVC 2.0 originated coverage documentation for what is now the ACATS. That coverage document
mapped tests to paragraph numbers in the [Ada95] Standard. Over time, a number of deficiencies in that
approach have been identified:

• Where a paragraph contains multiple rules, it is not possible to tell if all of the rules are tested.
Indeed, a number of instances where important rules were untested have been identified.

• Since there is not an indication of the type of rule represented by a paragraph, it is not obvious
whether the rule is appropriately tested. For instance, a Legality Rule tested only with C-Tests is
not appropriately tested (see 3.2.3 for more on this topic).

ACATS 4.1 User's Guide

3.2.1 Coverage Documents 29 June 2016 12

• Rules not modified in [Ada95] were not considered. However, sometimes additional test
objectives are needed for existing rules because of other changes to the language. Moreover, there
is no determination of whether the legacy tests adequately tested the original rule.

• The plaintext coverage document is not easily processed by tools. In particular, paragraphs that
are covered are indicated only by the test name(s) that cover the paragraph; there is no common
string for a tool to count. As such, it is difficult to get metrics about coverage from the document,
and in particular to quantify progress between versions.

For these reasons, the development of new and much more detailed coverage documentation was initiated
for ACATS 3.0. The new documentation considers each sentence of the standard individually if
necessary, listing the test objectives for each sentence, and documenting why no objectives are needed if
none are provided.

It also lists tests for each objective (including Legacy tests), testing priorities for untested objectives,
notes on each objective (including any untested cases), and any additional notes needed.

There is also a summary document that summarizes totals for important metrics for the coverage
documents as a whole.

The documents are maintained as spreadsheets (in order to make calculation and extraction of metrics
easy). Because spreadsheet programs may be unfamilar to many readers, and compatibility of spreadsheet
programs is incomplete, these documents are provided in Adobe Portable Document Format (PDF). (The
spreadsheets are available on request from the ACAA Technical Agent, agent@ada-auth.org.)

For ACATS 4.1, the following subclauses of the Ada Standard documents are included in the new
coverage documents:

3.2.4
3.9.3 through 3.10.1
4.1.3 through 4.4
4.5.7 through 4.5.8
5.4 through 5.5.2
6.1.1
6.5 through 6.8
7.3.2 through 7.6.1
8.3.1 through 8.5.3
Clause 10 (10 through 10.2.1)
13.1.1
B.3.3

These clauses were selected because of their importance in rule changes in either [Ada2012] or
[Amend1].

The original coverage document is also included with the ACATS for those portions of the Ada Standard
documents that have not yet had new coverage documents constructed. This document is of primary use
for features of [Ada95], as it does not cover Legacy tests nor any features added or modified by either
[Ada2012] or [Amend1]. As noted above, it is being replaced, so it will disappear completely in a future
version of the ACATS.

3.2.2 General Coverage Guidelines
As noted in Section 1.2, the ACATS strives for complete coverage of the Ada standard. However,
complete coverage does not mean that every sentence in the standard has an associated test objective and
test. Not all rules are testable; one important way to determine testability of a rule is to check its category.
The next clause (3.2.3) will discuss how the category of a rule affects its mapping to test objectives.

There are also additional considerations that don't apply to specific rule categories.

ACATS 4.1 User's Guide

13 29 June 2016 General Coverage Guidelines 3.2.2

Text sometimes contains definitions (especially in Static Semantics rules). Definitions are hard to handle,
because they usually are not testable by themselves. The definition has to be used in another rule to make
them visible. For instance, a categorization rule such as "something is either this, that, or fuzzy" cannot be
tested by itself. "Something" has to be used in some other rule in order for the categorization to matter.
That being the case, it usually makes sense to test the definition as part of the other rule(s). Such rules are
marked as having a kind of "Widely Used" or "Subpart" in the coverage documentation. "Subpart" rules
are tested as part of specific other objectives, while "Widely Used" rules are thought to be tested by many
tests indirectly (and no attempt is made to verify that). In some cases, especially those that otherwise
would have a combinatorial explosion, it may make more sense to test the definition as directly as
possible (in which case objectives will be assigned to the definition).

Text sometimes includes sentences marked as redundant by the AARM. Such sentences should be given
normatively elsewhere, and the testing should be done in the place where they are normatively given. The
AARM often will indicate this place.

Combinational explosion is always a problem for visibility rules. Rules that define the scope or visibility
of something should always be tested in place (even though other rules will need to be used to accomplish
that).

3.2.3 Coverage Guidelines for Specific Rule Categories
The Ada standard is divided into various categories of rules. These rule categories have different
requirements and thus differ in what is the appropriate testing philosophy. This translates into different
types of test objectives for each rule category.
Uncategorized text:
 This is generally introductory text, and does not require any testing. This text sometimes

includes definitions; these are handled as described in 3.2.2, “General Coverage Guidelines”.
Syntax: Testing that legal syntax is implemented is accomplished by all of the other kinds of tests,

especially by the usage-oriented tests. Generally, tests for illegal syntax have a very low
value. Most compilers use a syntax that is similar to that of the standard, and many use
parsers generated by tools, and thus the likelihood of errors is low. Moreover, the number of
possible bugs is essentially unlimited. There are three cases where testing is warranted: First,
rules that are given in text form rather than BNF are treated as legality rules (see below).
Second, the Ada syntax grammar is not directly usable by either of the common technologies
for parsers (LL/recursive descent, and LR/LALR). In cases where the grammar used by a
compiler must necessarily be more general than that given in the standard, the additional
requirements are treated as legality rules. Finally, an irregularity in the syntax rules can
suggest an obvious (but incorrecct) syntax extension. It can warrant a test that such an
extension is not implemented. For instance, most places in Ada that declare an object allow
the use of subtype_indications, but subprogram profiles only allow subtype_marks. It should
be tested that subtype_indications are not allowed when declaring parameters, even though
this is a syntax rule.

Name Resolution Rules:
 Name resolution rules should usually have a B-Test that checks that too much information is

not used for resolution. (For instance, whether a type is limited or non-limited should
generally not be used. Another example is whether an access type is pool-specific or general
access usually should not be used.) It also may have a C-Test to check that legal cases are
allowed; but this objective is often handled by tests for other test objectives (if that's the case,
a note should point out where they are tested). One common case where a C-Test is needed
occurs when a name resolution rule uses some property for resolution. In this case, a C-Test
that the property can be used to resolve an overloaded function call is needed. (For instance,

ACATS 4.1 User's Guide

3.2.3 Coverage Guidelines for Specific Rule Categories 29 June 2016 14

an if statement condition must be of a Boolean type; it should be tested that a function
returning some other type is ignored when resolving a condition.)

Legality Rules:
 Legality rules should almost always have an associated B-Test that checks that illegal cases

are detected. They may also have a C-Test to check that legal cases are allowed; again, this is
often handled by tests for other test objectives. (They also can be covered in the B-Test with
"OK" cases.)

Static Semantics:
 Many Static Semantic rules are definitions, and as such can be handled as described in 3.2.2,

“General Coverage Guidelines”.
 Many other static semantic rules are miscategorized by the standard. For instance, most of the

library packages are defined as static semantics, even though most of the rules are really
dynamic. These should be tested as appropriate for the correct category.

 Remaining rules should be tested as legality rules (arguably, these too are miscategorized).
Post-Compilation Rules:
 A post-compilation rule should always have L-Tests to check that the check is made in illegal

cases. These checks are especially likely to be omitted (because they're often complex to
implement), so these tests should have a high priority. In some cases, a C-Test may be needed
to ensure that legal cases work and the check does not go too far. Often that will be covered
by other tests, so a separate test is not needed (a note should be provided to show where it is
covered).

Dynamic Semantics:
 Dynamic semantics rules can be divided into two sub-categories.
 First, these rules can define run-time checks. These checks should have C-Tests that verify

that the check is made and the appropriate exception is raised. Tests like this have to be
carefully constructed to avoid running afoul of 11.6 permissions.

 Otherwise, these rules can define the normal operation of a construct. These should have
usage-oriented C-Tests. By making these tests usage-oriented, the ACATS tests the normal
usage of these features, not unusual corner-cases.

 One special case: rules that say the execution of something "has no effect" can't be usefully
tested. Testing that nothing happens is not interesting. And testing for the absence of an effect
requires guessing incorrect effects that might have occurred (which is unlikely to actually
detect anything), and thus any such test would have a very low value.

Bounded (Run-Time) Errors:
 These usually require C-Tests, but not always. If the bound includes "work normally", then

the bounded error is not usefully testable, since the ACATS does not test implementation
choices. Whether something works or raises Program_Error is not interesting. In other cases,
however, since there is a bound on the behavior, it can be useful to ensure that one of the
prescribed results happens rather than havoc.

Erroneous Execution:
 This is not testable. Since the language allows anything to happen, there is no useful

information to be gained from including this in a test. Indeed, it's important to avoid any such
case in an executable test.

Implementation Requirements:
 These usually are dynamic requirements that should be tested like the appropriate dynamic

semantics rules. Otherwise, they should be tested like a legality rule.

ACATS 4.1 User's Guide

15 29 June 2016 Coverage Guidelines for Specific Rule Categories 3.2.3

Implementation Permissions:
 Usually permissions are not testable. Since the ACATS is not testing the quality of

implementations, the choices made by an implementation are not appropriate things to test.
So a test should be created only if there is value in testing for implementations exceeding the
permission.

Implementation Advice:
 Advice is usually not testable. Again, since the ACATS is not testing quality of

implementations, the choices made by an implementation are not appropriate things to test.
Moreover, advice need not be followed, and other implementation choices can be made.
Usually, if there are bounds to what is acceptable, they are covered by other rules, and thus
the tests would be there.

Documentation Requirements and Metrics:
 No tests are required for documentation requirements. Documentation existence could be part

of the conformity assessment process, but in any case it is outside of the scope of the ACATS
(which is testing the implementation, not the documentation).

Notes and Examples:
 These are non-normative text, and do not require any testing.

ACATS 4.1 User's Guide

17 29 June 2016 Configuration Information 4

Section 4: Configuration Information
This section describes the physical and logical structure of the ACATS delivery, and it describes the test
classes, naming conventions used, test program format, test structure, delivery structure, and file format.

ACATS 4.1 is an update of ACATS 4.0, and has a similar delivery structure. The existing support tools
are unchanged, except for updating header comments and version identification. There are some
additional and changed files to support the new test grading tool (see 6).

The test suite does not provide tools or scripts that can be used to manage test processing (other than
grading), since such tools are normally specific to particular implementations and host systems.

4.1 Structure
The ACATS 4.1 test software includes test code that exercises specific Ada features, foundation code
(used by multiple tests), support code (used to generate test results), and tool code (used to build tools
necessary to customize ACATS tests). The suite includes tests for the core language and tests for the
Specialized Needs Annexes. The following table summarizes the number of tests and files in the ACATS
suite.

 Total Core
Tests

 SNA
Tests

 Found-
ations Docs Other

 Number of Files 5002 4457 250 60 208 27

 Number of Tests 4033 3841 192 0 0 0

Others consists of:

 1 List of all files
 13 Code that is referenced by tests

 3 Code and data used for preprocessing tests to insert implementation
specific information

 4 Test routines for reporting code ("CZ" tests)
 6 Code for test grading tools

The delivery structure of the test suite is described in Section 4.7.

4.1.1 Physical Organization
The preceeding table summarizes the number of files that compose ACATS 4.1. In addition to files
containing test code proper, the ACATS 4.1 test suite includes various support files.

Note that the number of files containing test code is larger than the number of tests in the ACATS suite
because some tests use code included in separate files.

A file name consists of a name plus an extension. Multiple files that contain code used by a single test
have related names. File names are the same as that of the test contained in the file when possible. File
names conform to MS-DOS naming conventions; therefore they may be shorter than the software name

ACATS 4.1 User's Guide

4.1.1 Physical Organization 29 June 2016 18

because of file name length restrictions (e.g., enumchek rather than enumcheck). File (and test) names
follow conventions that indicate their function in the test suite; naming conventions are explained in
Section 4.3. The files are organized into distinct directories and subdirectories based on their function in
the test suite. The directory organization is explained in Section 4.7.

The ACATS is available to the general public from an ACAL or on the Internet. Links to the ACATS
distribution can be found on the ACAA's ACATS page:

http://www.ada-auth.org/acats.html.
Note that the ACATS files are available in both compressed Unix tar and DOS zipped formats. Section
5.1.2 provides a discussion of techniques to convert these files to a usable format.

4.1.2 Logical Organization
The table summarizes the number of tests that check the conformance of an Ada implementation to the
core language and conformance to the Specialized Needs Annexes of Ada.

Core tests apply to all implementations. Specialized Needs Annex tests are not required for any
implementation. Tests for a given Specialized Needs Annex may be processed by implementations that
claim implementation of that annex.

In general, no test result depends on the processing or the result of any other test. Exceptions are noted in
Section 5.4.2. No annex test depends on the implementation of any other annex, except possibly in cases
where one annex specifically depends on another in Ada (e.g., no test for the Information Processing
Annex uses features from any other annex, however Real Time Annex and Distributed Processing tests
may depend on Systems Programming Annex features). (There is a single exception to this rule: see
Section 5.5.5.3.) Annex tests may use any core feature.

Tests may be created from one or more compilation units. If a test consists of a single compilation unit (a
main subprogram only), the test code will be contained in a single file. Tests built from more than one
compilation unit may require multiple files. Moreover, some compilation units, called foundation code,
may be used by more than one test. Even in these cases, the resulting tests are strictly independent: if test
A and test B use the same foundation code, the results of processing (and running, if appropriate) A have
no effect on the results of processing (and running, if appropriate) B. Foundation code is more fully
explained in Section 4.1.4.

Tests are named using conventions that provide (limited) information about the test. The test naming
conventions are explained in Section 4.3. Each test belongs to a single test class that indicates whether it
is or is not an executable test. Test classes are explained in Section 4.2.

In addition to test code and foundation code, there is code on which many or all of the executable tests in
the suite depend (e.g., package Report, package ImpDef, package TCTouch). Some of this code must be
customized to each implementation. There is also code that must be used to build support tools used to
customize the suite of tests to an implementation. The customization process is described in Section 5.2.

4.1.3 Legacy Tests
Legacy tests are tests that were included in ACVC 1.12 that have been incorporated into later ACVC and
ACATS versions. These tests check only language features that are common to all versions of Ada. The
vast majority of these tests came unmodified from the ACVC 1.12 suite. Some tests were modified to
check for the correct implementation of Ada rules in cases where language rules changed from [Ada83].

Unlike more modern tests, legacy tests use an ALL CAPITALS programming style which is unusual and
hard to read (4.5). They also use the naming conventions of early ACVC versions (see 4.3.1). Modern

ACATS 4.1 User's Guide

19 29 June 2016 Legacy Tests 4.1.3

tests (those created for the ACATS more recently than ACVC 1.12) use a more typical Mixed Case
programming style (see 4.5 and use a more flexible naming scheme (see 4.3.2).

4.1.4 Test Foundation Code
Some tests use foundation code. Foundation code is reusable across multiple tests that are themselves
independent of each other. It is intended to be compiled and included in an environment as part of the
compilation process of a test. If the test is executable, the foundation code must be bound with all other
code for the test prior to execution.

Foundation code is always expected to compile successfully; it is never expected to be run by itself.
Foundation code is not, in and of itself, a test, and is therefore not characterized by a test class (see 4.2).
One may think of it as providing some utility definitions and routines to a number of different tests.
Names of foundation units (and therefore names of files containing foundation code) are distinguished as
described in Naming Convention, Section 4.3.

4.1.5 Special Core Tests
This section identifies tests that appear in the Core (since their requirements are enunciated there) but that
may be graded as non-supported for implementations not claiming support of certain Specialized Needs
Annexes.

Annex C Requirements

Clause 13 of the Ada Standard includes implementation advice paragraphs include the words
"recommended level of support". The ACATS does not require implementations to conform to those
paragraphs unless they claim support for Annex C, Systems Programming (because of C.2(2): "The
implementation shall support at least the functionality defined by the recommended levels of support in
Clause 13.")

Tests that check conformance to the implementation advice are listed below:
CD10001
CD20001
CD30001
CD30002

CD30003
CD30004
CD30006
CD30007

CD30008
CD30009
CD40001
CD72A01

CD72A02
CD90001
CDE0002

Implementations that claim support for Annex C are required to process and pass the tests listed above.

Implementations that do not claim support for Annex C are still required to process these tests. Such
implementations may reject the lines marked with the special comment -- ANX-C RQMT, in which case
the test will be graded as "unsupported". If an implementation accepts such lines in one of these tests,
then the test must be bound (linked) and executed, with a passed or not_applicable result.

4.1.6 Foreign Language Code
Several tests for Annex B features (and one Clause 13 test) include files containing non-Ada code
(Fortran, C, Cobol). These tests must be compiled, bound, and run by implementations that support
foreign language interfaces to the respective non-Ada language. The foreign language code uses only the
most basic language semantics and should be compilable by all Fortran, C, and Cobol compilers,
respectively. In cases where a foreign language does not accept the code as provided, modifications are
allowable. See Section 5.2.5.

Files that contain foreign code are identified by a special file extension. See Section 4.3.2.

ACATS 4.1 User's Guide

4.1.6 Foreign Language Code 29 June 2016 20

The tests that include Fortran code are: CXB5004 and CXB5005

The tests that include C code are: CD30005, CXB3004, CXB3006, CXB3013, CXB3017, CXB3018,
CXB3023, and CXB3024

The test that includes Cobol code is: CXB4009

4.2 Test Classes
There are six different classes of ACATS tests, reflecting different testing requirements of language
conformity testing. Each test belongs to exactly one of the six classes, and its membership is encoded in
the test name, as explained later. The purpose and nature of each test category is explained below. The
test classifications provide an initial indication of the criteria that are used to determine whether a test has
been passed or failed.

4.2.1 Class A
Class A tests check for acceptance (compilation) of language constructs that are expected to compile
without error.

An implementation passes a class A test if the test compiles, binds, and executes reporting "PASSED".
Any other behavior is a failure.

Only legacy tests are included in this class.

4.2.2 Class B
Class B tests check that illegal constructs are recognized and treated as fatal errors. They are not expected
to successfully compile, bind, or execute. Lines that contain errors are marked -- ERROR: and
generally include a brief description of the illegality on the same or following line. (The flag includes a
final ":" so that search programs can easily distinguish it from other occurrences of the word "error" in the
test code or documentation.) Some tests also mark some lines as -- OK, indicating that the line must not
be flagged as an error.

An implementation passes a class B test if each indicated error in the test is detected and reported, and no
other errors are reported. The test fails if one or more of the indicated errors are not reported, or if an error
is reported that cannot be associated with one of the indicated errors. If the test structure is such that a
compiler cannot recover sufficiently to identify all errors, it may be permissible to "split" the test program
into separate units for re-processing (see Section 5.2.5 for instructions on modifying tests).

In some cases and for some constructs, compilers may adopt various error handling and reporting
strategies. In cases where the test designers determined that an error might or might not be reported, but
that an error report would be appropriate, the line is marked with -- OPTIONAL ERROR: or a similar
phrase. In such cases, an implementation is allowed to report an error or fail to report an error without
affecting the final grade of the test.

Similarly, in cases where the test designers determined that an error might be reported at one of several
source locations, all such source locations are marked with -- POSSIBLE ERROR: and an indication
of which error (if the test contains several) is expected. In such cases, an implementation is considered
passing if it reports an error at any of the possible places for the error to be reported. It fails if no error is
reported at any of the places.

ACATS 4.1 User's Guide

21 29 June 2016 Class B 4.2.2

All of these test markings can be followed by an optional range indicator (see 6.3.2). These describe the
expected locations of an error message for the error, and are primarily used by the automated Grading
Tool (see 6).

4.2.3 Class C
Class C tests check that executable constructs are implemented correctly and produce expected results.
These tests are expected to compile, bind, execute and report "PASSED" or "NOT-APPLICABLE". Each
class C test reports "PASSED", "NOT-APPLICABLE", or "FAILED" based on the results of the
conditions tested.

An implementation passes a class C test if it compiles, binds, executes, and reports "PASSED". It fails if
it does not successfully compile or bind, if it fails to complete execution (hangs or crashes), if the
reported result is "FAILED", or if it does not produce a complete output report.

The tests CZ1101A, CZ1102A, CZ1103A, and CZ00004 are treated separately, as described in Section
5.3.2.

4.2.4 Class D
Class D tests check that implementations perform exact arithmetic on large literal numbers. These tests
are expected to compile, bind, execute and report "PASSED". Each test reports "PASSED" or "FAILED"
based on the conditions tested. Some implementations may report errors at compile time for some of
them, if the literal numbers exceed compiler limits.

An implementation passes a class D test if it compiles, binds, executes, and reports "PASSED". It passes
if the compiler issues an appropriate error message because a capacity limit has been exceeded. It fails if
does not report "PASSED" unless a capacity limits is exceeded. It fails if it does not successfully compile
(subject to the above caveat) or bind, if it fails to complete execution (hangs or crashes), if the reported
result is "FAILED", or if it does not produce an output report or only partially produces one.

Only legacy tests are included in this class.

4.2.5 Class E
Class E tests check for constructs that may require inspection to verify. They have special grading criteria
that are stated within the test source. They are generally expected to compile, bind and execute
successfully, but some implementations may report errors at compile time for some tests. The
"TENTATIVELY PASSED" message indicates special conditions that must be checked to determine
whether the test is passed.

An implementation passes a class E test if it reports "TENTATIVELY PASSED", and the special
conditions noted in the test are satisfied. It also passes if there is a compile time error reported that
satisfies the special conditions. Class E tests fail if the grading criteria in the test source are not satisfied,
or if they fail to complete execution (hang or crash), if the reported result is "FAILED", or if they do not
produce a complete output report.

Only legacy tests are included in this class.

4.2.6 Class L
Class L tests check that all library unit dependences within a program are satisfied before the program can
be bound and executed, that circularity among units is detected, or that pragmas that apply to an entire

ACATS 4.1 User's Guide

4.2.6 Class L 29 June 2016 22

partition are correctly processed. These tests are normally expected to compile successfully but not to
bind or execute. Some implementations may report errors at compile time; potentially illegal constructs
are flagged with "-- ERROR:". Some class L tests indicate where bind errors are expected. Successful
processing does not require that a binder match error messages with these indications.

An implementation passes a class L test if does not successfully complete the bind phase. It passes a class
L test if it detects an error and issues a compile time error message. It fails if the test successfully binds
and/or begins execution. An L test need not report "FAILED" (although many do if they execute).

As with B-tests, the test designers determined that some constructs may or may not generate an error
report, and that either behavior would be appropriate. Such lines are marked with "-- OPTIONAL
ERROR:" In such cases, an implementation is allowed to report an error or fail to report an error. If an
error is reported at compile time, the binder need not be invoked. If no errors are reported at compile time,
the binder must be invoked and must not successfully complete the bind phase (as indicated by the
inability to begin execution).

4.2.7 Foundation Code
Files containing foundation code are named using the regular test name conventions (see Section 4.3). It
may appear from their names that they represent class F tests. There is no such test class. Foundation code
is only used to build other tests, so foundation units are not graded. However, if a foundation unit fails to
compile, then the tests that depend on it cannot be compiled, and therefore will be graded as failed.

4.2.8 Specialized Needs Annex Tests
Specialized Needs Annex tests have no separate classifications and are classified in the same way as all
other tests. There are Class B, Class C, and Class L SNA tests.

4.3 Naming Convention
This section describes the naming conventions used in ACATS 4.1, specifically as they apply to files. All
file names are of the form <name>.<type>, where <type> is a one, two, or three character extension. File
names indicate test class, compilation order (if applicable), and whether the test is implementation
dependent or requires customization. When a test is included in a single file, <name> duplicates the test
name. The same is true of a foundation. In multiple file tests, the first 7 characters of the file <name> are
normally the same as the name of the test, however in some cases, the structure of the test requires that
the file name be different from the Ada unit. The application of the conventions to tests is straightforward.

There are two different but similar naming conventions used in ACATS 4.1 Legacy tests use the naming
conventions of early ACVC versions. Tests new since ACVC 1.12 use the modern convention. The
conventions are consistently distinguishable at the 7th character of the name: legacy names have a letter
in the 7th position, whereas newer (modern) names have a digit.

4.3.1 Legacy Naming
The name of a legacy test is composed of seven or eight characters. Each character position serves a
specific purpose as described in the table below. The first column identifies the character position(s)
starting from the left, the second column gives the kind of character allowed, and the third gives the
corresponding meaning:

ACATS 4.1 User's Guide

23 29 June 2016 Legacy Naming 4.3.1

 Position Kind Meaning
 1 Letter Test class (see Section 4.2)
 2 Hexadecimal AIG chapter containing the test objective
 3 Hexadecimal Section within the above AIG chapter
 4 Alphanumeric Sub-section of the above AIG section

 5-6 Decimal Number of the test objective within the above sub-
section

 7 Letter Letter identifier of the sub-objective of the above
objective.

 8 Alphanumeric

optional – Compilation sequence identifier —
indicates the compilation order of multiple files that
make up a single test. This position is used only if
the test comprises multiple files.

The convention is illustrated below.

Legacy File Name Convention

In multiple file tests, the intended order of compilation is indicated by a numeral at position 8. The first
file to be compiled has '0', the second has '1', and so forth.

The chapter and section numbers of the AIG (ACVC Implementer's Guide) correspond to those in
[Ada83].

Note: The use of a ninth character ('m') to indicate the file containing the main subprogram has been
discontinued. The following table lists the files containing the main subprograms of the legacy multiple
file tests.

AD7001C0.ADA
AD7001D0.ADA
B38103C3.ADA
B38103E0.ADA
B63009C3.ADA
B73004B0.ADA
B83003B0.ADA
B83004B0.ADA
B83004C2.ADA
B83004D0.ADA
B83024F0.ADA

B83E01E0.ADA
B83E01F0.ADA
B86001A1.ADA
B95020B2.ADA
BA1001A0.ADA
BA1010A0.ADA
BA1010B0.ADA
BA1010C0.ADA
BA1010D0.ADA
BA1010E0.ADA
BA1010F0.ADA

BA1010G0.ADA
BA1010H0.ADA
BA1010I0.ADA
BA1010J0.ADA
BA1010K0.ADA
BA1010L0.ADA
BA1010M0.ADA
BA1010N0.ADA
BA1010P0.ADA
BA1010Q0.ADA
BA1011B0.ADA

BA1011C0.ADA
BA1020A0.ADA
BA1020B6.ADA
BA1020C0.ADA
BA1020F2.ADA
BA1101B0.ADA
BA1101C2.ADA
BA1109A2.ADA
BA1110A1.ADA
BA2001F0.ADA
BA2003B0.ADA

ACATS 4.1 User's Guide

4.3.1 Legacy Naming 29 June 2016 24

BA2011A1.ADA
BA3001A0.ADA
BA3001B0.ADA
BA3001C0.ADA
BA3001E0.ADA
BA3001F0.ADA
BA3006A6.ADA
BA3006B4.ADA
C38108C1.ADA
C38108D0.ADA
C39006C0.ADA
C39006F3.ADA
C64005D0.ADA
C83022G0.ADA
C83024E1.ADA

C83F01C2.ADA
C83F01D0.ADA
C83F03C2.ADA
C83F03D0.ADA
C86004B2.ADA
C86004C2.ADA
CA1011A6.ADA
CA1012A4.ADA
CA1012B4.ADA
CA1013A6.ADA
CA1014A0.ADA
CA1020E3.ADA
CA1022A6.ADA
CA1102A2.ADA
CA2001H3.ADA

CA2002A0.ADA
CA2003A0.ADA
CA2004A0.ADA
CA2007A0.ADA
CA2008A0.ADA
CA2009C0.ADA
CA2009F0.ADA
CA3011A4.ADA
CA5003A6.ADA
CA5003B5.ADA
CA5004B2.ADA
CC3019B2.ADA
CC3019C2.ADA
LA5001A7.ADA
LA5007A1.ADA

LA5007B1.ADA
LA5007C1.ADA
LA5007D1.ADA
LA5007E1.ADA
LA5007F1.ADA
LA5007G1.ADA
LA5008A1.ADA
LA5008B1.ADA
LA5008C1.ADA
LA5008D1.ADA
LA5008E1.ADA
LA5008F1.ADA
LA5008G1.ADA

The file name extension is three characters long. There are four extensions:
.ada A file that contains only Ada code. It does not require any pre-processing to create a

compilable test. It will be submitted directly to the implementation for determination of test
results. All implementations must correctly process these tests.

.dep A file that has a test involving implementation-dependent features of the language. These
tests may not apply to all implementations.

.tst A file that has "code" that is not quite Ada; it contains "macro" symbols to be replaced by
implementation-dependent values, and it must be customized (macro expanded) to prepare it
for compilation (see Section 5.2.2). Once customized, the resulting test must be processed as
indicated by its class.

.adt A file that has been modified by the macro processor. It contains only Ada code and may be
submitted to the implementation for results. All implementations must correctly process these
tests. There are no files in the ACATS distribution with this extension; they are only
produced as the output of the macro processor.

Modern tests use different file name extensions (see 4.3.2).

 Note that legacy tests have not been renamed for ACATS 4.1. Since [Ada2012] includes some
organizational differences from [Ada83], this means that the name of a legacy test sometimes will
not correspond to the clause of [Ada2012] in which the tested feature is described.

4.3.2 Modern Naming
The name of a modern ACATS test is composed of seven or eight characters. Foundation code has a name
composed of seven characters. The use of each character position is described below. The first column
indicates the character position(s) starting from the left, and the second column indicates the kind of
character allowed, and the third column gives the corresponding meaning:

 Position Kind Meaning
 1 Letter Test class; foundations are marked 'F'.

ACATS 4.1 User's Guide

25 29 June 2016 Modern Naming 4.3.2

 2 Alphanumeric

If other than an 'x', the clause of the Ada Standard
describing the feature under test. An 'x' indicates that
the test includes one or more features from an annex
of the Ada Standard.

 3 Alphanumeric
Core subclause or annex letter identifier (either core
or Specialized Needs Annex); clauses are a
hexadecimal value.

 4 Alphanumeric
Sub-subclause (if a core test), or subclause (if an
annex test); a number if less than 10, otherwise a
letter with 10='A', 11='B', and so on.

 5 Alphanumeric Foundation identifier (alphabetic, unless no
foundation is required, in which case a '0').

 6-7 Decimal Sequence number of this test in a series of tests for
the same clause; foundation code will have "00".

 8 Alphanumeric

optional – Compilation sequence identifier —
indicates the suggested or required compilation order
of multiple files that make up a single test (0 is
compiled first). This position is used only if the test
comprises multiple files.

(Note: Formally groupings for all levels below the top-level grouping are known as subclauses; here we
use subclause to specifically refer to the second level and sub-subclause to refer to the third level.)

The convention is illustrated below.

Modern File Name Convention

The file name extension is a one or two character file name extension. There are six extensions:
.a A file that contains only Ada code (except for configuration pragmas in the case of some

Specialized Needs Annex tests). It does not require any processing to prepare it for
compilation (unless configuration pragmas must be handled separately). It is normally
submitted directly to the implementation for determination of test results.

.am A file that contains the main subprogram for a multi-file test. Generally, this extension is used
for only one file of a test. In rare cases (some Annex E tests), a multi-file test may have more
than one file containing a "main" subprogram; in such cases, the correct testing procedure is
described in the Special Requirements section of the test prologue.

.au A file that contains only Ada code that contains characters outside of the 7-bit ASCII
character set. These files are provided in UTF-8 format with a starting byte-order mark. For

ACATS 4.1 User's Guide

4.3.2 Modern Naming 29 June 2016 26

ACATS 4.1, these tests must be compiled and run as all other tests of its test class, although
usage of a different workflow (which must be documented if it is necessary) is allowed. (Note
that [Ada2012] requires compilers to be able to process UTF-8 files, although the details
[such as compiler options] might be different than ASCII source files.)

.ftn A file that contains Fortran language code and must be compiled by a Fortran compiler.
These files are used by tests that check a foreign language interface to Fortran.

.c A file that contains C language code and must be compiled by a C compiler. These files are
used by tests that check a foreign language interface to C.

.cbl A file that contains Cobol language code and must be compiled by a Cobol compiler. These
files are used by tests that check a foreign language interface to Cobol.

A test that depends on foundation code has an alphabetic character in the fifth position of its name. The
required foundation will have the same characters in the second through fifth positions of its name. For
example, C123Axx depends on F123A00.

4.3.3 Multiple File Tests
When tests are contained in multiple files (i.e., compilation units are contained in different files), the file
names are related. The first seven positions of the names of all the files (other than foundation files)
comprised by a single test will be identical. The eighth position will provide a distinguishing
alphanumeric which indicates the required compilation order. In legacy tests, the main subprogram is not
indicated (see the table in section 4.3.1 for files containing main subprograms). For newer (modern) tests,
the extension ".am" indicates the file with the main subprogram.

All tests apply the convention of naming the main subprogram the same as the file (excluding the file
extension) plus, for legacy tests only, the letter 'm'. For example, the legacy test, C39006F, is contained in
four files, named c39006f0.ada, c39006f1.ada, c39006f2.ada, and c39006f3.ada. The main subprogram of
the test is contained in c39006f3.ada and is named C390006F3M. The test C390006 is also contained in
four files, named c3900060.a, c3900061.a, c3900062.a, and c3900063.am. The main subprogram of the
test is contained in c3900063.am and is named C3900063.

Unless otherwise required by a test objective, other library units in a test are named with the test name
and a suffix. Typically, the suffix will be a number or an underscore followed by a few letters. Similarly,
library units making up a foundation are usually named with the foundation name (or the foundation
name and a suffix if there are multiple units in the foundation). This convention reduces name collisions
with other tests and with implementation-defined units.

There are a small number of Specialized Needs Annex tests for the Distributed Processing Annex that
require two active partitions and have two main subprograms. These tests have two files with the .am
extension to signify the location of the (multiple) main subprograms.

4.4 Test Program Format
Each test file is composed of a test prologue, documenting the test, and the test code proper. All prologue
lines are marked as comments. (The prologue in files containing non-Ada code is marked according to the
comment conventions of the foreign language.)

The prologue for all tests is based on that of legacy tests. Legacy tests are generally, but not entirely,
consistent in their use of the prologue. The format of the prologue between test files and foundation files
is slightly different.

The general format of the prologue is as follows:

ACATS 4.1 User's Guide

27 29 June 2016 Test Program Format 4.4

<file name>
 The distribution name of the file containing this prologue.
DISCLAIMER
 Use restrictions for ACATS tests; included in all tests.
OBJECTIVE
 A statement of the test objective; included in all tests.
TEST DESCRIPTION
 A short description of the design or strategy of the test or other pertinent information.

Included in most newer tests but not generally included in legacy tests.
SPECIAL REQUIREMENTS
 optional – Included if the test has any special requirements for processing. Normally, this

section will be found only in Specialized Needs Annex tests. For example, an Annex E
test may check for the correct implementation of partitions; the requirements for test
partitioning and what to use as a main subprogram in each partition would be
documented in this section.

TEST FILES
 optional – Included if the test depends on multiple files; identifies the component files of

a multi-file test.
APPLICABILITY CRITERIA
 optional – Specifies the conditions under which the test can be ruled inapplicable.
PASS/FAIL CRITERIA
 optional – Explains how to interpret compilation, binding, and/or run-time results for

grading the test.
MACRO SUBSTITUTIONS
 optional – Identifies the macro symbol(s) in the file that must be replaced and provides a

brief description of what the replacement(s) represent. Appears only in legacy tests.
CHANGE HISTORY
 History of the test file. Included in all tests.

All tests have the line immediately after the disclaimer marked --*. Modern tests have the line after the
last prologue line (before the first line of executable code) marked --! No other comment lines are
marked with those conventions, so the start of the objective (which is the next line after the disclaimer)
and the first line of code may be found quickly with an editor search.

Some tests are composed of multiple files (other than foundation code). Rather than repeating the
complete prologue in each file, an alternate approach has been used. One file (usually the one containing
the main subprogram or the first file in the set) has the complete prologue; the other, related files have
those sections that apply to files (TEST FILES, CHANGE HISTORY) and refer to the file with the
complete prologue for the other sections.

4.5 General Standards
ACATS tests were developed to a general set of standards. To promote a variety of code styles and usage
idioms in the tests, standards were not necessarily rigorously enforced but were used as guidelines for test
writers. A maximum line length of 79 characters was used to enhance electronic distribution of tests
(except when specific testing requirements dictated otherwise, usually in .dep and .tst files). Tests tend to
be about 120 executable lines long, though many tests deviate from this norm (either longer or shorter) to
achieve a design that focuses on the objective and a readable, maintainable test. Sometimes complex

ACATS 4.1 User's Guide

4.5 General Standards 29 June 2016 28

objectives have been divided into sub-objectives to achieve complete coverage in comprehensible,
maintainable tests. Some tests check multiple objectives; in other cases, sub-objectives are checked in
separate tests.

Legacy tests use only the basic 55-character set (26 capital letters, 10 digits, and 19 punctuation marks).
Unless there is a specific test requirement, numeric values are in the range (-2048..2047), which can be
represented in 12 bits. Numeric values are generally in the range (-128..127). Modern tests use both upper
and lower case letters and may use larger numeric values (but within the range (-65536..65535) except in
rare cases).

Legacy tests tend to use as few Ada features as necessary to write a self-checking executable test that can
be read and maintained. Modern tests tend to exhibit a usage-oriented style, employing a rich assortment
and interaction of features and exemplifying the kind of code styles and idioms that compilers may
encounter in practice.

In modern tests, Ada reserved words are entirely in lower case. Identifiers normally have their initial letter
capitalized. Every attempt has been made to choose meaningful identifiers. In B class tests, identifier
names often provide a clue to the specific case or situation under test. In C class tests, identifiers are
normally chosen to help document the test design or the intent of the code.

Modern executable tests generally provide some visual separation of those test elements that focus on
conformance issues from those that govern the flow of a test. For example, there is frequently a need to
establish preconditions for a test and examine post-conditions after a section of test code has executed. To
distinguish between constructs (types, objects, etc.) that are part of the test code and those that are
artifacts of the testing process (e.g., pre-, post-conditions), the latter have TC_ prefixed to the identifier
name. This prefix is shorthand for Test_Control.

4.6 Test Structure
Executable tests (class A, C, D, and E) generally use the following format:

with Report;
procedure Testname is
 <declarations>
begin
 Report.Test ("Testname", "Description ...");
 ...
 <test situation yielding result>
 if Post_Condition /= Correct_Value then
 Report.Failed ("Reason");
 end if;
 ...
 Report.Result;
end Testname;

The initial call to Report.Test prints the test objective using Text_IO output (unless the body of Report
has been modified to do something else). After each section of test code, there is normally a check of post
conditions. The if statement in this skeleton is such a check; unexpected results produce a call to
Report.Failed. The sequence of test code / check of results may be repeated several times in a single test.
Finally, there is a call to Report.Result that will print the test result to Text_IO output. Often, but not
always, this structure is enclosed in a declare block.

One or more calls to Report.Failed will report a result of "FAILED" and a brief suggestion of the likely
reason for that result.

More complex tests may include calls to Report.Failed in the code other than in the main program, and
therefore exhibit the following format for the main procedure:

ACATS 4.1 User's Guide

29 29 June 2016 Test Structure 4.6

with Report;
procedure Testname is
 <declarations>
begin
 Report.Test ("Testname", "Description ...");
 ...
 Subtest_Call;
 ...
 Report.Result;
end Testname;

Fail conditions are detected in subprograms (or tasks) and Report.Failed is called within them.

Occasionally, as a test is running, it will determine that it is not applicable. In such a case, it will call
Report.Not_Applicable that will report a result of "NOT_APPLICABLE" (unless there is also a call to
Report.Failed).

Often, a test calls one of the functions Report.Ident_Int or Report.Ident_Bool to obtain a value that could
be provided as a literal. These functions are intended to prevent optimizers from eliminating certain
sections of test code. The ACATS suite has no intention of trying to discourage the application of
optimizer technology, however satisfactory testing of language features often requires the presence and
execution of specific lines of test code. Report.Ident_Int and Report.Ident_Bool are structured so that they
can be modified when needed to defeat optimizer advances.

Class B tests may be structured differently. Since they are not executable, they normally do not include
calls to Report.Test or Report.Result (since those lines of code would have no output effect). Instead,
intentional errors are coded that invoke specific legality rules. The source code includes comments that
document expected compiler results. Legal constructs may also be included in B class tests. Constructs
that are allowed by the legality rules are marked -- OK; constructs that are disallowed are marked --
ERROR:. (Some additional markings can also be used, see 4.2.2.) There is usually a brief indication of
the nature of an intentional error on the same line or the line following a comment. The indications of
expected results are approximately right justified to the code file margin, about column 79, for quick
visual identification.

Class L tests are multifile tests with illegalities that should be detected at bind time. They are generally
structured like class C tests, often with calls to Report.Test and Report.Result, but they are not expected
to execute.

4.7 Delivery Directory Structure
The delivery of ACATS tests is structured into a directory tree that reflects the organization of the test
suite and support code.

The top-level directory contains the support subdirectory, the docs subdirectory, and a subdirectory for
each major grouping of tests. The support subdirectory contains all support packages (Report, ImpDef,
TCTouch) and the source code for all test processing tools (Macro expander, Wide Character processor).
Each of the other subdirectories contains all tests that begin with the indicated prefix. For example, all of
the B2* tests are in the b2 subdirectory; all of the CXH* tests are in the cxh subdirectory. Note that all
of the A* tests are in the a directory, all of the D* tests are included in the d subdirectory, and all of the
E* tests are included in the e subdirectory. The l directory contains the L tests for the core; other L tests
are in directories named with three letters, indicating the class (l) and the Specialized Needs Annex to
which the tests apply.

Subdirectories that would be empty are not stubbed.

ACATS 4.1 User's Guide

4.7 Delivery Directory Structure 29 June 2016 30

The following figure sketches this scheme, but does not show complete detail. A list of all subdirectories
is included in Section 5.1.2.

Delivery Directory Structure

4.8 File Format
To conserve space and ease downloading, all files in the delivered ACATS 4.1 (including test files,
foundation files, and support files) have been compressed. Except as noted below, decompressed files
(see Section 5.1.2) use only ASCII characters. A few tests use Unicode characters; these are indicated by
an .au extension. Some of the documentation files are provided in PDF and/or HTML forms for greater
readability. (The HTML documentation files include GIF and PNG graphics files.) Other than the
documentation files, no formatting control characters, rulers or other information intended for editors or
display programs are included in the files.

Files with the .zip extension have been compressed using a DOS zip utility; files with the .Z extension
have been first put in Unix tar format and then compressed with Unix compress.

ACATS 4.1 User's Guide

31 29 June 2016 Using the ACATS 5

Section 5: Using the ACATS
There are eight major steps involved in using the ACATS test suite; two of them are sometimes not
required. The steps are: installing the software, tailoring the software, processing the support files,
establishing command scripts, processing the ACATS tests, grading the test results, addressing problems
(if necessary), and reprocessing problem tests (if necessary). The first six of these tasks must be
completed successfully to accomplish a test run. The first four normally need be completed only once for
each ACATS release. Each step is explained in the following sections. The flow from one to the next is
illustrated in the following figures.

Using the ACATS

ACATS 4.1 User's Guide

5 Using the ACATS 29 June 2016 32

Using the ACATS (cont.)

5.1 Installation of the ACATS Test Suite
The ACATS test suite must be unloaded from the delivery medium or downloaded from a delivery site
before it can be unpacked, customized for an implementation, run, and graded.

5.1.1 Contents of the ACATS Delivery
The delivery consists of 1 ZIP archive (set of compressed files) or 1 compressed tar file. Each ZIP archive
or compressed tar file contains compressed versions of ACATS software (test, foundation, and/or support
code) structured into a directory tree. Files must be extracted from the archives. The archive contents is
described later in this section.

Usually, some test errors will be noted in the test suite. If possible, the ACAA will correct the errors and
issue a corrected test. If a correction is not possible, the test will be withdrawn. Withdrawn tests are not
used in conformity assessments. For a period after the issuance of a corrected test, either the original or
the corrected test can be used for conformity assessment. See the ACAA's procedures [Pro31] for details.

The ACAA also will issue new tests periodically. As with modified tests, new tests must be available for
a period of time before they are required in conformity assessments.

These changes to the issued ACATS are documented in the ACATS Modification List (AML). This list
includes a list of all new tests, all modified tests, and all withdrawn tests, and an indication as to when
each will be (or is) required for conformity assessments. Each version of the modification list is given a
suffix letter. A ZIP archive and tar file containing the new and/or modified tests is available. The files are
named MOD_4_1x, where 'x' represents the suffix letter for the AML version.

These files can be found on the ACAA's web site:

ACATS 4.1 User's Guide

33 29 June 2016 Contents of the ACATS Delivery 5.1.1

www.ada-auth.org/acats.html.

The AML is also distributed by e-mail. To receive these lists, join the ACAA mailing list. To do so,
simply send a message to

listserv@ada-auth.org.
with a body of

Join Acaa

5.1.2 Guide to Decompressing Files
The ACATS files are provided in two forms: compressed in zip format and compressed in Unix compress
format. Zipped files are included in a zip archive (files) with the file extension .zip. A Unix compressed
files, with extension .Z, contains a Unix tar file. This section provides generic instructions for
uncompressing them. These instructions are not the only ways to uncompress the files; sophisticated users
may wish to use their own procedures.

If the instructions below are used, the following subdirectories will have been created and populated with
test files after all decompression:
./acats4_1/a
./acats4_1/b2
./acats4_1/b3
./acats4_1/b4
./acats4_1/b5
./acats4_1/b6
./acats4_1/b7
./acats4_1/b8
./acats4_1/b9
./acats4_1/ba
./acats4_1/bb
./acats4_1/bc
./acats4_1/bd

./acats4_1/be

./acats4_1/bxa

./acats4_1/c2

./acats4_1/c3

./acats4_1/c4

./acats4_1/c5

./acats4_1/c6

./acats4_1/c7

./acats4_1/c8

./acats4_1/c9

./acats4_1/ca

./acats4_1/cb

./acats4_1/cc

./acats4_1/cd

./acats4_1/ce

./acats4_1/cxa

./acats4_1/cxb

./acats4_1/cz

./acats4_1/d

./acats4_1/e

./acats4_1/l

./acats4_1/bxc

./acats4_1/bxd

./acats4_1/bxe

./acats4_1/bxf

./acats4_1/bxh

./acats4_1/cxc

./acats4_1/cxd

./acats4_1/cxe

./acats4_1/cxf

./acats4_1/cxg

./acats4_1/cxh

./acats4_1/lxd

./acats4_1/lxe

./acats4_1/lxh

./acats4_1/docs

./acats4_1/support

Note that the names are given here in all lowercase; some systems may create uppercase names. The path
separator, shown here as '/', may also differ.

5.1.2.1 Decompressing Zipped Files
All ACATS files have been compressed (zipped) into compressed archives (zip-files) that have the MS-
DOS file extension ".zip". A Windows command-line utility was used to compress them. They must be
decompressed before they can be further processed. A decompression utility is available from the source
of the ACATS distribution. All ACATS 4.1 files may be decompressed using the following steps.
Approximately 48 MB of free space on a Windows machine hard drive will be required to accomplish the
decompression using this technique.

Create a directory on the hard disk to contain ACATS. In these examples, we assume the name is
acats4_1, but any name can be used. Copy the archive (file with .zip extension) to the hard disk in the
new directory. Decompress it insuring that directories are used. For the unzip program, this is the
default setting. For the pkunzip program, this is the -d option. For the winzip program, ensure that
"Use Directory Names" is checked. Also, ensure that the files are decompressed into the proper directory.

ACATS 4.1 User's Guide

5.1.2.1 Decompressing Zipped Files 29 June 2016 34

For command line decompressors, this means ensuring that the current subdirectory is acats4_1. For
winzip, this simply means selecting acats4_1 as the extract path.

For example, using unzip, and assuming that the archive name is ACATS41.zip, type
cd acats4_1

to set the proper directory, and
unzip ACATS41

to extract the files.

The files were compressed on a Windows system, where <CR><LF> is used as a line terminator.
Decompressors for other systems using other line terminators should be able convert the line terminators.
The ACAA has a short Ada program which converts a file from Windows to Unix format; please send the
ACAA mail at agent@ada-auth.org to request it if needed.

After all files have been extracted from the archive, delete the archive file from the hard disk if you wish
to conserve space.

As it decompresses files, unzip will restore the directory structure of the files, creating all needed
subdirectories.

Some users may prefer to work with ACATS files in an alternate directory structure or none at all. If the
unzip utility is invoked with the "-j" option, all files in the archive will be decompressed and placed in
the local working directory. In other words, none of the above subdirectories will be created. Since there
are too many ACATS files to fit into a root DOS directory, if you wish to put all files in a single
directory, you must first create a subdirectory (e.g., mkdir \ACATS) and unzip all archives there.

5.1.2.2 Decompressing Unix Compress Files
All ACATS files have been included in 1 Unix tar format file and then compressed using the Unix
compress utility. To create a set of ACATS files, first copy the compressed files acats_41.tar.Z from the
distribution source to a hard drive. Uncompress the file with the Unix command

uncompress acats_41.tar.Z

(Note that particular Unix implementations may have different formats or require specific qualifiers.)
After the ACATS file has been uncompressed, it must be untarred. Move to the directory where you want
the acats4_1 directory to be created and then untar the ACATS files

tar -xvf <path>/acats_41.tar

where <path> is the location of the uncompressed tar file.

Please note that these are generic instructions and may need to be customized or modified for specific
systems.

5.1.3 Files With Non-Graphic Characters
Four ACATS test files contain ASCII non-graphic (control) characters that may be lost or corrupted in the
file transfer and decompression process. The user must ensure that the proper characters are restored as
necessary.

There are also a number of ACATS test files provided in UTF-8 format. These files have an .au file
extension. The user must take care that any processing tools do not corrupt UTF-8 files. (This would be
unusual: it is most likely if a tool does not recognize UTF-8 formatted files and also modifies Latin-1
characters with codes larger than 127.)

ACATS 4.1 User's Guide

35 29 June 2016 Files With Non-Graphic Characters 5.1.3

The following paragraphs describe the four tests with ASCII non-graphic characters.

5.1.3.1 A22006C
This test checks that format effectors can appear at the beginning of a compilation. At the beginning of
the file, the first line is empty (indicated by the system's end-of-line marker, which may be a sequence of
one or more characters or may be indicated by some other means). The second line contains 20
characters: 6 control characters followed by the comment delimiter, a space, and the file name
(A22006C.ADA). The control characters are:

 Common Name Ada Name Decimal Value Hex Value
 Carriage return ASCII.CR 13 0D
 Carriage return ASCII.CR 13 0D
 Vertical tab ASCII.VT 11 0B
 Line feed ASCII.LF 10 0A
 Line feed ASCII.LF 10 0A
 Form feed ASCII.FF 12 0C

5.1.3.2 B25002A
This test checks that ASCII control characters (other than format effectors) are not permitted in character
literals. The expected characters are documented in source code comments, using the customary 2- or 3-
letter mnemonics. The 28 characters are used in their ASCII order, and have ASCII values 0 through 8, 14
through 31, and 127.

5.1.3.3 B25002B
This test checks that the five ASCII format effector characters cannot be used in character literals. There
are two groups of code containing the illegal characters; in each group, the characters appear in the order
given below:

 Common Name Ada Name Decimal Value Hex Value
 Horizontal tab ASCII.HT 9 09
 Vertical tab ASCII.VT 11 0B
 Carriage return ASCII.CR 13 0D
 Line feed ASCII.LF 10 0A
 Form feed ASCII.FF 12 0C

5.1.3.4 B26005A
This test checks the illegality of using control characters in string literals. Each string literal (ASCII codes
0 through 31 and 127) is used once, and the uses appear in ASCII order. Each use is also documented in a
source code comment, which identifies the character by its common 2- or 3-character mnemonic.

ACATS 4.1 User's Guide

5.2 Tailoring the ACATS Test Suite 29 June 2016 36

5.2 Tailoring the ACATS Test Suite
There are some files in the delivery that require modification before ACATS 4.1 is ready for processing
by an Ada implementation. Package ImpDef (impdef.a) must be edited to include values suitable for
proper testing of an implementation if the defaults are not acceptable. The macros.dfs file must similarly
be edited to include values suitable for testing. All .tst files (including package Spprt13 (spprt13s.tst))
must have their macro symbols replaced by implementation specific values. A body for FcnDecl
(fcndecl.ada) must be provided if necessary. Finally, Package Report (report.a) must be modified if
necessary.

The required customization is described in the following sections.

Customizations of these files from previous versions of the ACATS suite generally can be used with
ACATS 4.1, but users should ensure that neither their requirements nor the underlying files have changed
since the customizations were made.

5.2.1 ImpDef Customization
For ACATS 4.1, there are seven new parameters in Impdef. Other than those parameters, and the
removal of two obsolete, unused parameters, there was no change to Impdef or any of its children
from ACATS 4.0 to ACATS 4.1. A version of any of these packages that was tailored for ACATS 4.0
should be valid for ACATS 4.1 once the new parameters are defined unless some implementation
characteristics have changed.

ACATS tests use the entities in ImpDef to control test execution. Much of the information in ImpDef
relates to the timing of running code; for example, the minimum time required to allow a task switch may
be used by a test as a parameter to a delay statement. The time to use is obtained as an ImpDef constant.

impdef.a was added as a new feature to ACATS 2.0 suite. It is related to macro.dfs in that it must
be customized with values specific to an implementation and ACATS tests will rely on these values.
ImpDef is different in the following respects:

• Defaults are provided. Some implementations may be able to rely entirely on the default values
and subprograms, so no customization would be necessary.

• Some implementations may choose to provide bodies for procedures and/or functions. Bodies so
provided must satisfy requirements stated in ImpDef.

• Tests depending on Impdef do not need customization (macro substitution). Instead, ImpDef must
be available at compile time (i.e., included in the environment) for tests that rely upon it. This
simplifies the customization process and management and also is similar to the way that Ada
projects typically manage configuration parameters.

There are child packages of ImpDef for each of the Specialized Needs Annexes. An implementation that
uses one or more of the Specialized Needs Annexes in its conformity assessment must customize the
associated ImpDef child packages (or rely on their defaults) and must set the appropriate Booleans in
impdef.a. It is not necessary to customize Impdef children for Specialized Needs Annexes that are not
included in a particular conformity assessment.

Specific instructions for the values required by ImpDef and its children are included in impdef.a,
impdefc.a, impdefd.a, impdefe.a, impdefg.a, and impdefh.a. (Note that impdefc, for
example, refers to Annex C.) An excerpt from ImpDef is included in Annex B, “Parameterization Files”.

All implementations must customize impdef.a unless they wish to rely on the defaults provided.
ImpDef must be part of the environment whenever a test that depends on it is processed. Similarly,
the child of Impdef corresponding to each Specialized Needs Annex that the implementer intends to

ACATS 4.1 User's Guide

37 29 June 2016 ImpDef Customization 5.2.1

test during a conformity assessment must be customized and be part of the environment when the
Annex tests are processed.

5.2.2 Macro Defs Customization
There was no change to the macro.dfs file from ACATS 4.0 to ACATS 4.1. A version of
macro.dfs that was tailored for ACATS 4.0 should be valid for ACATS 4.1 unless some
implementation characteristics have changed.

Tests in files with the extension .tst contain symbols that represent implementation dependent values.
The symbols are identifiers with a initial dollar sign ('$'). Each symbol must be replaced with an
appropriate textual value to make the tests compilable. This process is sometime known as macro
substitution.

The Macrosub program distributed with the ACATS can automatically perform the required substitutions.
This program reads the replacement values for the symbols from the file macro.dfs and edits all the
.tst tests in the suite to make the needed changes. It writes the resulting, compilable programs into files
with the same name as the original but with the extension .adt. A sample macro.dfs is included with
the ACATS; it contains descriptions of all the symbols used in the test suite.

Substitutions using the Macrosub program may be made as follows:
1. Edit the file macro.dfs using values appropriate for the implementation. Symbols that use the

value of MAX_IN_LEN are calculated automatically and need not be entered.
2. Create a file called tsttests.dat that includes all of the .tst test file names, and their

directory locations if necessary. A version of this file (without directory information) is supplied.
3. Compile and bind MacroSub.
4. Run MacroSub.

The program will replace all symbols in the .tst files with values from macro.dfs. Test files with the
original test name but the extension .adt will contain the processable tests. The original .tst files will
not be modified.

5.2.3 Packages SPPRT13 and FCNDECL
Package SPPRT13 declares six constants of type System.Address that are primarily used by tests of
Clause 13 features. It is in the file spprt13s.tst. As distributed, the package uses macro symbols that
must be replaced. In most cases, the substitution can be accomplished by the macro substitution described
in the preceding section. If appropriate literals, constants, or predefined function calls can be used to
initialize these constants, they should be supplied in macro.dfs. Otherwise, the package FCNDECL
must be modified.

All implementations should verify that package SPPRT13 can be properly customized using the
macro substitution technique. Note that a body for SPPRT13 is illegal, nor is it allowed to add
declarations to package SPPRT13.

The specification for package FCNDECL is in the file fcndecl.ada. SPPRT13 depends on FCNDECL
(in a context clause that both withs it and uses it). As supplied with the ACATS, FCNDECL is an empty
package specification. If appropriate literals, constants, or predefined function calls cannot be used to
customize the constants declared in SPPRT13, the implementer must declare appropriate functions in the
specification of FCNDECL and provide bodies for them in a package body or with a pragma Import.

Modifications to FCNDECL must receive advance approval from the ACAL (and, if necessary, the
ACAA) before use in a conformity assessment.

ACATS 4.1 User's Guide

5.2.4 Modification of Package REPORT 29 June 2016 38

5.2.4 Modification of Package REPORT
All executable tests use the Report support package. It contains routines to automate test result reporting
as well as routines designed to prevent optimizers from removing key sections of test code. The package
Report is in the file report.a; this includes both the specification and body.

The specification of package Report may be modified to change the setting of
Generate_Event_Trace_File. (This setting controls whether Report writes an event trace file for the
grading tool, see 6.2 for more information.) No other modifications of the specification of package Report
are allowed.

Under some conditions, the body of package Report may need to be modified. For example, the target
system for a cross-compiler may require a simpler I/O package than the standard package Text_IO. In
such a case, it may be necessary to replace the context clause and the I/O procedure names in the body of
Report.

Modifications to the body of Report must receive advance approval from the ACAL (and, if necessary,
the ACAA) before use in a conformity assessment. No approval is needed to change the setting of
Generate_Event_Trace_File, but the setting used should be reported to the ACAL performing a
conformity assessment.

5.2.5 Allowed Test Modifications
Class B tests have one or more errors that implementations must identify. These tests are structured such
that, normally, implementations can report all included errors. Occasionally, an implementation will fail
to find all errors in a B-test because it encounters a limit (e.g., error cascading, resulting in too many error
reports) or is unable to recover from an error. In such cases, a user may split a single B-test into two or
more tests. The resulting tests must contain all of the errors included in the original test, and they must
adhere as closely as possible to the style and content of the original test. Very often, the only modification
needed is to comment out earlier errors so that later errors can be identified. In some cases, code insertion
will be required. An implementation must be able to demonstrate that it can detect and report all intended
B-test errors.

Splits may also be required in executable tests, if, for example, an implementation capacity limitation is
encountered (e.g., a number of generic instantiations too large for the implementation). In very
exceptional cases, tests may be modified by the addition of an attribute definition clause (to alter the
default size of a collection), or by the addition of an elaboration Pragma (to force an elaboration order).

Tests that use configuration pragmas (see 5.5.5.5) may require modification since the method of
processing configuration pragmas is implementation dependent.

Some tests include foreign language code (Fortran, C, or COBOL). While the features used should be
acceptable to all Fortran, C, and COBOL implementations, respectively, some implementations may
require modification to the non-Ada code. Modifications must, of course, preserve the input-output
semantics of the (foreign language) subprogram; otherwise, the ACATS test will report a failure.

All splits and modifications must be approved in advance by the ACAL (and, if necessary, the ACAA)
before they are used in a conformity assessment. It is the responsibility of the user to propose a B-test
split that satisfies the intention of the original test. Modified tests should be named by appending an
alphanumeric character to the name of the original test. When possible, line numbers of the original test
should be preserved in the modification.

ACATS 4.1 User's Guide

39 29 June 2016 Allowed Test Modifications 5.2.5

All tests must be submitted to the compiler as distributed (and customized, if required). If a test is
executable (class A, C, D, E) and compiles successfully, then it must be run. Modified tests or split tests
may be processed next. Only the results of the modified tests will be graded.

If the ACAA has issued an ACATS Modification List (see Section 5.1.1), then the modified versions of
tests with modifications must be used. Either the original version or the modified version of a test with an
allowed modification may be used.

5.3 Processing the Support Files
After all the files identified in Section 5.2 have been customized as needed and required, the support files
can be processed and the reporting mechanism can be verified.

5.3.1 Support Files
The following files are necessary to many of the ACATS tests. Implementations that maintain program
libraries may wish to compile them into the program library used for conformity assessment:

 report.a
 impdef.a impdefc.a (if testing Annex C)
 fcndecl.ada impdefd.a (if testing Annex D)
 checkfil.ada impdefe.a (if testing Annex E)
 lencheck.ada impdefg.a (if testing Annex G)
 enumchek.ada impdefh.a (if testing Annex H)
 tctouch.ada spprt13s.adt (after macro substitution)

Depending on local requirements and strategy, it may also be convenient to compile all foundation code
into the program library as well.

5.3.2 "CZ" Acceptance Tests
Four tests having names beginning "CZ" are part of the ACATS suite. Unlike other tests in the suite, they
do not focus on Ada language features. Instead, they are intended primarily to verify that software needed
for the correct execution of the test suite works as expected and required. They check, for example, to see
that package Report and package TCTouch work correctly.

All CZ tests must execute correctly and exhibit the prescribed behavior for a successful conformity
assessment. CZ tests must be processed and run as the first step of a conformity assessment to ensure
correct operation of the support software.

The acceptance test CZ1101A tests the correct operation of the reporting facilities of package Report,
including checks that Not_Applicable and Failed calls are reported properly, and that premature calls
cause failure. Therefore, CZ1101A will print some failure messages when it is executed. The presence of
these messages does not necessarily mean the test has failed. A listing of the expected output for
CZ1101A is included in Annex C, “Results of CZ Tests” (times and dates in the actual output will differ).

The acceptance test CZ1102A tests the correct operation of the dynamic value routines in Report. This
test should report "PASSED"; any other result constitutes a test failure.

ACATS 4.1 User's Guide

5.3.2 "CZ" Acceptance Tests 29 June 2016 40

The acceptance test CZ1103A ensures the correct operation of procedure Checkfile. (Some of the
executable file I/O tests use a file checking procedure named Checkfile that determines an
implementation's text file characteristics. The source code for this procedure is in the file checkfil.ada.)
CZ1103A checks whether errors in text files are properly detected, therefore, CZ1103A will print some
failure messages when it is executed. The presence of these messages does not necessarily mean the test
has failed. A listing of the expected output for CZ1103A is included in Annex C, “Results of CZ Tests”
(times and dates in the actual output will differ).

The acceptance test CZ00004 produces output that verifies the intent of the conformity assessment. It
relies on ImpDef having been correctly updated for the conformity assessment and produces output
identifying the annexes (if any) that will be included as part of the conformity assessment. This test also
checks for the proper operation of the TCTouch package, includes checks that assertion failures are
reported properly, therefore CZ00004 will print some failure messages when it is executed. The presence
of these messages does not necessarily mean the test has failed. A listing of the expected output for
CZ00004 is included in Annex C, “Results of CZ Tests”; since this output includes values from the
customized impdef, non-failure lines may vary from those in the expected output. However, the number
of lines and their relative positions should not change (only the contents of the lines can change).

5.4 Establishing Command Scripts
Users will often find it convenient to run large numbers of ACATS tests with command scripts. This
section discusses some of the issues to be considered in developing a script.

5.4.1 Command Scripts
All compiler options and switches that are appropriate and necessary to run the ACATS tests must be
identified and included in commands that invoke the compiler. The same is true for the binder or any
other post-compilation tools. Any implementation dependent processing of partitions, configuration
pragmas, and strict mode processing must be part of the scripts for running tests that rely on these
features.

A script should compile (only) all class B tests. It should compile and bind all class L tests; if link errors
are not explicitly given, the script should attempt to execute the L tests. It should compile all class F files.
It should compile, bind, and execute all class A, C, D, and E tests.

Sample commands for processing the ACATS are a required part of a formal Ada Comformity
Assessment Test Report. If a test report is available for the implementation being tested, these commands
can be used as a guideline for developing command scripts.

5.4.2 Dependencies
A command script must take account of all required dependencies. As noted earlier, some tests are
composed of multiple test files. Also, some tests include foundation code, which may be used by other
tests. If a foundation is not already in the environment, it must be compiled as part of building the test. All
files that are used in a test must be compiled in the proper order, as indicated by the file name. For
implementations that require the extraction individual compilation units from test files before submission
to the compiler, the individual units must be submitted to the compiler in the same order in which they
appear in the file.

ACATS 4.1 User's Guide

41 29 June 2016 Processing ACATS Tests 5.5

5.5 Processing ACATS Tests
After the ACATS tests and support code has been installed and all required modifications and preliminary
processing have been completed, the suite can be processed by an implementation. This section describes
the tests required for conformity assessment, required partitioning, how tests may be bundled for
efficiency, and certain processing that may be streamlined. It also describes how the suite has been
organized to allow a user to focus on specific development needs.

5.5.1 Required Tests
An implementation may be tested against the core language only or the core language plus one or more
Specialized Needs Annexes. All core tests (except as noted in 5.5.4) must be processed with acceptable
results for conformity assessment of the core language. All legacy tests, as well as all modern tests for
clauses 2-13 and annexes A and B are core tests. Conformity assessment including one or more
Specialized Needs Annexes requires that all tests for the annex(es) in question be correctly processed in
addition to all core tests.

Tests that are not applicable to an implementation (e.g., because of size limitations) and tests that report
"NOT APPLICABLE" when run by an implementation must nevertheless be processed and demonstrate
appropriate results.

Tests that are withdrawn on the current ACATS Modification List as maintained by the ACAA need not
be processed.

5.5.2 Test Partitions
Unless otherwise directed by the Special Requirements section of a test, all tests are to be configured and
run in a single partition. The method of specifying such a partition is implementation dependent and not
determined by the ACATS. The only tests that must be run in multiple partitions are those that test Annex
E, Distributed Systems.

5.5.3 Bundling Test Programs
In some situations, the usual test processing sequence may require an unacceptable amount of time. For
example, running tests on an embedded target may impose significant overhead time to download
individual tests. In these cases, executable tests may be bundled into aggregates of multiple tests. A set of
bundled tests will have a driver that calls each test in turn; ACATS tests will then be called procedures
rather than main procedures. No source changes in the tests are allowed when bundling; that is, the only
allowed change is the method of calling the test. Since ACATS tests are often designed to follow common
usage patterns, including reuse of units, and reusable units are often self-initializing (so that they are
resilient against misuse), not all ACATS tests can be bundled arbitrarily. In particular, foundations and
shared support code may not (and cannot, in general, because of the need to test elaboration actions)
support re-initialization and thus a bundled test may malfunction if it runs after another use of the same
foundation or support routine. It is the responsibility of the ACATS user to ensure that bundled tests
execute properly when bundled.

All bundles must be approved by the ACAL (and, if necessary, the ACAA) to qualify for a conformity
assessment. It is the responsibility of the user to identify the tests to be bundled and to write a driver for
them.

ACATS 4.1 User's Guide

5.5.4 Processing that may be Omitted 29 June 2016 42

5.5.4 Processing that may be Omitted
A user may streamline processing of the ACATS tests to the greatest degree possible consistent with
complete processing of all tests.

Many modern tests rely on foundation code. A foundation need not be compiled anew each time a
different test uses it. In a processing model based on a program library, it is reasonable to compile the
code into the library only once and allow the binder to use the processed results for each test that withs
the foundation.

A user may determine, with ACAL concurrence, that some tests require support that is impossible for the
implementation under test to provide. For example, there are tests that assume the availability of file I/O
whereas some (embedded target) implementations do not support file I/O. Those tests need not be
processed during witness testing; however, the implementer must demonstrate that they are handled in
accordance with the language standard. This demonstration may be performed before witness testing, in
which case it need not be repeated.

Annex B tests that require foreign language code (Fortran, C, COBOL) to be compiled and bound with
Ada code need not be processed if an implementation does not support a foreign language interface to the
respective language.

Tests for the Specialized Needs Annexes of Ada need not be processed except by implementations that
wish to have Annex results documented. In that case, only the tests for the annex(es) in question (in
addition to all core tests) need be processed. If any tests for a particular Annex are processed, then all
tests for that Annex must be processed. If an implementation does not support a feature in a Specialized
Needs Annex test, then it must indicate the non-support by rejecting the test at compile time or by raising
an appropriate exception at run time. (See Ada 1.1.3(17).)

No withdrawn test need be processed. Tests classified as Pending New in the current ACATS
Modification List also do not need to be processed. Pending New tests are new tests included with the
ACATS for review purposes, and are not yet required for conformity assessment. (Tests classified as New
in the current ACATS Modification List do need to be processed; these are required for conformity
assessments.)

5.5.5 Tests with Special Processing Requirements
Some tests may require special handling. These are primarily SNA tests, but some core tests are affected.
For example, distributed processing tests may require an executable image in multiple partitions, where
partitions are constructed in an implementation specific manner. Real-time processing tests may have
configuration pragmas that have to be handled in an implementation specific way. Numeric processing
tests require strict mode processing to be selected. Each such test has a Special Requirements section in
the test header describing any implementation specific handling that is required for the test.

A list of all such tests is provided in A.6, “Tests With Special Requirements”.

5.5.5.1 Tests Involving Limited Views
[Amend1] added the concept of limited views to Ada. For most ACATS tests, the possibility of limited
views can be ignored, as either they are not used at all, or they need not be separated from the full view in
the environment. (It is presumed that adding the full view to the environment also adds the corresponding
limited view.)

ACATS 4.1 User's Guide

43 29 June 2016 Tests Involving Limited Views 5.5.5.1

However, a few tests require that the limited view of a unit be added to the environment separately from
the full view of the unit. Such tests have dependencies in the full views on units that have not yet been
compiled (added to the environment). For these tests, any extra steps needed to add the limited view to the
environment separately from the full view will need to be accomplished.

The tests identified below need to add the limited view of one or more units to the environment separately
from the full view of the units.

c3a1003
c3a1004

ca11023
ca12001

cc51010

5.5.5.2 Foreign Language Interface Tests
Annex B, Interface to Other Languages, is part of the Ada core language. However, most of the features
contained in it are optional. In particular, if an implementation does not support an optional feature in
Annex B, then it must indicate the non-support by rejecting the test at compile time or by raising an
appropriate exception at run time. (See Ada B(2/3).)

ACATS tests expect that an implementation that provides one or more of the packages Interfaces.C,
Interfaces.COBOL, or Interfaces.Fortran implements the entire interface as defined by Annex B. As such,
ACATS testing procedures expect that the implementation will correctly process, and pass, all of the tests
for interfaces to C, COBOL, and/or Fortran code respectively, with the possible exception of tests
containing actual foreign code. If an implementation provides a partial implementation of one of the
foreign language interfaces, special handling of the test results will be needed. In particular, some or all
tests may fail by reporting an error on a line other than on marked with N/A => ERROR or may fail at
runtime. Such cases need to be described to the ACAL and ACAA and will be handled on a case-by-case
basis.

An implementation that provides one or more of these Interfaces child packages must successfully
compile the Ada units of tests with actual foreign language code. If the implementation does not support
the actual binding of the foreign language code to Ada, these tests may report binding errors, or may
reject the pragma Import, in which case they may be graded as inapplicable. If the implementation
supports the binding and an appropriate compiler is available, the tests must execute and report "Passed".
If the implementation supports the binding, but it is not feasible to have an appropriate compiler
available, then the tests may be graded as inapplicable by demonstrating that they fail to bind.

If one of the Interfaces child packages is not provided, then the corresponding tests may be graded as
inapplicable, provided they reject the corresponding with clause (see D.1.15 (C), D.1.18 (COBOL), and
D.1.19 (Fortran) for lists of tests that use the packages). Similarly, if a convention identifier for one of
these languages is not supported, then the corresponding tests may be graded as inapplicable, provided
they reject the corresponding aspect or pragma (see D.1.12 (C), D.1.13 (COBOL), and D.1.14 (Fortran)
for lists of tests containing each convention).

The tests involving interfaces to foreign code are listed below.

The foreign language code included in ACATS tests uses no special or unique features, and should be
accepted by any standard (C, COBOL, or Fortran) compiler. However, there may be dialect problems that
prevent the code from compiling correctly. Modifications to the foreign language code are allowable; the
modifications must follow the code as supplied as closely as possible and the result must satisfy the
requirements stated in the file header. Such modifications must be approved in advance by the ACAL
(and, if necessary, the ACAA).

ACATS 4.1 User's Guide

5.5.5.2 Foreign Language Interface Tests 29 June 2016 44

The method for compiling foreign code is implementation dependent and not specified as part of the
ACATS. Ada code in these tests must be compiled as usual. The Ada code includes Pragma Import that
references the foreign language code. The link name of foreign language object code must be provided in
ImpDef. When all code has been compiled, the test must be bound (including the foreign language object
code) and run. The method for binding Ada and foreign language code is implementation dependent and
not specified as part of the ACATS. The test must report "PASSED" when executed.

C Language Interface

The following tests check the C language interface; the ACATS expects that all of the tests identified
below will be satisfactorily processed as described above if the C language interface is supported.

The starred tests contain C code that must be compiled and linked if possible, as described above. The C
code is easily identifiable because the file has the extension .C. The C code may be modified to satisfy
dialect requirements of the C compiler. The C code files must be compiled through a C compiler, and the
resulting object code must be bound with the compiled Ada code. Pragma Import will take the name of
the C code from ImpDef.

cd30005*
bxb3001
bxb3002
bxb3003
bxb3004
cxb3001
cxb3002

cxb3003
cxb3004*
cxb3005
cxb3006*
cxb3007
cxb3008
cxb3009

cxb3010
cxb3011
cxb3012
cxb3013*
cxb3014
cxb3015
cxb3016

cxb3017*
cxb3018
cxb3019
cxb3020
cxb3021
cxb3022

COBOL Language Interface

The following tests check the COBOL language interface; the ACATS expects that all of the tests
identified below will be satisfactorily processed as described above if the COBOL language interface is
supported.

The starred test contains COBOL code that must be compiled and linked if possible, as described above.
The COBOL code is easily identifiable because the file has the extension .CBL. The COBOL code may
be modified to satisfy dialect requirements of the COBOL compiler. The COBOL code files must be
compiled through a COBOL compiler, and the resulting object code must be bound with the compiled
Ada code. Pragma Import will take the name of the COBOL code from ImpDef.

cxb4001
cxb4002
cxb4003

cxb4004
cxb4005
cxb4006

cxb4007
cxb4008
cxb4009*

Fortran Language Interface

The following tests check the Fortran language interface; the ACATS expects that all of the tests
identified below will be satisfactorily processed as described above if the Fortran language interface is
supported.

The starred tests contain Fortran code that must be compiled and linked if possible, as described above.
The Fortran code is easily identifiable because the file has the extension .FTN. The Fortran code may be
modified to satisfy dialect requirements of the Fortran compiler. The Fortran code files must be compiled
through a Fortran compiler, and the resulting object code must be bound with the compiled Ada code.
Pragma Import will take the name of the Fortran code from ImpDef.

cxb5001 cxb5002 cxb5003 cxb5004*

ACATS 4.1 User's Guide

45 29 June 2016 Foreign Language Interface Tests 5.5.5.2

cxb5005*

5.5.5.3 Tests for the Distributed Systems Annex
The ACATS tests for the Distributed Systems Annex are applicable only to implementations that wish to
test this SNA. Not all of these tests apply to all implementations, since the annex includes some
implementation permissions that affect the applicability of some tests.

The principal factors affecting test applicability are:
1. whether the Remote_Call_Interface pragma is supported;
2. whether a Partition Communication System (PCS) is provided (i.e., whether a body for

System.RPC is provided by the implementation);
3. whether the implementation has taken advantage of the permission to change the specification of

System.RPC;
4. whether the Real-Time Annex is also supported.

An implementation may test for the annex without providing a PCS. In order to test for the Distributed
Systems Annex, an implementation must allow a body for System.RPC to be compiled.

Remote_Call_Interface pragma

Ada allows explicit message-based communication between active partitions as an alternative to RPC [see
Ada E.2.3(20)]. If an implementation does not support the Remote_Call_Interface pragma then the
following tests are not applicable:
bxe2009
bxe2010
bxe2011
bxe2013

bxe4001
cxe2001
cxe2002
cxe4001

cxe4002
cxe4003
cxe4004
cxe4005

cxe4006
cxe5002
cxe5003
lxe3001

Partition Communication System

An implementation is not required to provide a PCS [see Ada E.5(27)] in order to test the Distributed
Systems Annex. If no PCS is provided then the following tests are not applicable:
cxe1001
cxe2001
cxe4001

cxe4002
cxe4003
cxe4004

cxe4005
cxe4006
cxe5001

System.RPC

Two tests provide a body for System.RPC, and a third test checks the specification of System.RPC. An
alternative declaration is allowed for package System.RPC [see Ada E.5(27.1/2)]. If an alternative
declaration is used for System.RPC, the following tests are not applicable:
cxe5001 cxe5002 cxe5003

Real-Time Annex Support
Many implementations that support the Distributed Systems Annex will also support the Real-Time
Annex. Test cxe4003 is designed to take advantage of Real-Time Annex features in order to better test the
Distributed Systems Annex.

ACATS 4.1 User's Guide

5.5.5.3 Tests for the Distributed Systems Annex 29 June 2016 46

For implementations that do not support the Real-Time Annex, test cxe4003 must be modified. This
modification consists of deleting all lines that end with the comment --RT.

Configuring Multi-Partition Tests

Some Distributed Systems Annex tests require multiple partitions to run the test, but no more than two
partitions are required for running any of them. All multi-partition tests contain a main procedure for each
of the two partitions. The two partitions are referred to as "A" and "B" and the main procedures for these
partitions are named <test_name>_A and <test_name>_B respectively. Each test contains instructions
naming the compilation units to be included in each partition. Most implementations will be primarily
concerned with the main procedure and RCI packages that are to be assigned to each partition; the
remainder of the partition contents will be determined by the normal dependency rules. The naming
convention used in multi-partition tests aid in making the partition assignments. If the name of a
compilation unit ends in "_A<optional_digit]>" then it should be assigned to partition A. Compilation
units with names ending in "_B<optional_digit>" should be assigned to partition B.

The following tests require that two partitions be available to run the test:
cxe1001
cxe2001*
cxe2002
cxe4001

cxe4002
cxe4003
cxe4004
cxe4005

cxe4006
cxe5002
cxe5003
lxe3001

lxe3002*

(*) Tests cxe2001 and lxe3002 contain a Shared_Passive package and two active partitions. They may be
configured with either two or three partitions. The two-partition configuration must have two active
partitions and the Shared_Passive package may be assigned to either one of the active partitions. The
three-partition configuration consists of two active partitions and a single passive partition, and the
passive partition will contain the single Shared_Passive package.

Running Multi-Partition Tests

All of the multi-partition tests include the package Report in both of the active partitions. In order for the
test to pass, both partitions must produce a passed message (except for lxe3002 - see special instructions
for that test). If either partition produces a failed message, or if one or both partitions do not produce a
passed message, the test is graded "failed".

When running the multi-partition tests it is not important which partition is started first. Generally,
partition A acts as a server and partition B is a client, so starting partition A first is usually best.

In the event a test fails due to the exception Communication_Error being raised, it is permissible to rerun
the test.

5.5.5.4 Tests for the Numerics Annex
Many of the tests for Annex G, Numerics, must be run in strict mode. The method for selecting strict
mode is implementation dependent and not specified by the ACATS. (Note that the tests for numerical
functions specified in Annex A may, but need not, be run in strict mode.) The following tests must be run
in strict mode:
cxg2003
cxg2004
cxg2006
cxg2007
cxg2008

cxg2009
cxg2010
cxg2011
cxg2012
cxg2013

cxg2014
cxg2015
cxg2016
cxg2017
cxg2018

cxg2019
cxg2020
cxg2021

ACATS 4.1 User's Guide

47 29 June 2016 Tests that use Configuration Pragmas 5.5.5.5

5.5.5.5 Tests that use Configuration Pragmas
Several of the tests in Annex D, Real Time Systems, Annex E, Distributed Systems, and Annex H, High
Integrity Systems, use configuration pragmas. The technique for applying a configuration pragma to a test
composed of multiple compilation units is implementation dependent and not specified by the ACATS.
Every implementation that uses any such test in a conformity assessment must therefore take the
appropriate steps, which may include modifications to the test code and/or post-compilation processing,
to ensure that such a pragma is correctly applied. The following tests require special processing of the
configuration pragma:
ba15001
bxc5001
bxh4001
bxh4002
bxh4003
bxh4004
bxh4005
bxh4006
bxh4007
bxh4008
bxh4009
bxh4010
bxh4011
bxh4012
bxh4013
cxd1004
cxd1005

cxd2001
cxd2002
cxd2003
cxd2004
cxd2005
cxd2006
cxd2007
cxd2008
cxd3001
cxd3002
cxd3003
cxd4001
cxd4003
cxd4004
cxd4005
cxd4006
cxd4007

cxd4008
cxd4009
cxd4010
cxd5002
cxd6002
cxd6003
cxda003
cxdb005
cxh1001
cxh3001
cxh3003
lxd7001
lxd7003
lxd7004
lxd7005
lxd7006
lxd7007

lxd7008
lxd7009
lxh4001
lxh4002
lxh4003
lxh4004
lxh4005
lxh4006
lxh4007
lxh4008
lxh4009
lxh4010
lxh4011
lxh4012
lxh4013

5.5.6 Focus on Specific Areas
The ACATS test suite is structured to allow compiler developers and testers to use parts of the suite to
focus on specific compiler feature areas.

Both the legacy tests and the modern tests tend to focus on specific language features in individual tests.
The name of the test is generally a good indicator of the primary feature content of the test, as explained
in the discussion of naming conventions. Beware that legacy test names have not changed, but the Ada
Reference Manual organization has changed from [Ada83] to [Ada95], so some legacy test names point to
the wrong clause of the Ada Standard. Further, note that the general style and approach of the modern
tests creates user-oriented test situations by including a variety of features and interactions. Only the
primary test focus can be indicated in the test name.

ACATS 4.1 tests are divided into core tests and Specialized Needs Annex tests. Recall that annexes A and
B are part of the core language. All annex tests (including those for annexes A and B) have an 'X' as the
second character of their name; Specialized Needs Annex tests have a letter between 'C' and 'H'
(inclusive) corresponding to the annex designation, as the third character of the test name.

5.6 Grading Test Results
Although a single test may examine multiple language issues, ACATS test results are graded "passed",
"failed", or "not applicable" as a whole.

ACATS 4.1 User's Guide

5.6 Grading Test Results 29 June 2016 48

All customized, applicable tests must be processed by an implementation. Results must be evaluated
against the expected results for each class of test. Results that do not conform to expectations constitute
failures. The only exceptions allowed are discussed in 5.2.5; in such cases, processing the approved
modified test(s) must produce the expected behavior. Any differences from the general discussion of
expected results below for executable or non-executable tests are included as explicit test conditions in
test prologues.

Warning or other informational messages do not affect the pass/fail status of tests.

Expected results for executable and non-executable tests are discussed in Sections 5.6.1, 5.6.2, and 5.6.3.
Tests that are non-applicable for an implementation are discussed in 5.6.4. Withdrawn tests are discussed
in 5.6.5.

The ACATS provides a tool that can be used to automate much of the test grading process; see 6. This
tool enforces the expected results as described in the following sections, as well as checking for
processing errors (compiling test files in the wrong order, for instance) and omissions (failing to compile
required test files).

5.6.1 Expected Results for Executable Tests
Executable tests (classes A, C, D, E) must be processed by the compiler and any post-compilation steps
(e.g., binder, partitioner) without any errors. They must be loaded into an execution target and run.
Normal execution of tests results in an introductory message that summarizes the test objective, possibly
some informative comments about the test progress, a final message giving pass / fail status, and graceful,
silent termination. They may report "PASSED", "TENTATIVELY PASSED", "FAILED", OR "NOT
APPLICABLE".

A test that fails to compile and bind, including compiling and binding any foundation code on which it
depends is graded as "failed", unless the test includes features that need not be supported by all
implementations. For example, an implementation may reject the declaration of a numeric type that it
does not support. Allowable cases are clearly stated in the Applicability Criteria of tests. Annex M of the
Ada Standard requires implementations to document such implementation-defined characteristics.

A test that reports "FAILED" is graded as "failed" unless the ACAL, and possibly the ACAA, determine
that the test is not applicable for the implementation.

A test that reports "PASSED" is graded as "passed" unless the test produces the pass message but fails to
terminate gracefully (e.g., crashes, hangs, raises an unexpected exception, produces an earlier or later
"FAILED" message). This kind of aberrant behavior may occur, for example, in certain tasking tests,
where there are multiple threads of control. A pass status message may be produced by one thread, but
another thread may asynchronously crash or fail to terminate properly.

A test that reports "NOT APPLICABLE" must be run by the implementation and is graded as "not
applicable" unless it produces the not-applicable message and then fails to terminate gracefully.

A test that reports "TENTATIVELY PASSED" is graded as "passed" if the test results satisfy the pass/fail
criteria in the test. Normally, verification requires manual inspection of the test output.

A test that fails to report, or produces only a partial report, will be graded as "failed" unless the ACAL,
and possibly the ACAA, determine that the test is not applicable for the implementation.

ACATS 4.1 User's Guide

49 29 June 2016 Expected Results for Class B Tests 5.6.2

5.6.2 Expected Results for Class B Tests
Class B tests are expected to be compiled but are not subject to further processing and are not intended to
be executable. An implementation must correctly report each clearly marked error (the notation --
ERROR: occurs at the right hand side of the source). A multiple unit B test file generally will have errors
only in one compilation unit per source file. Error messages must provide some means of specifying the
location of an error, but they are not required to be in direct proximity with the -- ERROR: marking of
the errors. The actual text of error messages is not used in determining whether an error is properly
detected; only the location of the reported error is used. (The ACATS must not prevent innovation in
error handling.)

Some B-tests also include the notation -- OK to indicate constructs that must not be identified as errors.
Such constructs are typically similar to illegal constructs and serve to ensure that implementations do not
reject too much. Not identifying -- OK constructs as errors is especially important since some constructs
that were errors in [Ada83] are now legal in later versions of Ada.

Some B-tests exercise constructs whose correctness depends on source code that is textually separated
(for example, a deferred constant and its full declaration). In these cases, it may be reasonable to report an
error at both locations. Such cases are marked with -- OPTIONAL ERROR. These lines may be flagged
as errors by some, but not all, implementations. Unless an optional error is marked as an error for the
wrong reason, an error report (or lack of it) does not affect the pass/fail status of the test.

Some B-tests contain constructs where it would be reasonable for a compiler to report an error at one of
several source locations. When it would not be appropriate for the ACATS to insist on a particular source
location, all such source locations are marked with -- POSSIBLE ERROR: and an indication of which
error set (if the test contains several) the location belongs to. In such cases, an implementation is
considered to have properly reported the error if it reports an error at any of the places marked --
POSSIBLE ERROR: for a particular set. The implementation may flag more than one such place; this
does not affect the pass/fail status of the test. However, the test is graded "failed" if no error is reported at
any of the places marked -- POSSIBLE ERROR: for an error set.

A test is graded as "passed" if it reports each error in the test. The content of error messages is considered
only to determine that they are indeed indications of errors (as opposed to warnings) and that they refer to
the expected errors. The Reference Manual does not specify the form or content of error messages. In
particular, a test with just one expected error is graded as "passed" if the test is rejected at compile time
for any reason.

A test is graded as "failed" if it fails to report on each error in the test or if it marks legal code as incorrect.

5.6.3 Expected Results for Class L Tests
Class L tests are expected to be rejected before execution begins. They must be submitted to the compiler
and to the linker/binder. If an executable is generated, then it must be submitted for execution. Unless
otherwise documented, the test is graded as "failed" if it begins execution, regardless of whether any
output is produced.. (Twenty-eight L tests contain documentation indicating that they may execute. See
below.)

In general, an L test is expected to be rejected at link/bind time. Some tests contain -- ERROR:
indications; an implementation that reports an error associated with one of these lines is judged to have
passed the test (provided, of course, that the link attempt fails).

The following tests are exceptions to the general rule that an L test must not execute:

ACATS 4.1 User's Guide

5.6.3 Expected Results for Class L Tests 29 June 2016 50

Test LXE3002, for the Distributed Systems Annex, is a test that has two partitions, each of which may execute.
As documented in the source code, this test is graded "failed" if both partitions report "TENTATIVELY
PASSED". Other outcomes are graded as appropriate for Class L tests.
Tests LA14001..27 and LA20002 (twenty-seven core language tests), as documented in the source code, may
execute if automatic recompilation is supported. These tests are graded as "passed" if they execute and report
"PASSED". Other outcomes are graded as appropriate for Class L tests.

5.6.4 Inapplicable Tests
Each ACATS test has a test objective that is described in the test prologue. Some objectives address Ada
language features that need not be supported by every Ada implementation (e.g., "check floating-point
operations for digits 18"). These test programs generally also contain an explicit indication of their
applicability and the expected behavior of an implementation for which they do not apply. Annex D,
“Test Applicability Criteria” lists common reasons for a test to be inapplicable, and lists the tests affected.

A test may be inapplicable for an implementation given:
• appropriate ACATS grading criteria; or
• an ACAA ruling on a petition to accept a deviation from expected results.

Appropriate grading criteria include:
1. whether a test completes execution and reports "NOT APPLICABLE";
2. whether a test is rejected at compile or bind time for a reason that satisfies grading criteria stated

in the test program.

All applicable test programs must be processed and passed.

5.6.5 Withdrawn Tests
From time to time, the ACAA determines that one or more tests included in a release of the ACATS
should be withdrawn from the test suite. Tests that are withdrawn are not processed during a conformity
assessment and are not considered when grading an implementation.

Usually, a test is withdrawn because an error has been discovered in it. A withdrawn test will not be
reissued as a modified test, although it may be revised and reissued as a new test in the future.

Withdrawn tests are listed in the ACATS Modification List, which is maintained by the ACAA.

5.7 Addressing Problems or Issues
After all tests have been processed and graded, any remaining problems should be addressed. Test failures
must be identified and resolved. This section discusses issues that are not due to implementation errors
(bugs).

5.7.1 Typical Issues
Here are some typical causes of unexpected ACATS test failures (often resulting from clerical errors):

• Processing a test that is withdrawn;
• Processing the original version of a test that has been modified by the ACAA to correct a test

error;
• Processing a test that is not applicable to the implementation (as explained in Section 5.6.4);

ACATS 4.1 User's Guide

51 29 June 2016 Typical Issues 5.7.1

• Processing files (or tests, see Section 5.4.2) in an incorrect order;
• Processing tests when units required in the environment are not present.

Test result failures resulting from technical errors may include:
• Incorrect values in ImpDef, which provide inappropriate values to tests at run-time (refer to

5.2.1);
• Incorrect values in macro.dfs, which result in incorrectly customized tests (refer to 5.2.2);
• Need to modify a test (e.g., split a B-test).

Finally, occasionally a user discovers an error in a new ACATS test. More rarely, errors are uncovered by
compiler advances in tests that are apparently stable. In either case, if users believe that a test is in error,
they may file a dispute with the ACAL. The dispute process is described in the next section.

5.7.2 Deviation from Expected Results - Petition & Review
Each test indicates in its prologue what it expects from a conforming implementation. The result of
processing a test is acceptable if and only if the result is explicitly allowed by the grading criteria for the
test.

A user may challenge an ACATS test on the grounds of applicability or correctness. A challenger should
submit a petition against the test program to an ACAL or to the ACAA, following the procedure and the
format presented in [Pro31]. A petition must clearly state whether it is a claim that the test does not apply
to the implementation or that the test is incorrect. The petition must indicate the specific section of code
that is disputed and provide a full explanation of the reason for the dispute.

ACALs will forward petitions from their customers to the ACAA for decisions. The ACAA will evaluate
the petitioner's claims and decide whether:

• the test is applicable to the implementation (i.e., deviation is not allowed);
• the test is not applicable to the implementation (i.e., deviation is allowed);
• the test should be repaired (deviation is allowed, and the modified test should be used for

determining conformity assessment results);
• the test should be withdrawn (deviation is allowed and the test is not considered in determining

conformity assessment results).

A deviation is considered to be a test failure unless a petition to allow the deviation has been accepted by
the ACAA.

5.8 Reprocessing and Regrading
After all problems have been resolved, tests that failed can be reprocessed and regraded. This step
completes the ACATS testing process.

ACATS 4.1 User's Guide

53 29 June 2016 ACATS Grading using the Grading Tool 6

Section 6: ACATS Grading using the Grading Tool
ACATS 4.1 introduces an optional tool to (mostly) automate grading of ACATS tests.

When the ACATS was designed (as the ACVC in the early 1980s), the intention always was that running
it would give a simple and clear Pass or Fail result. However, grading of tests (particularly of B and L
Tests) is somewhat subjective and very time-consuming. (Test grading by formal testers typically
involves poring over compiler listings of the entire ACATS with a large highlighter.)

The grading tool greatly reduces this effort and enforces both the processing rules (as outlined in 5.4.2)
and expected results for a test (see 5.6).

Use of the grading tool is optional for ACATS 4.1. Manual test grading is acceptable for formal
conformity assessments; whether to use the grading tool will be left to implementers and their ACAL.
The ACAA will use experience with the tool to inform whether using the tool should be required for
future ACATS versions.

6.1 Using the Grading Tool
The ACATS Grading Tool, "Grade" takes three files as input and produces a grading report, with details
for each test followed by a summary and an overall Passed or Failed result.

The three files are:

Event Trace File
 Includes each interesting event that occurs during the processing of an ACATS test. Each

ACATS User (or their implementor) needs to provide a method of producing an event
trace file for their implementation in order to use the Grading Tools. See clause 6.2 for
more information.

Test Summary File
 A machine-readable distillation of one or more ACATS tests. These are created by a tool

included with the ACATS. See clause 6.3 for more information.
Manual Grading File
 A list of tests that may require manual grading. This file can be created with any plain

text editor, and may be empty. See clause 6.4 for more information.

An example using the grading tool is given in subclause 6.1.2, “Annotated Grading Tool Example”.

6.1.1 Workflow using the Grading Tool
The workflow using the Grading Tool is similar to using the ACATS manually. The steps needed are
outlined below.

1. Install and configure the ACATS in the normal way, as outlined in clauses 5.1, 5.2, and 5.3. It is
particular important that Macro Defs customization 5.2.2 is accomplished before generating any
test summaries, as the summary program is unaware of the macro syntax. Also, do not use the
grading tool on the support tests in the CZ directory, as some of these include intentional failure
messages that the grading tool is not prepared to handle.

2. Compile the Grading and Test Summary Tools, as described in 6.1.3.
3. Determine how Event Traces are going to be constructed. If the implementation provides direct

writing of an event trace (as described in 6.2.2), then go to step 4a. Otherwise, acquire or create a
listing convertion tool as described in 6.2.3, and go to step 4b.

ACATS 4.1 User's Guide

6.1.1 Workflow using the Grading Tool 29 June 2016 54

4a. Create command scripts (as described in 5.4) to process the ACATS. Include in those the
appropriate option to create event traces. Also, modify Report.A so that the constant
Generate_Event_Trace_File has the value True. When complete, go to step 5.

 The command scripts could generate one giant event trace for the entire ACATS, but it probably
is more manageable to create several smaller event traces for portions of the ACATS. One
obvious way to do that is to create a single event trace for each subdirectory that contains ACATS
tests in its default delivery structure. (Such event traces can be combined later, if desired.)

4b. Create command scripts (as described in 5.4) to process the ACATS. Include in those use of the
listing conversion tool to make event traces. Then go to step 5.

5. Create test summaries for each grading segment. If, for instance, you will grade each directory
individually, then you will need a test summary file for each directory. These files can be
generated by running the Test Summary tool on each source file in the directory using a single
summary file as output. On most operating systems, this is easily accomplished with a script
command. (Some possibilities are discussed in 6.1.5).

 The Test Summary Files will only need to be regenerated if the ACATS tests change in some way
(typically, when an ACATS Modification List is issued). It's probably easiest to make a script to
regenerate the entire set of summaries so that it can be used when the suite changes. Once the
entire set of test summaries has been created, move to step 6.

6. Create an empty manual grading request file. This is just an empty text file. (See 6.4 for more
information.)

7. Process the ACATS tests, creating event traces. The event traces should contain the same tests as
the test summary files. This process is described in 5.5.

8. Run the Grading Tool (GRADE) on the pairs of event traces and summaries, using the current
manual grading request file. Typically, the default options are sufficient, but some
implementations or event traces may need options. The options are described in 6.1.4.

9. If all of the grading reports display Passed, you're done. But most likely, some tests will be
reported as failed. The grading tool will report the first failure reason for each test, but there may
be additional failure reasons for each test.

A. If the failure reason is a process failure or a missing compilation, most likely there is a
problem with the scripts that process the ACATS. Make sure that the test files are
compiled in the appropriate order and no test files are missing. A missing compilation
might also mean that the test needs to be split. See item B.

B. If the failure reason is extra or missing errors, grade the test manually (see 5.6) to see if
the problem is with the implementation or the Grading Tool being too strict about error
locations. If manual grading indicates the test passed, add the test to your Manual
Grading Request file - again, see 6.4 (preferably with a comment explaining why it was
added). Note that it is not necessary to remove tests from this list: if the grading tool
determines that the test grades as Passed or Not Applicable, it will not request manual
grading for the test even if it appears in this list.

 If the manual grading indicates that the test needs to be split, do the following. First, add
the test to your Manual Grading Request file - the ACATS requires processing the
original test in this case. (Be sure to put in a comment that the test is split, since it won't
be necessary to manually grade the original test in that case.) Then, split the test
following the guidelines in 5.2.5, and add the split tests to a processing script and the test
summary script. The Test Summary tool can create summaries for split tests, so the
grading tool can be used to grade them.

C. For other failure reasons, most likely the implementation is at fault. Fixing the
implementation is likely the only way to meaningfully change the result. In the unlikely

ACATS 4.1 User's Guide

55 29 June 2016 Workflow using the Grading Tool 6.1.1

event that there is a problem with a test, the procedure for test challenges are outlined in
5.7.2.

 You'll also need to handle any special handling tests, including any tests that require manual
grading. (This is one good reason to keep the manual grading list as short as possible.)

 Then return to step 7 and repeat the test run.

Using this procedure, the vast majority of tests will not require hand grading. Future ACATS updates may
improve tests that are particulary difficult to grade automatically. The ACAA is interested in which tests
need manual grading for your implementation - see 6.4.

6.1.2 Annotated Grading Tool Example
Following is an example of using the grading tool on Chapter 5 C-Tests for an implementation that has
not yet implemented most of Ada 2012. For this example, file ChapC5.csv is an event trace containing the
events generated by processing the 102 ACATS C-Tests for chapter 5. The file C5-Sum.csv is the test
summary file for the 102 ACATS C-Tests for chapter 5. Man.Txt is an empty file (there are no manual
grading requests for this run).

In the following, annotations are given in italics, and are not part of the output of the Grading Tool.

The command line used for the example is:
Grade ChapC5.csv C5-Sum.csv Man.Txt "C-Tests for Chapter 5" - Use_Timestamps -
Check_All_Compiles -No_Positions

This gives the following expected results:

ACATS 4.1 User's Guide

6.1.2 Annotated Grading Tool Example 29 June 2016 56

ACATS Grading Tool - version 1.0
 Compile Checks: CHECK_ALL
 Make checks of time stamps in event log
 Use only line numbers of error messages when grading
 Report verbosity: NORMAL
 779 event trace records read from ChapC5.csv
 The non-comment records in the event trace file.
 117 test summary trace records read from C5-Sum.csv
 The non-comment records in the test summary file. All tests in this file are graded,
 whether or not they appear in the event trace. Extra tests in the event trace are ignored.
 0 manual grading requests read from New-Man.Txt
 The number of tests for which manual grading was requested, excluding comments.
-- Test C51004A passed execution
 The result for an individual test. The passed results can be suppressed with the -quiet option rather than -normal.
-- Test C52005A passed execution
-- Test C52005B passed execution
-- Test C52005C passed execution
-- Test C52005D passed execution
-- Test C52005E passed execution
-- Test C52005F passed execution
-- Test C52008A passed execution
-- Test C52008B passed execution
-- Test C52009A passed execution
-- Test C52009B passed execution
-- Test C52010A passed execution
-- Test C52011A passed execution
-- Test C52011B passed execution
-- Test C52101A passed execution
-- Test C52102A passed execution
-- Test C52102B passed execution
-- Test C52102C passed execution
-- Test C52102D passed execution
-- Test C52103A passed execution
-- Test C52103B passed execution
-- Test C52103C passed execution
-- Test C52103F passed execution
-- Test C52103G passed execution
-- Test C52103H passed execution
-- Test C52103K passed execution
-- Test C52103L passed execution
-- Test C52103M passed execution
-- Test C52103P passed execution
-- Test C52103Q passed execution
-- Test C52103R passed execution
-- Test C52103X passed execution
-- Test C52104A passed execution
-- Test C52104B passed execution
-- Test C52104C passed execution
-- Test C52104F passed execution
-- Test C52104G passed execution
-- Test C52104H passed execution
-- Test C52104K passed execution
-- Test C52104L passed execution
-- Test C52104M passed execution
-- Test C52104P passed execution
-- Test C52104Q passed execution
-- Test C52104R passed execution
-- Test C52104X passed execution
-- Test C52104Y passed execution
-- Test C53007A passed execution
** Test C540001 has unexpected compile error at line 144 in file C540001.A
 because: Feature not implemented
 The test uses an Ada 2012 feature not implemented in the test implementation. Thus, this test
 (and several others) fail. The message is not part of the grading (and is suppressed if -quiet is
 used), but should be helpful in determining the reason a test has failed.
** Test C540002 has unexpected compile error at line 112 in file C540002.A
 because: Unable to resolve expression
** Test C540003 has unexpected compile error at line 69 in file C540003.A

ACATS 4.1 User's Guide

57 29 June 2016 Annotated Grading Tool Example 6.1.2

 because: Feature not implemented
-- Test C54A03A passed execution
-- Test C54A04A passed execution
-- Test C54A07A passed execution
-- Test C54A13A passed execution
-- Test C54A13B passed execution
-- Test C54A13C passed execution
-- Test C54A13D passed execution
-- Test C54A22A passed execution
-- Test C54A23A passed execution
-- Test C54A24A passed execution
-- Test C54A24B passed execution
-- Test C54A42A passed execution
-- Test C54A42B passed execution
-- Test C54A42C passed execution
-- Test C54A42D passed execution
-- Test C54A42E passed execution
-- Test C54A42F passed execution
-- Test C54A42G passed execution
** Test C550001 has unexpected compile error at line 72 in file C550001.A
 because: Feature not implemented
** Test C552001 has unexpected compile error at line 150 in file C552001.A
 because: This must name a type
++ Test C552002 N/A because of expected error at line 59 in file C552002.A
 because: Feature not implemented
 Note that the text of error messages does not have any effect on test grading. This test is
 Not Applicable because the first error occurred on a N/A => Error line, regardless of the message text.
** Test C552A01 has unexpected compile error at line 73 in file C552A01.A
 because: F552A00_PRIME_NUMBERS; WITHed compilation unit not found
 Here, a foundation (which is not graded by itself) failed to compile. The failure to compile the
 foundation (because of an unimplemented feature) caused this test to fail.
** Test C552A02 has unexpected compile error at line 94 in file C552A02.A
 because: F552A00_SPARSE_ARRAYS; WITHed compilation unit not found
-- Test C55B03A passed execution
-- Test C55B04A passed execution
-- Test C55B05A passed execution
-- Test C55B06A passed execution
-- Test C55B06B passed execution
-- Test C55B07A passed execution
++ Test C55B07B N/A because of expected error at line 45 in file C55B07B.DEP
 because: Identifier is not defined
 This test is Not Applicable because the implementation in question does not define a type Short_Integer.
-- Test C55B10A passed execution
-- Test C55B11A passed execution
-- Test C55B11B passed execution
-- Test C55B15A passed execution
-- Test C55B16A passed execution
-- Test C55C02A passed execution
-- Test C55C02B passed execution
-- Test C56002A passed execution
-- Test C57003A passed execution
-- Test C57004A passed execution
-- Test C57004B passed execution
-- Test C58004C passed execution
-- Test C58004D passed execution
-- Test C58004G passed execution
-- Test C58005A passed execution
-- Test C58005B passed execution
-- Test C58005H passed execution
-- Test C58006A passed execution
-- Test C58006B passed execution
-- Test C59002A passed execution
-- Test C59002B passed execution
-- Test C59002C passed execution

=======================================

Summary for C-Tests for Chapter 5

ACATS 4.1 User's Guide

6.1.2 Annotated Grading Tool Example 29 June 2016 58

Result Overall B-Tests C-Tests L-Tests Other Tests

 Total Tests Graded 102 0 102 0 0
 The total tests graded. The numbers in each column reflect the number of tests of the appropriate type for
 the category in question.
** Failed (Process) 0 0 0 0 0
 A process failure is some problem with the test processing, such as running a test before it is compiled or
 compiling units out of the required order. Usually, correcting the test processing is all that is needed to
 eliminate this error.
** Failed (Compile Missing) 0 0 0 0 0
 This means that some required unit was not compiled. This is a failure even if the test executed and passed.
** Failed (Compiler Crash) 0 0 0 0 0
 This means that some compilation started but did not finish normally. This usually reflects some internal
 compiler error.
** Failed (Error in OK area) 0 0 0 0 0
 This means that an error was reported in the range of an OK tagged line. These are counted separately as these
 typically indicate a significant compiler bug.
** Failed (Unexpected Error) 7 0 7 0 0
 This means that an error was reported outside of the range of any test tag.
** Failed (Missing Error) 0 0 0 0 0
 This means that no error was reported where one was required (for instance, for an error tag). This is only
 likely for a B-Test.
** Failed (Bind Missing) 0 0 0 0 0
 This means that no bind operation was found for the test (and no other failure occurred first).
** Failed (Bind Crash) 0 0 0 0 0
 This means that bind started but did not finish normally.
** Failed (Bind Error) 0 0 0 0 0
 This means that bind reported an error.
** Failed (Run Missing) 0 0 0 0 0
 This means that no test execution was found (and no other error was detected first).
** Failed (Run Crash) 0 0 0 0 0
 This means that test execution started but did not complete and report a result.
** Failed (Runtime Message) 0 0 0 0 0
 This means that test execution explicitly reported Failed.
++ Not-Applicable (Annex C) 0 0 0 0 0
 This means that the test did not meet an Annex C Requirement; if Annex C is being tested,
 this should be considered a failure.
++ Not-Applicable (Compile) 2 0 2 0 0
 This means that the test had an error in an N/A => Error range.
++ Not-Applicable (Runtime) 0 0 0 0 0
 This means that the test execution reported that it was Not Applicable.
!! Special Handling (Runtime) 0 0 0 0 0
 This means that the test execution reported that it required special handling.
!! Manual Grading Requested 0 0 0 0 0
 This means that the test failed for some reason and manual test grading was requested. If the test grades
 as Passed or Not Applicable, the manual grading request is ignored and the test will be counted in the
 appropriate other category.
== Passed (Expected Errors) 0 0 0 0 0
 This means that the test had compile-time errors as expected, and no extra errors.
== Passed (Bind Error) 0 0 0 0 0
 This means that the test had bind errors as expected (this is most likely for an L-Test.
== Passed (Runtime) 93 0 93 0 0
 This means that the test reported Passed when executed.
=======================================

Overall result for C-Tests for Chapter 5 is **FAILED**
 The overall result is Failed unless all tests either pass, are not applicable, or had manual grading
 requested. For this implementation, the result of failed is expected. The implementer could have requested
 manual grading for the tests that were not expected to work, in order to change this result to Passed.

6.1.3 Compiling the Grading Tool and the Test Summary Tool
The Grading Tool and the Test Summary Tool are provided in six Ada source files. Some of the files are
shared by both tools, so we present them as a single group. The six files are:

GRADE.A
 The main subprogram for the grading tool; contains option processing and test grading.

ACATS 4.1 User's Guide

59 29 June 2016 Compiling the Grading Tool and the Test Summary Tool 6.1.3

GRD_DATA.A
 A package to store grading data; contains the code to read and display all of the file

information (events, test summaries, and manual grading requests).
SPECIAL.A
 A package containing the special handling for the test summary program. This package

contains the data needed to handle optional units and tests with severe syntax errors that
cannot be processed by normal means.

SUMMARY.A
 The main subprogram for the test summary tool; contains lexical and syntactic analysis for

ACATS test files.
TRACE.A
 A package containing the data types that define an event trace.
TST_SUM.A
 A package containing the data types that define a test summary; it also contains a routine to

write an individual test summary record.

The source of the grading tools is written in Ada, and only uses Ada 95 features other than the following:

• Raise statements with messages;
• Ada.Containers.Generic_Array_Sort;
• Ada.Calendar.Formatting.

Uses of the first could be replaced by calls to Ada.Exceptions.Raise_Exception; and the latter could be
replaced by similar routines. We did not do this for readability and to avoid re-inventing the wheel.

The source code should be compilable by any Ada 95 or later compiler that supports the above three
features; it certainly should be compilable by any Ada 2012 compiler.

As each Ada implementation uses different commands for compiling, we can only give the general
direction that the six source files need to be compiled and then bound into two execuable programs:
Grade (the Grading Tool) and Summary (the Test Summary Tool). Elsewhere in this documentation we
assume that this has been done.

6.1.4 Grading Tool Reference
The command line for the Grading Tool is:

Grade <Event_Trace_File_Name> <Summary_of_Tests_File_Name>
<Manual_Grading_Request_Name> <Quoted Report Title> [options]

<Event_Trace_File_Name>
 The name of an event trace file (see 6.2). This can use any file name acceptable to the

implementation that compiled the tool (in particular, full paths may be used on most
implementations). The event trace should contain traces of the processing of at least the tests
to be graded; it is acceptable to include traces for additional tests that are not being graded.

<Summary_of_Tests_File_Name>
 The name of a test summary file (see 6.3). This can use any file name acceptable to the

implementation that compiled the tool (in particular, full paths may be used on most
implementations). The test summary file should contain the summaries of exactly the tests
that need to be graded; all of the tests summarized in the file will be graded regardless of the
contents of the event trace. If the event trace does not include a test that is in the summary
file, the test will be graded "Failed - Compile Missing".

ACATS 4.1 User's Guide

6.1.4 Grading Tool Reference 29 June 2016 60

<Manual_Grading_Request_Name>
 The name of a manual grading request file (see 6.4). This can use any file name acceptable to

the implementation that compiled the tool (in particular, full paths may be used on most
implementations). This file may include names of tests not included in the test summary file;
such names will have no effect on grading.

<Quoted Report Title>
 A double quoted string containing the name of the test report. This is primarily intended so

that similar-looking reports can be differentiated.
[options]
 Zero or more optional setting flags for the Grading Tool. These are case-insensitive, and can

be:
-Specs_Optional
 Compiling of specifications is optional. Use for source-based compilers (such as the

commonly used GNAT compiler) that don't compile specifications in normal operation.
Compilation of bodies, instances, and so on are checked.

-Check_All_Compiles
 All compilations are checked and must be present (unless processing the unit is marked

as optional). This is the default.
-No_Compile_Checks
 No compilation checks are made. This option is not allowed for formal conformity

assessments.
-Use_Time_Stamps
 Check event trace time stamp information as part of checking, specifically, enforce that

all units of a test are compiled and run in an appropriate order and reasonably close in
time. This is the default.

-No_Time_Stamps
 Do not make any check of event trace time stamps. Use this option only if there is no

meaningful timestamps in the event trace. This option is not allowed for formal
conformity assessments.

-Use_Positions
 Use position information when checking whether errors are appropriately detected. This

is the default.
-No_Positions
 Use only line information when checking whether errors are appropriately detected. Use

this option if the event trace doesn't have position information. It is acceptable to use this
option for formal conformity assessments.

-Quiet Produce minimal information: a list of failed tests and the summary report.
-Verbose
 Produce information about every test processed (including passed tests), along with the

summary report. In this mode, the grading tool also produces a warning for multiple
messages for one error tag.

-Normal
 Produce details about each failed test, along with the summary report. This is the default.

Only one of the options -Specs_Optional, -Check_All_Compiles, or -No_Compile_Checks can be given.
Only one of the options -Use_Positions or -No_Positions can be given. Only one of the options -Quiet, -
Verbose, or -Normal can be given. Only one of the options -Use_Time_Stamps or -No_Time_Stamps can
be given.

ACATS 4.1 User's Guide

61 29 June 2016 Grading Tool Reference 6.1.4

An annotated example using the grading tool is given in subclause 6.1.2, “Annotated Grading Tool
Example”. That example explains the output of the grading tool.

6.1.5 Test Summary Tool Reference
The command line for the Test Summary Tool is:

Summary <ACATS_Test_File_Name> <Summary_of_Tests_File_Name>

<ACATS_Test_File_Name>
 The name of an ACATS test source file. This can use any file name acceptable to the

implementation that compiled the tool (in particular, full paths may be used on most
implementations). The Summary tool assumes that the simple file name of the test
follows the naming conventions as described in 4.3; either the modern or legacy naming
conventions are acceptable.

 The summary tool can be used on split tests and other Ada code not directly part of the
ACATS, so long as the ACATS naming conventions are followed (see above), and the
files contain no optional units (as the tool has no way to discover optional units). This
allows the Grading Tool to be used on tests being developed for submission to the
ACATS (see Annex E). We also expect that the tool could be used on older ACATS
versions, allowing the Grading Tool to be used with those versions.

<Summary_of_Tests_File_Name>
 The name of the Test Summary File. If this file exists, the new test summary records will

be appended to it. Otherwise, the file will be created.

The test summary tool needs to be run on each individual source file. Typically, it makes sense to
combine all of the tests of a single ACATS directory into a single test summary file. This can easily be
accomplished on Microsoft Windows with a batch file containing the following:

 Rem Chapter 5 C-Tests
 Del C5-Sum.csv
 for %%i in (\My_ACATS\C5*.A??) do Summary %%i C5-Sum.csv
 for %%i in (\My_ACATS\C5*.D??) do Summary %%i C5-Sum.csv

We first delete any existing summary file (so we don't accidentally double the contents), then run the
summary tool on all of the ACATS source code found in the directory \My_ACATS\C5. (The second
loop is needed in case there are any legacy .DEP files; all of the other extensions start with 'A'.)

A similar technique can be used on other host operating systems.

6.2 Event Trace Files
An event trace file includes each (interesting) event that occurs during the compilation, binding/linking,
and execution of one or more ACATS tests.

An event trace file provides a way to present the implementation-specific format of events to the Grading
Tool in a common format. In order for an ACATS user to use the Grading Tool, they will need to provide
a method to get an event trace file from the implementation's processing of ACATS tests. There are a
number of ways to accomplish that; several are outlined in following subclauses. No matter what method
is selected, it should be possible to use the same options/tools for future ACATS tests. (Developing a
method to create event trace files should be a one-time cost).

The events of an event trace file are intended to be abstract representations of the processes of an
implementation. It should be possible to map the processes of any Ada implementation into an event trace
file.

ACATS 4.1 User's Guide

6.2 Event Trace Files 29 June 2016 62

The event trace file was selected as the method of abstracting implementation processing in order to avoid
the ACATS Grading Tool from providing an disincentive to innovation in error handling by Ada
implementations. The files are not intended to be useful (directly) to a human user, so their details should
have little effect on the human error handling interface for an implementation. Moreover, while the event
trace files provide values for error messages and positioning, neither of these is required for formal
grading (they're provided to making easier for an ACATS user to figure out why a test is reported as
failing). As noted in 5.6.2, the actual text of an error message is not used to determine pass or fail for
grading purposing; only the specified location of the error is used.

6.2.1 Event Trace File Reference
An event trace file is a CSV (Comma Separated Value) file of event records. See 6.5, “CSV File
Reference” for the general rules for constructing a CSV file.

An event trace file record contains the following comma-separated fields on a single line:
Event One of UNKN (Unknown), CSTART (Compilation_Start), CEND (Compilation_End),

CERR (Compile_Error), CWARN (Compile_Warning), BSTART (Binder_Start), BEND
(Binder_End), BERR (Binder_Error), BWARN (Binder_Warning), EXSTART
(Execution_Start), EXEND (Execution_End), EXFAIL (Execution_Failure), EXNA
(Execution_Not_Applicable), EXSACT (Execution_Special_Action), EVENT (see
below). These values are case-insensitive. "EVENT" is treated as specifying a comment;
it usually appears in column headers.

Timestamp The timestamp, double quoted, in the format specified by
Ada.Calendar.Formatting.Image.

Name The double quoted name of the source file, main subprogram, or test. For Compilation
events, this is the simple name of the source file. For Binder events, this is the name of
the main subprogram. For Execution events, this is the name of the test as passed to
Report.Test.

Line For Compilation_Start, the first line of the current compilation unit. (Usually 1, unless
there are multiple compilation units in a single file.) For Compile_Error or
Compile_Warning, the line number where that error or warning is reported. (This is
critical to the correct operation of the grading tool.) Otherwise, it is not used and can be
omitted other than the comma separator.

Position For Compile_Error or Compile_Warning, the position within the line that on which the
error is reported. An implementation does not have to provide a meaningful Position for
errors (use the -No_Position option on the Grading Tool - see 6.1.4 if this is true for your
implementation). Otherwise, it is not used and can be omitted other than the comma
separator.

Message The double quoted message (make sure to replace any double quotes, as they are not
allowed in double quoted strings). For Compile and Binder Errors and Warnings, this is
the message emitted by the appropriate tool. For Execution events, this is the message
passed to Report. For End events, this is an implementation-defined result of the
operation (OK, with Errors, Passed, Failed, and so on). If there is no appropriate message,
nothing need be written for this field (as it is last, there is no trailing comma).

The order of the event records in the event trace file is unimportant to the Grading Tool; it will sort the
records appropiately before grading. (The order of the timestamps in the records does matter; running
before compiling and the like indicate a test processing problem.)

The record types used by the Ada implementation of this file can be found in Trace.A.

ACATS 4.1 User's Guide

63 29 June 2016 Event Trace File Reference 6.2.1

There is an example of writing an event trace file in the file Report.A, in procedure Put_Event_Trace.
Most of the code involves limiting the length of, and removing any double quotes from, the (quoted)
message string. Note that Put_Event_Trace writes column headers into a new file, so that headers exist if
the file is loaded into a spreadsheet or database. This is recommended for any tool that creates an event
trace.

The Grading Tool treats any record that starts with EVENT as a comment; this skips any headers and
allows event trace files to be concatenated together for combined processing.

For the purposes of an event trace, a "compile" is the part of an Ada implementation that processes Ada
source code and provides diagnostics to diagnose Ada errors (specifically syntax errors, resolution errors,
and violations of Legality Rules). This does not need to be a single phase or program; it could be several
cooperating programs. Moreover, the "compile" events only need to include parts of the implementation
that are involved in diagnosing errors. Code generation and optimization are part of a conventional
compiler that can be omitted from the "compile" as defined for an event trace. (A failure in one of these
phases not included in "compile" would probably cause a test to be graded as crashed or with a failed
bind.)

Similarly, a "bind" is the part of an Ada implementation that creates an Ada partition and enforces post-
compilation rules not enforced by the compile stage. (The compiler is allowed to enforce post-
compilation rules y the Ada Standard.) This also does need not be a single program, and it only needs to
include phases that enforce Ada errors. For instance, a system linker need not be included in the event
trace for the "bind" operation.

Not all of the information in an event trace is currently used by the Grading Tool. We included additional
information (like warnings) in part because future versions of the ACATS tools might need them and
changing the format in the future could be very disruptive. In addition, it's possible that this compiler-
independent event format could be useful to other future ACATS tools or even third-party tools having
nothing to do with the ACATS. As such, we included all of the information that seemed potentially
useful.

Here is part of an event trace for Chapter 5 C-Tests:

ACATS 4.1 User's Guide

6.2.1 Event Trace File Reference 29 June 2016 64

Event,"Timestamp","Name","Line","Position","Message"
CSTART,"2016-05-16 23:16:41.05","C51004A.ADA", 1, 1,""
CEND,"2016-05-16 23:16:41.13","C51004A.ADA",,,"OK"
BSTART,"2016-05-16 23:16:41.14","C51004A",,,""
BEND,"2016-05-16 23:16:41.27","C51004A",,,"OK"
EXSTART,"2016-05-16 23:16:41.33","C51004A",,,"CHECK THAT LABELS, LOOP IDENTIFIERS,
AND BLOCK"
EXEND,"2016-05-16 23:16:41.33","C51004A",,,"Passed"
CSTART,"2016-05-16 23:16:41.38","C52005A.ADA", 1, 1,""
CEND,"2016-05-16 23:16:41.44","C52005A.ADA",,,"OK"
BSTART,"2016-05-16 23:16:41.45","C52005A",,,""
BEND,"2016-05-16 23:16:41.56","C52005A",,,"OK"
EXSTART,"2016-05-16 23:16:41.64","C52005A",,,"CHECK THAT CONSTRAINT_ERROR EXCEPTION
IS RAISED"
EXEND,"2016-05-16 23:16:41.64","C52005A",,,"Passed"
CSTART,"2016-05-16 23:16:41.70","C52005B.ADA", 1, 1,""
CEND,"2016-05-16 23:16:41.77","C52005B.ADA",,,"OK"
BSTART,"2016-05-16 23:16:41.78","C52005B",,,""
BEND,"2016-05-16 23:16:41.89","C52005B",,,"OK"
EXSTART,"2016-05-16 23:16:41.95","C52005B",,,"CHECK THAT CONSTRAINT_ERROR EXCEPTION
IS RAISED"
EXEND,"2016-05-16 23:16:41.95","C52005B",,,"Passed"
CSTART,"2016-05-16 23:17:06.36","C55B07B.DEP", 1, 1,""
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 45, 14,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 47, 39,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 51, 27,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 52, 27,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 57, 32,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 58, 32,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 58, 52,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 83, 21,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 83, 21,"Only discrete types may b
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 99, 18,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.41","C55B07B.DEP", 107, 18,"Identifier is not defined"
CERR,"2016-05-16 23:17:06.42","C55B07B.DEP", 109, 26,"Identifier is not defined"
CEND,"2016-05-16 23:17:06.42","C55B07B.DEP",,,"Aborted by semantic errors"
BSTART,"2016-05-16 23:17:06.44","C55B07B",,,""
BERR,"2016-05-16 23:17:06.44","C55B07B",,,"Main program file not found"
BEND,"2016-05-16 23:17:06.44","C55B07B",,,"Aborted by errors"

6.2.2 Creating an Event Trace directly by the implementation
Creating an event trace for a particular implementation is a problem for the ACATS user and their
implementer (the ACATS user need not be an implementer, of course). We can only give general
guidance on approaching this problem.

One approach is the for implementer to directly add event trace creation to their tools. In this approach,
options would be added to the compiler and binder that would write events to an event trace file. The
ACATS user would set the Generate_Event_Trace_File constant in Report.A to True. The user would use
this new compiler and binder option to write events to ETrace.csv, as will the Report package. At
strategic times, the ETrace.csv file could be copied to a new name in order to keep its size manageable.

This approach is likely to be the easiest, as all of the information needed to create an event is likely to be
available in a compiler error handler. Moreover, writing an event is an easy operation in Ada (see
Report.Put_Event_Trace) and likely most other languages. And by directly including this capability in the
compiler, it is available to all users and likely needs little modification even if the compiler error handling
is changed significantly. The effort needed is small and one-time.

However, this approach may not work in some cases:
1. The ACATS user is not the implementer, so modifying the compiler is not possible;

ACATS 4.1 User's Guide

65 29 June 2016 Creating an Event Trace directly by the implementation 6.2.2

2. An important part of the compiler or binder is a third party tool, so adding an option is not
feasible;

3. The ACATS testing target does not have a file system, so having report write an event trace is not
possible.

In each of these cases, the technique outlined in the next section is preferable.

Note that in case 2, not all parts of an Ada compilation system need to be able to generate an event trace.
Any part that can fail only in the case of a bug elsewhere in the system (that is, does not diagnose errors
in the Ada code) can be ignored for the purposes of an event trace. For instance, the use of a system-
provided linker after the completion of the bind step need not be reflected in an event trace, as it has no
role in the enforcement of Ada Post-Compilation Rules. For more on this topic, see 6.2.1.

6.2.3 Creating an Event Trace from Listings
If it is not possible or desirable to modify the implementation to create an event trace, an event trace can
be created from a listing of test processing. Such a listing would capture all of the compile, bind, and run
steps for a set of tests. The Generate_Event_Trace_File constant in Report.A would remain False.

A tool then would have to be constructed to read those listings and convert them to an event trace. This
would be specific to a particular implementation, and the tool would potentially break due to future
changes in an implementation.

The tool would probably have to gather information from several parts of a listing. For instance, most
programs don't display a time stamp when they run, so it would be necessary to use a system tool or tiny
Ada program to add those to strategic points in a listing. (Using a single timestamp for an entire
compilation of a compilation unit, including any reported errors, is sufficient to meet the requirements of
the Grading Tool.) Note that the initial message from Report includes a timestamp, so there is no need to
add one for the execution of tests.

The listing converter tool would have to be able to extract events from the compiler, the binder, and
running of ACATS tests. Each of these likely has a different format, so the tool would need many rules to
extract all of the events.

While a listing converted tool is potentially more fragile (due to more dependence on the exact layout of
messages for an implementation), it would have the possibility of detecting test failures after the reporting
of Passed (due to a finalization or tasking failure) - such "aberrant behavior" (as defined in 5.6.1) cannot
be detected when Report.A itself writes the event trace (as the failure happens outside of the control of
Report).

6.3 Test Summary Files
A test summary file is a machine-readable distillation of one or more ACATS tests. The summary
includes the information about the test that is needed by the grading tool, in a much more convenient
format than the original source files. Test summaries are created with the Summary tool (see 6.1.1 and
6.1.5).

6.3.1 Test Summary File Reference
A test summary file is a CSV (Comma Separated Value) file of test summary records. See 6.5, “CSV File
Reference” for the general rules for constructing a CSV file.

A test summary file record contains the following comma-separated fields on a single line:

ACATS 4.1 User's Guide

6.3.1 Test Summary File Reference 29 June 2016 66

Kind KIND (see below), ERROR (Error), PERROR (Possible_Error), OERROR
(Optional_Error), NAERR (NA_Error), ACRQMT (Annex_C_Requirement), OK (OK),
UPACKSPEC (Package_Specification), UFUNCSPEC (Function_Specification),
UPROCSPEC (Procedure_Specification), UGENPACK (Generic_Package),
UGENFUNC (Generic_Function), UGENPROC (Generic_Procedure), UPACKBODY
(Package_Body), UFUNCBODY (Function_Body), UPROCBODY (Procedure_Body),
UPACKINST (Package_Instantiation), UFUNCINST (Function_Instantiation),
UPROCINST (Procedure_Instantiation), UPACKREN (Package_Renaming),
UFUNCREN (Function_Renaming), UPROCREN (Procedure_Renaming),
UGPACKREN (Generic_Package_Renaming), UGFUNCREN
(Generic_Function_Renaming), UGPROCREN (Generic_Procedure_Renaming),
PACKSUB (Package_Subunit), PROCSUB (Procedure_Subunit), FUNCSUB
(Function_Subunit), TASKSUB (Task_Subunit), PROTSUB (Protected_Subunit),
PRAGMA (Configuration_Pragma) These values are case-insensitive. "KIND" is treated
as specifying a comment; it usually appears in column headers. All of the U kinds are
varieties of compilation units; as are the subunits and PRAGMA.

Source_Name
 The quoted simple name of the source file.
Start_Line
 For a compilation unit, the starting line of the compilation unit. This may include leading

whitespace and comments, but must be no later than the first significant text of the unit,
and it may not include part of some preceding unit. For other kinds of records, this
represents the first line of the range that indicates a trigger for this record. (For instance,
for an ERROR record, this represents the first line in the range in which an error must be
reported.)

Start_Position
 For a compilation unit, the starting position within the Start_Line for the compilation

unit. This may include whitespace or comments (always setting this to 1 would be
allowed), but must be no later than the first significant character of the line. (The ACATS
never puts multiple compilation units on the same line.)

 For other kinds of records, the starting position within Start_Line for the trigger for this
record. Whether or not positions are used for grading is selectable by an option to the
Grading Tool - see 6.1.4. (Use of positions is not required.)

End_Line For a compilation unit, the end line of the compilation unit. This may include trailing
whitespace and comments, but must be no earlier than the last significant text of the unit,
and it may not include part of some succeeding unit. For other kinds of records, this
represents the last line of the range that indicates a trigger for this record.

End_Position
 For a compilation unit, the end position within the Start_Line for the compilation unit.

This may include whitespace or comments, but must be no earlier than the last significant
character of the line. For other kinds of records, this is the ending position within
End_Line for the trigger for this record.

Name_Label
 For a compilation unit, the quoted compilation unit name. For a Possible_Error, the

quoted set name. For other kinds of records, this value can be omitted other than the
separating comma.

Flag Only used for compilation units; for other kinds of records it can be completely omitted
(as it is last, there is no trailing comma). For a compilation unit, it can be omitted
(meaning a required, non-main subprogram unit), MAIN (a required, main subprogram
unit), OPT (an optional, non-main subprogram unit), or OPTMAIN (an optional, main

ACATS 4.1 User's Guide

67 29 June 2016 Test Summary File Reference 6.3.1

subprogram unit). An optional unit is one that is not required to be processed (this is
indicated by comments within the test). As with kinds, this value is case-insensitive.

These fields do not quite match the components used in the associated Ada record; a few were combined
to simplify the file format (at a cost of some additional complexity in reading the records).

The order of records within a test summary file is unimportant to the Grading Tool; it will sort the records
appropiately before grading.

The compilation unit start and end information is primarily used to determine to which compilation unit
(and thus, which compilation) a particular ERROR or other kind of record belongs. The compilation unit
records themselves are secondarily used to ensure that all required units have been processed.

The ranges for ERROR, OK, and other non-compilation unit record kinds are used to determine if an
appropriate error is (or is not) present for that record. The limits can be determined by a range indicator
(see 6.3.2) if present. Otherwise, the limits will contain at least all of the significant text of the line that
contains the tag. (In some cases, these default limits may be expanded.)

The record types used by the Ada implementation of this file can be found in Tst_Sum.A, along with a
routine (Write_Summary_Record) used to write a summary record to a test summary file. Note that
Write_Summary_Record writes column headers into a new file, so that headers exist if the file is loaded
into a spreadsheet or database. It is recommended to use Tst_Sum.A as part of any tool that creates a test
summary file (there being little reason to reinvent this wheel).

Code to read a test summary file into an array can be found in Grd_Data.A.

Here is part of a test summary file for Chapter 5 C-Tests:
Kind,Source_Name,Start Line,Start Pos,End Line,End Pos,Name_Label,Flag
UPROCBODY,C51004A.ADA,38,1,261,12,C51004A,MAIN
UPROCBODY,C52005A.ADA,33,1,177,12,C52005A,MAIN
UPROCBODY,C52005B.ADA,33,1,115,12,C52005B,MAIN
UPROCBODY,C52005C.ADA,33,1,79,12,C52005C,MAIN
UPROCBODY,C52005D.ADA,32,1,182,12,C52005D,MAIN
UPROCBODY,C52005E.ADA,32,1,129,12,C52005E,MAIN
UPROCBODY,C52005F.ADA,32,1,86,12,C52005F,MAIN
UPACKSPEC,C540001.A,50,1,53,14,C540001_0,
UPACKSPEC,C540001.A,57,1,73,14,C540001_1,
UPACKBODY,C540001.A,77,1,105,14,C540001_1,
UGENPACK,C540001.A,109,1,121,14,C540001_2,
UPACKBODY,C540001.A,125,1,137,14,C540001_2,
UGENFUNC,C540001.A,141,1,149,69,C540001_3,
UFUNCBODY,C540001.A,153,1,157,14,C540001_3,
UGENPACK,C540001.A,161,1,172,14,C540001_4,
UPACKBODY,C540001.A,176,1,187,14,C540001_4,
UPACKSPEC,C540001.A,191,1,205,14,C540001_5,
UPACKBODY,C540001.A,209,1,222,14,C540001_5,
UPROCBODY,C540001.A,226,1,410,12,C540001,MAIN
UPROCBODY,C540002.A,66,1,235,12,C540002,MAIN
UPACKSPEC,C540003.A,62,1,81,14,C540003_0,
UPROCBODY,C540003.A,83,1,240,12,C540003,MAIN
NAERR,C55B07A.DEP,45,6,45,26,,
UPROCBODY,C55B07A.DEP,41,1,126,14,C55B07A,MAIN
NAERR,C55B07B.DEP,45,6,45,27,,
UPROCBODY,C55B07B.DEP,41,1,126,14,C55B07B,MAIN

6.3.2 Range Indicators
Optional range indicators (sometimes known as location indicators) can appear after the various markers
in an ACATS test source file. These describe the exact range of the reported location of an expected error.

ACATS 4.1 User's Guide

6.3.2 Range Indicators 29 June 2016 68

Range indicators are usually used to expand the range of an error beyond the same line as the ERROR: or
other marker.

The format of a range indicator is:
 {[sl:]sp[;[el:]ep]}

In the above, '{' and '}' are literal, while '[' and ']' indicate optionality. Each of the four values is relative,
so it is one or two digits, with an optional minus sign for el. Omitted values are assumed to be zero.
Specifically:

sl Start Line – offset before the current line for the start of the error range.
sp Start Position – position offset in the line indicated by sl, relative to the start of the line.
el End_Line – offset before the current line for the end of the error range. Can be negative if

the end of the error range follows the error tag. But almost always should be zero.
ep End Position – position offset from the last significant character in the line indication by

End_Line. (The last significant character is the last non-white-space character not
including any comment.)

This compact representation was chosen because of the limited space given the ACATS line length limit
(see 4.5) and a desire to avoid unnecessarily cluttering tests with extraneous information.

6.4 Manual Grading Request Files
The ACATS Grading Tool takes a file containing a list of tests that may require manual grading.

The file is just a list of ACATS test names (7 characters each), one per line. Ada comments (anywhere on
a line) and blank lines are also allowed.

If the Grading Tool encounters a failure for one of the tests in the manual grading file for that grading run,
it will report that the test needs manual grading rather than that it failed. The manual grading list has no
effect on tests that are graded as Passed or Not Applicable.

An ACATS user can add tests to this file as needed. Some of the reasons that one might want to do this
are discussed in 6.1.1.

The ACAA would like to know which tests require manual grading for your implementation. Please send
manual grading files annotated with comments as to why they require manual grading to the ACAA
Technical Agent, agent@ada-auth.org. The ACAA will use this information to determine which, if any
tests, require repair to better provide error range information (potentially including alternative error
locations.)

For formal testing, the ACAL should be aware of all tests included in any manual grading file used.

6.5 CSV File Reference
Several of the files used by the Grading Tool are .CSV (Comma Separated Value) files. This format was
chosen as it:

• is a pure text format that is easy to write in Ada. Records can be appended to an existing file by
opening the file with Text_IO in Append_Mode, Put_Line the line of values for the record, then
closing the file. No end markers need to be moved.

• is reasonably easy to read in Ada using Text_IO. Get_Line and some string operations are
sufficient.

ACATS 4.1 User's Guide

69 29 June 2016 CSV File Reference 6.5

• can be read by most spreadsheet and database programs. Thus, we don't need to provide tools to
inspect, check, or edit the contents of these files.

A CSV consists of list of records, one record per line. Each line is a set of values, separated by commas.
Each line should have the same number of values, so when loaded in a spreadsheet it becomes a series of
columns with each Ada component associated with a column.

There are a number of varieties of CSV files, so we have adopted one of the simplest in order to have the
widest applicability.

There are only a few restrictions on the values in our CSV files. Unquoted values must not contain
commas, spaces, tabs, or semicolons. A value can be quoted with double quotes, in which case commas,
spaces, tabs, and semicolons are allowed, but double quotes are not allowed in quoted strings. Line
breaks are not allowed in or outside of values of a single record (they delimit the records).

We require that values are limited to 150 characters (primarily to prevent excessively long messages from
making reports hard to read).

There is an example of writing a CSV file (an event trace - see 6.2) in the file Report.A, in procedure
Put_Event_Trace. Most of the code involves limiting the length of, and removing any double quotes
from, the (quoted) message string.

ACATS 4.1 User's Guide

71 29 June 2016 Version Description A

Annex A: Version Description
ACATS 4.1 includes 39nn tests in 45nn files, not including foundation and other support units. From
Version 4.0 to 4.1, 134 tests were added, comprising 179 files (including six foundation files). 13 tests
and one foundation (14 files) were modified. Seven support files were added and two deleted. Three tests
(3 files) were removed. 36 documentation files were added, 161 documentation files were modified, and
one documentation file was deleted.

The following sections present a detailed description of ACATS 4.1, as follows:

A.1, “Core Test Files”

A.2, “Specialized Needs Annex Test Files”

A.3, “Foundation Code Files”

A.4, “Documentation Files”

A.5, “Other Files”

A.6, “Tests With Special Requirements”

A.7, “Test Files Added Since ACATS 4.0”

A.8, “Documentation Files Added Since ACATS 4.0”

A.9, “Support Files Added Since ACATS 4.0”

A.10, “Test Files Modified Since ACATS 4.0”

A.12, “Documentation Files Modified Since ACATS 4.0”

A.11, “Support Files Modified Since ACATS 4.0”

A.13, “Test Files Deleted Since ACATS 4.0”

A.14, “Documentation Files Deleted Since ACATS 4.0”

A.15, “Support Files Deleted Since ACATS 4.0”

A.1 Core Test Files
The following files contain the tests for core language features of Ada; that is, for requirements specified
in Clauses 2 through 13, Annex A, Annex B and Annex J.

a22006b.ada
a22006c.ada
a22006d.ada
a26007a.tst
a27003a.ada
a29003a.ada
a2a031a.ada
a33003a.ada
a34017c.ada
a35101b.ada
a35402a.ada
a35801f.ada
a35902c.ada

a38106d.ada
a38106e.ada
a49027a.ada
a49027b.ada
a49027c.ada
a54b01a.ada
a54b02a.ada
a55b12a.ada
a55b13a.ada
a55b14a.ada
a71004a.ada
a73001i.ada
a73001j.ada

a74105b.ada
a74106a.ada
a74106b.ada
a74106c.ada
a74205e.ada
a74205f.ada
a83009a.ada
a83009b.ada
a83a02a.ada
a83a02b.ada
a83a06a.ada
a83a08a.ada
a83c01c.ada

a83c01h.ada
a83c01i.ada
a85007d.ada
a85013b.ada
a87b59a.ada
a95001c.ada
a95074d.ada
a97106a.ada
a99006a.ada
aa2010a.ada
aa2012a.ada
ac1015b.ada
ac3106a.ada

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 72

ac3206a.ada
ac3207a.ada
ad7001b.ada
ad7001c0.ada
ad7001c1.ada
ad7001d0.ada
ad7001d1.ada
ad7006a.ada
ad7101a.ada
ad7101c.ada
ad7102a.ada
ad7103a.ada
ad7103c.ada
ad7104a.ada
ad7201a.ada
ad7203b.ada
ad7205b.ada
ad8011a.tst
ada101a.ada
ae2113a.ada
ae2113b.ada
ae3002g.ada
ae3101a.ada
ae3702a.ada
ae3709a.ada
b22001a.tst
b22001b.tst
b22001c.tst
b22001d.tst
b22001e.tst
b22001f.tst
b22001g.tst
b22001h.ada
b22001i.tst
b22001j.tst
b22001k.tst
b22001l.tst
b22001m.tst
b22001n.tst
b23002a.ada
b23004a.ada
b23004b.ada
b24001a.ada
b24001b.ada
b24001c.ada
b24005a.ada
b24005b.ada
b24007a.ada
b24009a.ada

b24009b.ada
b24104a.ada
b24204a.ada
b24204b.ada
b24204c.ada
b24204d.ada
b24204e.ada
b24204f.ada
b24205a.ada
b24206a.ada
b24206b.ada
b24211b.ada
b25002a.ada
b25002b.ada
b26001a.ada
b26002a.ada
b26005a.ada
b28001a.ada
b28001b.ada
b28001c.ada
b28001d.ada
b28001e.ada
b28001r.ada
b28001s.ada
b28001t.ada
b28001u.ada
b28001v.ada
b28001w.ada
b29001a.ada
b2a003a.ada
b2a003b.ada
b2a003c.ada
b2a003d.ada
b2a003e.ada
b2a003f.ada
b2a005a.ada
b2a005b.ada
b2a007a.ada
b2a010a.ada
b2a021a.ada
b32103a.ada
b32104a.ada
b32106a.ada
b32201a.ada
b32202a.ada
b32202b.ada
b32202c.ada
b324001.a
b324002.a

b324003.a
b330001.a
b33001a.ada
b33101a.ada
b33102a.ada
b33102b.ada
b33102c.ada
b33102d.ada
b33102e.ada
b33201a.ada
b33201b.ada
b33201c.ada
b33201d.ada
b33201e.ada
b33204a.ada
b33205a.ada
b33302a.ada
b34001b.ada
b34001e.ada
b34002b.ada
b34003b.ada
b34004b.ada
b34005b.ada
b34005e.ada
b34005h.ada
b34005k.ada
b34005n.ada
b34005q.ada
b34005t.ada
b34006b.ada
b34006e.ada
b34006h.ada
b34006k.ada
b34007b.ada
b34007e.ada
b34007h.ada
b34007k.ada
b34007n.ada
b34007q.ada
b34007t.ada
b34008b.ada
b34009b.ada
b34009e.ada
b34009h.ada
b34009k.ada
b34011a.ada
b34014b.ada
b34014d.ada
b34014f.ada

b34014i.ada
b34014m.ada
b34014o.ada
b34014q.ada
b34014s.ada
b34014v.ada
b34014z.ada
b35004a.ada
b35101a.ada
b35103a.ada
b35103b.ada
b35302a.ada
b354001.a
b35401a.ada
b35401b.ada
b35403a.ada
b35501a.ada
b35501b.ada
b35506a.ada
b35506b.ada
b35506c.ada
b35506d.ada
b35701a.ada
b35709a.ada
b35901a.ada
b35901c.ada
b35901d.ada
b35a01a.ada
b35a08a.ada
b36001a.ada
b36002a.ada
b36101a.ada
b36102a.ada
b36103a.ada
b36105c.dep
b36171a.ada
b36171b.ada
b36171c.ada
b36171d.ada
b36171e.ada
b36171f.ada
b36171g.ada
b36171h.ada
b36171i.ada
b36201a.ada
b36307a.ada
b370001.a
b370002.a
b37004a.ada

ACATS 4.1 User's Guide

73 29 June 2016 Core Test Files A.1

b37004c.ada
b37004d.ada
b37004e.ada
b37004f.ada
b37004g.ada
b3710010.a
b3710011.a
b3710012.a
b3710013.a
b3710014.am
b37101a.ada
b37102a.ada
b37104a.ada
b37106a.ada
b37201a.ada
b37201b.ada
b37203a.ada
b37301i.ada
b37301j.ada
b37302a.ada
b37303a.ada
b37309b.ada
b37310b.ada
b37311a.ada
b37401a.ada
b37409b.ada
b380001.a
b38003a.ada
b38003b.ada
b38003c.ada
b38003d.ada
b38008a.ada
b38008b.ada
b38009a.ada
b38009d.ada
b38103a.ada
b38103b.ada
b38103c0.ada
b38103c1.ada
b38103c2.ada
b38103c3.ada
b38103d.ada
b38103e0.ada
b38103e1.ada
b38105b.ada
b38203a.ada
b390001.a
b391001.a
b391002.a

b391003.a
b391004.a
b392001.a
b392002.a
b392003.a
b392004.a
b392005.a
b392006.a
b392007.a
b392008.a
b392009.a
b392010.a
b392011.a
b393001.a
b393002.a
b393003.a
b393004.a
b393005.a
b393006.a
b393007.a
b393008.a
b393009.a
b393010.a
b3930110.a
b3930111.a
b3930112.a
b3930113.a
b394001.a
b394a01.a
b394a02.a
b394a03.a
b394a04.a
b394a05.a
b3a0001.a
b3a0002.a
b3a0003.a
b3a0004.a
b3a0005.a
b3a0006.a
b3a0007.a
b3a0008.a
b3a1001.a
b3a1002.a
b3a1003.a
b3a10040.a
b3a10041.a
b3a10042.a
b3a1005.a
b3a1006.a

b3a10070.a
b3a10071.a
b3a1008.a
b3a10090.a
b3a10091.a
b3a1010.a
b3a1a01.a
b3a1a02.a
b3a1a030.a
b3a1a031.a
b3a1a04.a
b3a1a05.a
b3a2002.a
b3a2003.a
b3a2004.a
b3a2005.a
b3a2006.a
b3a2007.a
b3a2008.a
b3a2009.a
b3a2010.a
b3a2011.a
b3a2012.a
b3a2013.a
b3a2014.a
b3a2015.a
b3a2016.a
b3a20170.a
b3a20171.a
b3a20172.a
b3a20173.a
b3a20174.a
b41101a.ada
b41101c.ada
b41201a.ada
b41201c.ada
b41202c.ada
b41202d.ada
b413001.a
b413002.a
b413003.a
b413004.a
b41324b.ada
b41325b.ada
b41327b.ada
b415001.a
b415002.a
b416001.a
b416002.a

b416a01.a
b420001.a
b430001.a
b43002d.ada
b43002e.ada
b43002f.ada
b43002g.ada
b43002h.ada
b43002i.ada
b43002j.ada
b43002k.ada
b43005a.ada
b43005b.ada
b43005f.ada
b431001.a
b431002.a
b431003.a
b431004.a
b431005.a
b431006.a
b43101a.ada
b43102b.ada
b43105c.ada
b432001.a
b43201a.ada
b43201c.ada
b43201d.ada
b43202a.ada
b43202c.ada
b43209b.ada
b43221a.ada
b43221b.ada
b43223a.ada
b433001.a
b433002.a
b433003.a
b44001a.ada
b44001b.ada
b44002b.ada
b44002c.ada
b44004a.ada
b44004b.ada
b44004c.ada
b44004d.ada
b44004e.ada
b45102a.ada
b45116a.ada
b45121a.ada
b45204a.ada

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 74

b45205a.ada
b45206c.ada
b45207a.ada
b45207b.ada
b45207c.ada
b45207d.ada
b45207g.ada
b45207h.ada
b45207i.ada
b45207j.ada
b45207m.ada
b45207n.ada
b45207o.ada
b45207p.ada
b45207s.ada
b45207t.ada
b45207u.ada
b45207v.ada
b45208a.ada
b45208b.ada
b45208c.ada
b45208g.ada
b45208h.ada
b45208i.ada
b45208m.ada
b45208n.ada
b45208s.ada
b45208t.ada
b45209a.ada
b45209b.ada
b45209c.ada
b45209d.ada
b45209e.ada
b45209f.ada
b45209g.ada
b45209h.ada
b45209i.ada
b45209j.ada
b45209k.ada
b45221a.ada
b45261a.ada
b45261b.ada
b45261c.ada
b45261d.ada
b45301a.ada
b45301b.ada
b45301c.ada
b45302a.ada
b45341a.ada

b455002.a
b45501a.ada
b45501b.ada
b45501c.ada
b45522a.ada
b45537a.ada
b45601a.ada
b45625a.ada
b45661a.ada
b457001.a
b457002.a
b457003.a
b457004.a
b457005.a
b457006.a
b457007.a
b460001.a
b460002.a
b460004.a
b460005.a
b460006.a
b46002a.ada
b46003a.ada
b46004a.ada
b46004b.ada
b46004c.ada
b46004d.ada
b46004e.ada
b46005a.ada
b47001a.ada
b480001.a
b480002.a
b480003.a
b48001a.ada
b48001b.ada
b48002a.ada
b48002b.ada
b48002c.ada
b48002d.ada
b48002e.ada
b48002g.ada
b48003a.ada
b48003b.ada
b48003d.ada
b48003e.ada
b490001.a
b490002.a
b490003.a
b49002a.ada

b49004a.ada
b49005a.ada
b49007a.ada
b49007b.ada
b49008a.ada
b49008c.ada
b49009b.ada
b49009c.ada
b49010a.ada
b49011a.ada
b4a010c.ada
b4a016a.ada
b51001a.ada
b51004b.ada
b51004c.ada
b52002a.ada
b52002b.ada
b52002c.ada
b52002d.ada
b52002e.ada
b52002f.ada
b52002g.ada
b52004a.ada
b52004b.ada
b52004c.ada
b52004d.dep
b52004e.dep
b53001a.ada
b53001b.ada
b53002a.ada
b53002b.ada
b53009a.ada
b53009b.ada
b53009c.ada
b540001.a
b540002.a
b54a01b.ada
b54a01f.ada
b54a01g.ada
b54a01l.ada
b54a05a.ada
b54a05b.ada
b54a10a.ada
b54a12a.ada
b54a20a.ada
b54a21a.ada
b54a25a.ada
b54a60a.ada
b54a60b.ada

b54b01b.tst
b54b01c.ada
b54b02b.ada
b54b02c.ada
b54b02d.ada
b54b04a.ada
b54b04b.ada
b54b05a.ada
b54b06a.ada
b551001.a
b551002.a
b552001.a
b552a01.a
b552a02.a
b552a03.a
b552a04.a
b552a05.a
b55a01a.ada
b55a01d.ada
b55a01e.ada
b55a01j.ada
b55a01k.ada
b55a01l.ada
b55a01n.ada
b55a01o.ada
b55a01t.ada
b55a01u.ada
b55a01v.ada
b55b01a.ada
b55b01b.ada
b55b09b.ada
b55b09c.dep
b55b09d.dep
b55b12b.ada
b55b12c.ada
b55b17a.ada
b55b17b.ada
b55b17c.ada
b55b18a.ada
b56001a.ada
b56001d.ada
b56001e.ada
b56001f.ada
b56001g.ada
b56001h.ada
b57001a.ada
b57001b.ada
b57001c.ada
b57001d.ada

ACATS 4.1 User's Guide

75 29 June 2016 Core Test Files A.1

b58003a.ada
b58003b.ada
b59001a.ada
b59001c.ada
b59001d.ada
b59001e.ada
b59001f.ada
b59001g.ada
b59001h.ada
b59001i.ada
b610001.a
b610002.a
b61001f.ada
b61005a.ada
b61006a.ada
b61011a.ada
b62001a.ada
b62001b.ada
b62001c.ada
b62001d.ada
b63001a.ada
b63001b.ada
b63005a.ada
b63005b.ada
b63006a.ada
b63009a.ada
b63009b.ada
b63009c0.ada
b63009c1.ada
b63009c2.ada
b63009c3.ada
b63103a.ada
b640001.a
b64002a.ada
b64002c.ada
b64003a.ada
b64004a.ada
b64004b.ada
b64004c.ada
b64004d.ada
b64004e.ada
b64004f.ada
b641001.a
b641002.a
b64101a.ada
b650001.a
b650002.a
b650003.a
b650004.a

b650005.a
b650006.a
b65002a.ada
b65002b.ada
b660001.a
b660002.a
b660003.a
b66001a.ada
b66001b.ada
b66001c.ada
b66001d.ada
b6700010.a
b6700011.am
b6700012.a
b6700013.a
b67001a.ada
b67001b.ada
b67001c.ada
b67001d.ada
b67001h.ada
b67001i.ada
b67001j.ada
b67001k.ada
b67004a.ada
b680001.a
b71001a.ada
b71001b.ada
b71001c.ada
b71001d.ada
b71001f.ada
b71001g.ada
b71001h.ada
b71001i.ada
b71001j.ada
b71001l.ada
b71001m.ada
b71001n.ada
b71001o.ada
b71001p.ada
b71001r.ada
b71001t.ada
b71001u.ada
b71001v.ada
b7200010.a
b7200011.a
b7200012.a
b7200013.a
b7200014.a
b7200015.a

b7200016.a
b730001.a
b730002.a
b730003.a
b730004.a
b730005.a
b7300060.a
b7300061.a
b7300062.a
b7300063.am
b730007.a
b730008.a
b730009.a
b730010.a
b73001a.ada
b73001b.ada
b73001c.ada
b73001d.ada
b73001e.ada
b73001f.ada
b73001g.ada
b73001h.ada
b73004a.ada
b73004b0.ada
b73004b1.ada
b73004b2.ada
b7310010.a
b7310011.a
b7310012.a
b7310013.a
b7310014.a
b7310015.a
b7310016.am
b731a01.a
b731a02.a
b732001.a
b732c01.a
b732c02.a
b740001.a
b740002.a
b7400030.a
b7400031.a
b7400032.am
b74001a.ada
b74001b.ada
b74101a.ada
b74101b.ada
b74103a.ada
b74103d.ada

b74103e.ada
b74103g.ada
b74103i.ada
b74104a.ada
b74105a.ada
b74105c.ada
b74201a.ada
b74202a.ada
b74202b.ada
b74202c.ada
b74202d.ada
b74203b.ada
b74203c.ada
b74203d.ada
b74203e.ada
b74205a.ada
b74207a.ada
b74304a.ada
b74304b.ada
b74304c.ada
b74404a.ada
b74404b.ada
b74409a.ada
b750a01.a
b750a02.a
b750a03.a
b750a04.a
b750a05.a
b750a06.a
b750a08.a
b750a09.a
b750a10.a
b750a11.a
b750a12.a
b750a13.a
b810001.a
b830001.a
b8300020.a
b8300021.a
b8300022.a
b8300023.a
b8300024.a
b8300025.am
b83001a.ada
b83003a.ada
b83003b0.ada
b83003b1.ada
b83003b2.ada
b83003b3.ada

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 76

b83003b4.ada
b83003c.ada
b83004a.ada
b83004b0.ada
b83004b1.ada
b83004b2.ada
b83004b3.ada
b83004c0.ada
b83004c1.ada
b83004c2.ada
b83004d0.ada
b83004d1.ada
b83004d2.ada
b83004d3.ada
b83006a.ada
b83006b.ada
b83008a.ada
b83008b.ada
b83011a.ada
b83023b.ada
b83024b.ada
b83024f0.ada
b83024f1.ada
b83024f2.ada
b83024f3.ada
b83026b.ada
b83027b.ada
b83027d.ada
b83028b.ada
b83029b.ada
b83030b.ada
b83030d.ada
b83031b.ada
b83031d.ada
b83031f.ada
b83032b.ada
b83033b.ada
b83041e.ada
b8310010.a
b8310011.a
b8310012.a
b831002.a
b8310030.a
b8310031.a
b8310032.a
b8310033.a
b831004.a
b8310050.a
b8310051.a

b8310052.a
b8310053.a
b83a01a.ada
b83a01b.ada
b83a01c.ada
b83a05a.ada
b83a06b.ada
b83a06h.ada
b83a07a.ada
b83a07b.ada
b83a07c.ada
b83a08b.ada
b83a09a.ada
b83b01a.ada
b83b02c.ada
b83e01a.ada
b83e01b.ada
b83e01c.ada
b83e01d.ada
b83e01e0.ada
b83e01e1.ada
b83e01e2.ada
b83e01e3.ada
b83e01f0.ada
b83e01f1.ada
b83e01f2.ada
b83e01f3.ada
b83e01f4.ada
b83e01f5.ada
b83e01f6.ada
b83e11a.ada
b83f02a.ada
b83f02b.ada
b83f02c.ada
b840001.a
b8400020.a
b8400021.a
b8400022.a
b8400023.a
b8400024.a
b8400025.a
b840003.a
b84001a.ada
b84002b.ada
b84004a.ada
b84005b.ada
b84006a.ada
b84007a.ada
b84008b.ada

b85001a.ada
b85001b.ada
b85001c.ada
b85001d.ada
b85001e.ada
b85001f.ada
b85001g.ada
b85001h.ada
b85001i.ada
b85001j.ada
b85001k.ada
b85001l.ada
b85002a.ada
b85003a.ada
b85003b.ada
b85004a.ada
b85008f.ada
b85008g.ada
b85008h.ada
b85010a.ada
b85010b.ada
b85012a.ada
b85013c.ada
b85013d.ada
b85015a.ada
b8510010.a
b8510011.a
b8510012.am
b851002.a
b851003.a
b851004.a
b854001.a
b860001.a
b86001a0.ada
b86001a1.ada
b87b23b.ada
b87b26a.ada
b87b48c.ada
b91001b.ada
b91001c.ada
b91001d.ada
b91001e.ada
b91001f.ada
b91001g.ada
b91002a.ada
b91002b.ada
b91002c.ada
b91002d.ada
b91002e.ada

b91002f.ada
b91002g.ada
b91002h.ada
b91002i.ada
b91002j.ada
b91002k.ada
b91002l.ada
b91003a.ada
b91003b.ada
b91003c.ada
b91003d.ada
b91003e.ada
b91004a.ada
b91005a.ada
b92001a.ada
b92001b.ada
b940001.a
b940002.a
b940003.a
b940004.a
b940005.a
b940006.a
b940007.a
b950001.a
b950002.a
b95001a.ada
b95001b.ada
b95001d.ada
b95002a.ada
b95003a.ada
b95004a.ada
b95004b.ada
b95006a.ada
b95006b.ada
b95006c.ada
b95006d.ada
b95007a.ada
b95007b.ada
b95020a.ada
b95020b0.ada
b95020b1.ada
b95020b2.ada
b95030a.ada
b95031a.ada
b95032a.ada
b95061a.ada
b95061b.ada
b95061c.ada
b95061d.ada

ACATS 4.1 User's Guide

77 29 June 2016 Core Test Files A.1

b95061e.ada
b95061f.ada
b95061g.ada
b95062a.ada
b95063a.ada
b95064a.ada
b95068a.ada
b95070a.ada
b95080a.ada
b95080c.ada
b95081a.ada
b95082a.ada
b95082b.ada
b95082c.ada
b95082d.ada
b95082e.ada
b95082f.ada
b95083a.ada
b95094a.ada
b95094b.ada
b95094c.ada
b951001.a
b951002.a
b952001.a
b952002.a
b952003.a
b952004.a
b954001.a
b954003.a
b954004.a
b954005.a
b960001.a
b96002a.ada
b97102b.ada
b97102c.ada
b97102d.ada
b97102f.ada
b97102g.ada
b97102h.ada
b97102i.ada
b97103a.ada
b97103b.ada
b97103d.ada
b97103e.ada
b97103f.ada
b97103g.ada
b97104a.ada
b97104b.ada
b97104c.ada

b97104d.ada
b97104e.ada
b97104f.ada
b97104g.ada
b97107a.ada
b97108a.ada
b97108b.ada
b97109a.ada
b97110a.ada
b97110b.ada
b97111a.ada
b99001a.ada
b99001b.ada
b99002a.ada
b99002b.ada
b99002c.ada
b99003a.ada
b9a001a.ada
b9a001b.ada
ba1001a0.ada
ba1001a1.ada
ba1001a4.ada
ba1001ac.ada
ba1001d.ada
ba1010a0.ada
ba1010a1.ada
ba1010a2.ada
ba1010a3.ada
ba1010b0.ada
ba1010b1.ada
ba1010b2.ada
ba1010b4.ada
ba1010b5.ada
ba1010b6.ada
ba1010b7.ada
ba1010b8.ada
ba1010c0.ada
ba1010c1.ada
ba1010c2.ada
ba1010c3.ada
ba1010c4.ada
ba1010c5.ada
ba1010c6.ada
ba1010d0.ada
ba1010d1.ada
ba1010d2.ada
ba1010d3.ada
ba1010e0.ada
ba1010e1.ada

ba1010e2.ada
ba1010e3.ada
ba1010e4.ada
ba1010e5.ada
ba1010e6.ada
ba1010f0.ada
ba1010f1.ada
ba1010f3.ada
ba1010f4.ada
ba1010f5.ada
ba1010f6.ada
ba1010f7.ada
ba1010f8.ada
ba1010g0.ada
ba1010g2.ada
ba1010g3.ada
ba1010g4.ada
ba1010g5.ada
ba1010h0.ada
ba1010h2.ada
ba1010i0.ada
ba1010i1.ada
ba1010i3.ada
ba1010i4.ada
ba1010j0.ada
ba1010j1.ada
ba1010j2.ada
ba1010j4.ada
ba1010j5.ada
ba1010j6.ada
ba1010j7.ada
ba1010j8.ada
ba1010k0.ada
ba1010k1.ada
ba1010k2.ada
ba1010k3.ada
ba1010k4.ada
ba1010k5.ada
ba1010k6.ada
ba1010l0.ada
ba1010l1.ada
ba1010l2.ada
ba1010l3.ada
ba1010l4.ada
ba1010l5.ada
ba1010l6.ada
ba1010m0.ada
ba1010m1.ada
ba1010m3.ada

ba1010m4.ada
ba1010m5.ada
ba1010m6.ada
ba1010m7.ada
ba1010m8.ada
ba1010n0.ada
ba1010n2.ada
ba1010n3.ada
ba1010n4.ada
ba1010n5.ada
ba1010p0.ada
ba1010p2.ada
ba1010q0.ada
ba1010q1.ada
ba1010q3.ada
ba1010q4.ada
ba1011b0.ada
ba1011b1.ada
ba1011b2.ada
ba1011b3.ada
ba1011b4.ada
ba1011b5.ada
ba1011b6.ada
ba1011b7.ada
ba1011b8.ada
ba1011c0.ada
ba1011c1.ada
ba1011c2.ada
ba1011c3.ada
ba1011c4.ada
ba1011c5.ada
ba1011c6.ada
ba1011c7.ada
ba1011c8.ada
ba1020a0.ada
ba1020a1.ada
ba1020a2.ada
ba1020a3.ada
ba1020a4.ada
ba1020a5.ada
ba1020a6.ada
ba1020a7.ada
ba1020a8.ada
ba1020b0.ada
ba1020b1.ada
ba1020b2.ada
ba1020b3.ada
ba1020b4.ada
ba1020b5.ada

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 78

ba1020b6.ada
ba1020c0.ada
ba1020c1.ada
ba1020c2.ada
ba1020c3.ada
ba1020c4.ada
ba1020c5.ada
ba1020f0.ada
ba1020f1.ada
ba1020f2.ada
ba11001.a
ba11002.a
ba11003.a
ba11004.a
ba11005.a
ba11007.a
ba11008.a
ba11009.a
ba11010.a
ba11011.a
ba11012.a
ba110130.a
ba110131.a
ba110132.a
ba110133.a
ba110134.am
ba110140.a
ba110141.a
ba110142.a
ba1101a.ada
ba1101b0.ada
ba1101b1.ada
ba1101b2.ada
ba1101b3.ada
ba1101b4.ada
ba1101c0.ada
ba1101c1.ada
ba1101c2.ada
ba1101c3.ada
ba1101c4.ada
ba1101c5.ada
ba1101c6.ada
ba1101e0.ada
ba1101e1.ada
ba1101f.ada
ba1101g.ada
ba1109a0.ada
ba1109a1.ada
ba1109a2.ada

ba1110a0.ada
ba1110a1.ada
ba1110a2.ada
ba1110a3.ada
ba1110a4.ada
ba1110a5.ada
ba12001.a
ba12002.a
ba12003.a
ba12004.a
ba12005.a
ba12007.a
ba12008.a
ba120090.a
ba120091.a
ba120092.a
ba120093.a
ba120094.a
ba120095.a
ba120096.a
ba120097.a
ba120098.a
ba120100.a
ba120101.a
ba120102.a
ba120103.a
ba120104.a
ba120105.a
ba120110.a
ba120111.a
ba120112.a
ba120113.a
ba120114.a
ba120115.a
ba120120.a
ba120121.a
ba120122.a
ba120123.a
ba120124.a
ba120125.a
ba120126.a
ba120127.a
ba120128.a
ba120129.a
ba12012a.a
ba120130.a
ba120131.a
ba120132.a
ba120133.a

ba120134.a
ba120135.a
ba120136.a
ba120137.a
ba120138.a
ba120139.a
ba12013a.a
ba120140.a
ba120141.a
ba120142.a
ba120143.a
ba120144.a
ba120145.a
ba120146.a
ba120147.a
ba120150.a
ba120151.a
ba120152.a
ba120153.a
ba120154.a
ba120160.a
ba120161.a
ba120162.a
ba120163.a
ba120164.a
ba120165.a
ba120166.a
ba120170.a
ba120171.a
ba120172.a
ba120173.a
ba13b01.a
ba13b02.a
ba15001.a
ba150020.a
ba150021.a
ba150022.a
ba150023.a
ba150024.a
ba150025.a
ba150026.a
ba150027.a
ba150028.a
ba150029.am
ba150030.a
ba150031.a
ba150032.a
ba150033.a
ba150034.a

ba150035.a
ba150036.a
ba150037.a
ba150038.a
ba150039.a
ba15003a.a
ba15003b.am
ba16001.a
ba16002.a
ba2001a.ada
ba2001b.ada
ba2001c.ada
ba2001d.ada
ba2001f0.ada
ba2001f1.ada
ba2001f2.ada
ba2003b0.ada
ba2003b1.ada
ba2011a0.ada
ba2011a1.ada
ba2011a2.ada
ba2011a3.ada
ba2011a4.ada
ba2011a5.ada
ba2011a6.ada
ba2011a7.ada
ba2011a8.ada
ba2011a9.ada
ba2013a.ada
ba2013b.ada
ba21002.a
ba210030.a
ba210031.a
ba210032.a
ba210033.a
ba210034.a
ba210035.a
ba210040.a
ba210041.a
ba210042.a
ba210043.a
ba210044.a
ba210045.am
ba21a01.a
ba21a02.a
ba21a03.a
ba3001a0.ada
ba3001a1.ada
ba3001a2.ada

ACATS 4.1 User's Guide

79 29 June 2016 Core Test Files A.1

ba3001a3.ada
ba3001b0.ada
ba3001b1.ada
ba3001c0.ada
ba3001c1.ada
ba3001e0.ada
ba3001e1.ada
ba3001e2.ada
ba3001e3.ada
ba3001f0.ada
ba3001f1.ada
ba3001f2.ada
ba3001f3.ada
ba3006a0.ada
ba3006a1.ada
ba3006a2.ada
ba3006a3.ada
ba3006a4.ada
ba3006a5.ada
ba3006a6.ada
ba3006b0.ada
ba3006b1.ada
ba3006b2.ada
ba3006b3.ada
ba3006b4.ada
bb10001.a
bb20001.a
bb2001a.ada
bb2002a.ada
bb2003a.ada
bb2003b.ada
bb2003c.ada
bb3001a.ada
bb3002a.ada
bc1001a.ada
bc1002a.ada
bc1005a.ada
bc1008a.ada
bc1008b.ada
bc1008c.ada
bc1009a.ada
bc1011a.ada
bc1011b.ada
bc1011c.ada
bc1012a.ada
bc1013a.ada
bc1014a.ada
bc1014b.ada
bc1016a.ada

bc1016b.ada
bc1101a.ada
bc1102a.ada
bc1103a.ada
bc1106a.ada
bc1107a.ada
bc1109a.ada
bc1109b.ada
bc1109c.ada
bc1109d.ada
bc1110a.ada
bc1201a.ada
bc1201b.ada
bc1201c.ada
bc1201d.ada
bc1201e.ada
bc1201f.ada
bc1201g.ada
bc1201h.ada
bc1201i.ada
bc1201j.ada
bc1201k.ada
bc1201l.ada
bc1202a.ada
bc1202e.ada
bc1202f.ada
bc1202g.ada
bc1203a.ada
bc1205a.ada
bc1206a.ada
bc1207a.ada
bc1208a.ada
bc1226a.ada
bc1230a.ada
bc1303a.ada
bc1303b.ada
bc1303c.ada
bc1303d.ada
bc1303e.ada
bc1303f.ada
bc1303g.ada
bc1306a.ada
bc2001b.ada
bc2001c.ada
bc2001d.ada
bc2001e.ada
bc2004a.ada
bc2004b.ada
bc30001.a

bc3001a.ada
bc3002a.ada
bc3002b.ada
bc3002c.ada
bc3002d.ada
bc3002e.ada
bc3005a.ada
bc3005b.ada
bc3005c.ada
bc3006a.ada
bc3009c.ada
bc3011b.ada
bc3013a.ada
bc3016g.ada
bc3018a.ada
bc3101a.ada
bc3101b.ada
bc3102a.ada
bc3102b.ada
bc3103b.ada
bc3123c.ada
bc3201a.ada
bc3201b.ada
bc3201c.ada
bc3202a.ada
bc3202b.ada
bc3202c.ada
bc3202d.ada
bc3205c.ada
bc3301a.ada
bc3301b.ada
bc3302a.ada
bc3302b.ada
bc3303a.ada
bc3304a.ada
bc3401a.ada
bc3401b.ada
bc3402a.ada
bc3402b.ada
bc3403a.ada
bc3403b.ada
bc3403c.ada
bc3404a.ada
bc3404b.ada
bc3404c.ada
bc3404d.ada
bc3404e.ada
bc3404f.ada
bc3405a.ada

bc3405b.ada
bc3405d.ada
bc3405e.ada
bc3405f.ada
bc3501a.ada
bc3501b.ada
bc3501c.ada
bc3501d.ada
bc3501e.ada
bc3501f.ada
bc3501g.ada
bc3501h.ada
bc3501i.ada
bc3501j.ada
bc3501k.ada
bc3502a.ada
bc3502b.ada
bc3502c.ada
bc3502d.ada
bc3502e.ada
bc3502f.ada
bc3502g.ada
bc3502h.ada
bc3502i.ada
bc3502j.ada
bc3502k.ada
bc3502l.ada
bc3502m.ada
bc3502n.ada
bc3502o.ada
bc3503a.ada
bc3503c.ada
bc3503d.ada
bc3503e.ada
bc3503f.ada
bc3604a.ada
bc3604b.ada
bc3607a.ada
bc40002.a
bc50001.a
bc50002.a
bc50003.a
bc50004.a
bc51002.a
bc51003.a
bc51004.a
bc51005.a
bc51006.a
bc51007.a

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 80

bc51011.a
bc51012.a
bc51013.a
bc51015.a
bc51016.a
bc51017.a
bc51018.a
bc51019.a
bc51020.a
bc510210.a
bc510211.a
bc510212.a
bc510213.am
bc510220.a
bc510221.a
bc510222.a
bc510223.am
bc51b01.a
bc51b02.a
bc51c01.a
bc51c02.a
bc53001.a
bc53002.a
bc54001.a
bc54002.a
bc54003.a
bc54a01.a
bc54a02.a
bc54a03.a
bc54a04.a
bc54a05.a
bc54a06.a
bc60001.a
bc60002.a
bc60003.a
bc60004.a
bc70001.a
bc70002.a
bc70003.a
bc70004.a
bc70005.a
bc70006.a
bc70007.a
bc70008.a
bc70009.a
bc70010.a
bd11001.a
bd11002.a
bd1b01a.ada

bd1b02b.ada
bd1b03c.ada
bd1b05e.ada
bd1b06j.ada
bd2001b.ada
bd2a01h.ada
bd2a02a.tst
bd2a03a.ada
bd2a03b.ada
bd2a06a.ada
bd2a25a.ada
bd2a35a.ada
bd2a45a.ada
bd2a55a.ada
bd2a55b.ada
bd2a67a.ada
bd2a77a.ada
bd2a85a.ada
bd2a85b.ada
bd2b01c.ada
bd2b02a.ada
bd2b03a.ada
bd2b03b.ada
bd2b03c.ada
bd2c01d.tst
bd2c02a.tst
bd2c03a.tst
bd2d01c.ada
bd2d01d.ada
bd2d02a.ada
bd2d03a.ada
bd2d03b.ada
bd3001a.ada
bd3001b.ada
bd3001c.ada
bd3002a.ada
bd3003a.ada
bd3003b.ada
bd3012a.ada
bd3013a.ada
bd4001a.ada
bd4002a.ada
bd4003a.ada
bd4003b.ada
bd4003c.ada
bd4006a.tst
bd4007a.ada
bd4009a.ada
bd4011a.ada

bd5001a.ada
bd5005a.ada
bd5005d.ada
bd5102a.ada
bd5102b.ada
bd5103a.ada
bd5104a.ada
bd7001a.ada
bd7101h.ada
bd7201c.ada
bd7203a.ada
bd7204a.ada
bd7205a.ada
bd7301a.ada
bd7302a.ada
bd8001a.tst
bd8002a.tst
bd8003a.tst
bd8004a.tst
bd8004b.tst
bd8004c.tst
bdb0a01.a
bdb3a01.a
bdd2001.a
bdd2002.a
bdd2003.a
bdd2004.a
bdd2005.a
bde0001.a
bde0002.a
bde0003.a
bde0004.a
bde0005.a
bde0006.a
bde0007.a
bde0008.a
bde0009.a
bde0010.a
bde0011.a
be2101e.ada
be2101j.ada
be2114a.ada
be2116a.ada
be2208a.ada
be3002a.ada
be3002e.ada
be3205a.ada
be3301c.ada
be3606c.ada

be3703a.ada
be3802a.ada
be3803a.ada
be3902a.ada
be3903a.ada
bxa8001.a
bxac001.a
bxac002.a
bxac003.a
bxac005.a
bxai001.a
bxai002.a
bxai003.a
bxai004.a
bxai005.a
bxai006.a
bxai007.a
bxai008.a
bxaia01.a
bxaia02.a
bxaia03.a
bxaia04.a
bxb3001.a
bxb3002.a
bxb3003.a
bxb3004.a
c23001a.ada
c23003a.tst
c23003b.tst
c23003g.tst
c23003i.tst
c23006a.ada
c23006b.ada
c23006c.ada
c23006d.ada
c23006e.ada
c23006f.ada
c23006g.ada
c24002d.ada
c24003a.ada
c24003b.ada
c24003c.ada
c24106a.ada
c24202d.ada
c24203a.ada
c24203b.ada
c24207a.ada
c24211a.ada
c250001.au

ACATS 4.1 User's Guide

81 29 June 2016 Core Test Files A.1

c250002.au
c25001a.ada
c25001b.ada
c26006a.ada
c26008a.ada
c2a001a.ada
c2a001b.ada
c2a001c.ada
c2a002a.ada
c2a008a.ada
c2a021b.ada
c32001a.ada
c32001b.ada
c32001c.ada
c32001d.ada
c32001e.ada
c32107a.ada
c32107c.ada
c32108a.ada
c32108b.ada
c32111a.ada
c32111b.ada
c32112b.ada
c32113a.ada
c32115a.ada
c32115b.ada
c324001.a
c324002.a
c324003.a
c324004.a
c324005.a
c330001.a
c330002.a
c332001.a
c340001.a
c34001a.ada
c34001c.ada
c34001d.ada
c34001f.ada
c34002a.ada
c34002c.ada
c34003a.ada
c34003c.ada
c34004a.ada
c34004c.ada
c34005a.ada
c34005c.ada
c34005d.ada
c34005f.ada

c34005g.ada
c34005i.ada
c34005j.ada
c34005l.ada
c34005m.ada
c34005o.ada
c34005p.ada
c34005r.ada
c34005s.ada
c34005u.ada
c34005v.ada
c34006a.ada
c34006d.ada
c34006f.ada
c34006g.ada
c34006j.ada
c34006l.ada
c34007a.ada
c34007d.ada
c34007f.ada
c34007g.ada
c34007i.ada
c34007j.ada
c34007m.ada
c34007p.ada
c34007r.ada
c34007s.ada
c34007u.ada
c34007v.ada
c34008a.ada
c34009a.ada
c34009d.ada
c34009f.ada
c34009g.ada
c34009j.ada
c34009l.ada
c34011b.ada
c34012a.ada
c34014a.ada
c34014c.ada
c34014e.ada
c34014g.ada
c34014h.ada
c34014n.ada
c34014p.ada
c34014r.ada
c34014t.ada
c34014u.ada
c34018a.ada

c340a01.a
c340a02.a
c341a01.a
c341a02.a
c341a03.a
c341a04.a
c35003a.ada
c35003b.ada
c35003d.ada
c35102a.ada
c352001.a
c354002.a
c354003.a
c35502a.ada
c35502b.ada
c35502c.ada
c35502d.tst
c35502e.ada
c35502f.tst
c35502g.ada
c35502h.ada
c35502i.ada
c35502j.ada
c35502k.ada
c35502l.ada
c35502m.ada
c35502n.ada
c35502o.ada
c35502p.ada
c35503a.ada
c35503b.ada
c35503c.ada
c35503d.tst
c35503e.ada
c35503f.tst
c35503g.ada
c35503h.ada
c35503k.ada
c35503l.ada
c35503o.ada
c35503p.ada
c35504a.ada
c35504b.ada
c35505c.ada
c35505e.ada
c35505f.ada
c35507a.ada
c35507b.ada
c35507c.ada

c35507e.ada
c35507g.ada
c35507h.ada
c35507i.ada
c35507j.ada
c35507k.ada
c35507l.ada
c35507m.ada
c35507n.ada
c35507o.ada
c35507p.ada
c35508a.ada
c35508b.ada
c35508c.ada
c35508e.ada
c35508g.ada
c35508h.ada
c35508k.ada
c35508l.ada
c35508o.ada
c35508p.ada
c35703a.ada
c35704a.ada
c35704b.ada
c35704c.ada
c35704d.ada
c35801d.ada
c35902d.ada
c35904a.ada
c35904b.ada
c35a02a.ada
c35a05a.ada
c35a05d.ada
c35a05n.ada
c35a05q.ada
c35a07a.ada
c35a07d.ada
c35a08b.ada
c360002.a
c36104a.ada
c36104b.ada
c36172a.ada
c36172b.ada
c36172c.ada
c36174a.ada
c36180a.ada
c36202c.ada
c36203a.ada
c36204a.ada

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 82

c36204b.ada
c36204c.ada
c36204d.ada
c36205a.ada
c36205b.ada
c36205c.ada
c36205d.ada
c36205e.ada
c36205f.ada
c36205g.ada
c36205h.ada
c36205i.ada
c36205j.ada
c36205k.ada
c36205l.ada
c36301a.ada
c36301b.ada
c36302a.ada
c36304a.ada
c36305a.ada
c37002a.ada
c37003a.ada
c37003b.ada
c37005a.ada
c37006a.ada
c37008a.ada
c37008b.ada
c37009a.ada
c37010a.ada
c37010b.ada
c371001.a
c371002.a
c371003.a
c37102b.ada
c37103a.ada
c37105a.ada
c37107a.ada
c37108b.ada
c37206a.ada
c37207a.ada
c37208a.ada
c37208b.ada
c37209a.ada
c37209b.ada
c37210a.ada
c37211a.ada
c37211b.ada
c37211c.ada
c37211d.ada

c37211e.ada
c37213b.ada
c37213d.ada
c37213f.ada
c37213h.ada
c37213j.ada
c37213k.ada
c37213l.ada
c37215b.ada
c37215d.ada
c37215f.ada
c37215h.ada
c37217a.ada
c37217b.ada
c37217c.ada
c37304a.ada
c37305a.ada
c37306a.ada
c37309a.ada
c37310a.ada
c37312a.ada
c37402a.ada
c37403a.ada
c37404a.ada
c37404b.ada
c37405a.ada
c37411a.ada
c380001.a
c380002.a
c380003.a
c380004.a
c38002a.ada
c38002b.ada
c38005a.ada
c38005b.ada
c38005c.ada
c38102a.ada
c38102b.ada
c38102c.ada
c38102d.ada
c38102e.ada
c38104a.ada
c38107a.ada
c38107b.ada
c38108a.ada
c38108b.ada
c38108c0.ada
c38108c1.ada
c38108c2.ada

c38108d0.ada
c38108d1.ada
c3900010.a
c3900011.am
c390002.a
c390003.a
c390004.a
c3900050.a
c3900051.a
c3900052.a
c3900053.am
c3900060.a
c3900061.a
c3900062.a
c3900063.am
c390007.a
c390010.a
c390011.a
c390012.a
c39006a.ada
c39006b.ada
c39006c0.ada
c39006c1.ada
c39006d.ada
c39006e.ada
c39006f0.ada
c39006f1.ada
c39006f2.ada
c39006f3.ada
c39006g.ada
c39007a.ada
c39007b.ada
c39008a.ada
c39008b.ada
c39008c.ada
c390a010.a
c390a011.am
c390a020.a
c390a021.a
c390a022.am
c390a030.a
c390a031.am
c391001.a
c391002.a
c391003.a
c392002.a
c392003.a
c392004.a
c392005.a

c392008.a
c392010.a
c392011.a
c392013.a
c392014.a
c392015.a
c392a01.a
c392c05.a
c392c07.a
c392d01.a
c392d02.a
c392d03.a
c393001.a
c393007.a
c393008.a
c393009.a
c393010.a
c393011.a
c393012.a
c393013.a
c393a02.a
c393a03.a
c393a05.a
c393a06.a
c393b12.a
c393b13.a
c393b14.a
c394001.a
c394002.a
c394003.a
c3a0001.a
c3a0002.a
c3a0003.a
c3a0004.a
c3a0005.a
c3a0006.a
c3a0007.a
c3a0008.a
c3a0009.a
c3a0010.a
c3a0011.a
c3a00120.a
c3a00121.a
c3a00122.am
c3a0013.a
c3a0014.a
c3a0015.a
c3a0016.a
c3a0017.a

ACATS 4.1 User's Guide

83 29 June 2016 Core Test Files A.1

c3a0018.a
c3a0019.a
c3a0020.a
c3a0021.a
c3a0022.a
c3a0023.a
c3a0024.a
c3a0025.a
c3a0026.a
c3a0027.a
c3a0028.a
c3a0029.a
c3a1001.a
c3a1002.a
c3a10030.a
c3a10031.a
c3a10032.am
c3a10040.a
c3a10041.a
c3a10042.am
c3a2001.a
c3a2002.a
c3a2003.a
c3a2004.a
c3a2a01.a
c3a2a02.a
c410001.a
c41101d.ada
c41103a.ada
c41103b.ada
c41104a.ada
c41105a.ada
c41107a.ada
c41201d.ada
c41203a.ada
c41203b.ada
c41204a.ada
c41205a.ada
c41206a.ada
c41207a.ada
c413001.a
c413002.a
c413003.a
c413004.a
c413005.a
c413006.a
c41301a.ada
c41303a.ada
c41303b.ada

c41303c.ada
c41303e.ada
c41303f.ada
c41303g.ada
c41303i.ada
c41303j.ada
c41303k.ada
c41303m.ada
c41303n.ada
c41303o.ada
c41303q.ada
c41303r.ada
c41303s.ada
c41303u.ada
c41303v.ada
c41303w.ada
c41304a.ada
c41304b.ada
c41306b.ada
c41306c.ada
c41307d.ada
c41309a.ada
c41320a.ada
c41321a.ada
c41322a.ada
c41323a.ada
c41324a.ada
c41325a.ada
c41326a.ada
c41327a.ada
c41328a.ada
c41401a.ada
c41402a.ada
c41404a.ada
c415001.a
c416a01.a
c416a02.a
c420001.a
c42006a.ada
c42007e.ada
c43003a.ada
c43004a.ada
c43004c.ada
c431001.a
c431002.a
c43103a.ada
c43103b.ada
c43104a.ada
c43105a.ada

c43105b.ada
c43106a.ada
c43107a.ada
c43108a.ada
c431a01.a
c431a02.a
c431a03.a
c432001.a
c432002.a
c432003.a
c432004.a
c432005.a
c43204a.ada
c43204c.ada
c43204e.ada
c43204f.ada
c43204g.ada
c43204h.ada
c43204i.ada
c43205a.ada
c43205b.ada
c43205c.ada
c43205d.ada
c43205e.ada
c43205g.ada
c43205h.ada
c43205i.ada
c43205j.ada
c43205k.ada
c43206a.ada
c43207b.ada
c43207d.ada
c43208a.ada
c43208b.ada
c43209a.ada
c43210a.ada
c43211a.ada
c43212a.ada
c43212c.ada
c43214a.ada
c43214b.ada
c43214c.ada
c43214d.ada
c43214e.ada
c43214f.ada
c43215a.ada
c43215b.ada
c43222a.ada
c43224a.ada

c433001.a
c433002.a
c433003.a
c433004.a
c433005.a
c433006.a
c433a01.a
c433a02.a
c433a03.a
c433a04.a
c44003d.ada
c44003f.ada
c44003g.ada
c450001.a
c45112a.ada
c45112b.ada
c45113a.ada
c45114b.ada
c452001.a
c45201a.ada
c45201b.ada
c45202b.ada
c45210a.ada
c45211a.ada
c45220a.ada
c45220b.ada
c45220c.ada
c45220d.ada
c45220e.ada
c45220f.ada
c45231a.ada
c45231b.dep
c45231c.dep
c45231d.tst
c45232b.ada
c45242b.ada
c45251a.ada
c45252a.ada
c45252b.ada
c45253a.ada
c45262a.ada
c45262b.ada
c45262c.ada
c45262d.ada
c45264a.ada
c45264b.ada
c45264c.ada
c45265a.ada
c45271a.ada

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 84

c45272a.ada
c45273a.ada
c45274a.ada
c45274b.ada
c45274c.ada
c45281a.ada
c45282a.ada
c45282b.ada
c45291a.ada
c45303a.ada
c45304a.ada
c45304b.dep
c45304c.dep
c45322a.ada
c45323a.ada
c45331a.ada
c45342a.ada
c45343a.ada
c45344a.ada
c45345b.ada
c45347a.ada
c45347b.ada
c45347c.ada
c45347d.ada
c45411a.ada
c45411b.dep
c45411c.dep
c45411d.ada
c45413a.ada
c45431a.ada
c455001.a
c45502b.dep
c45502c.dep
c45503a.ada
c45503b.dep
c45503c.dep
c45504a.ada
c45504b.dep
c45504c.dep
c45504d.ada
c45504e.dep
c45504f.dep
c45505a.ada
c45523a.ada
c45531a.ada
c45531b.ada
c45531c.ada
c45531d.ada
c45531e.ada

c45531f.ada
c45531g.ada
c45531h.ada
c45531i.ada
c45531j.ada
c45531k.ada
c45531l.ada
c45531m.dep
c45531n.dep
c45531o.dep
c45531p.dep
c45532a.ada
c45532b.ada
c45532c.ada
c45532d.ada
c45532e.ada
c45532f.ada
c45532g.ada
c45532h.ada
c45532i.ada
c45532j.ada
c45532k.ada
c45532l.ada
c45532m.dep
c45532n.dep
c45532o.dep
c45532p.dep
c45534b.ada
c45536a.dep
c456001.a
c45611a.ada
c45611b.dep
c45611c.dep
c45613a.ada
c45613b.dep
c45613c.dep
c45614a.ada
c45614b.dep
c45614c.dep
c45631a.ada
c45631b.dep
c45631c.dep
c45632a.ada
c45632b.dep
c45632c.dep
c45651a.ada
c45662a.ada
c45662b.ada
c45672a.ada

c457001.a
c457002.a
c457003.a
c457004.a
c457005.a
c457006.a
c457007.a
c458001.a
c460001.a
c460002.a
c460004.a
c460005.a
c460006.a
c460007.a
c460008.a
c460009.a
c460010.a
c460011.a
c460012.a
c460013.a
c46011a.ada
c46013a.ada
c46014a.ada
c46021a.ada
c46024a.ada
c46031a.ada
c46032a.ada
c46033a.ada
c46041a.ada
c46042a.ada
c46043b.ada
c46044b.ada
c46051a.ada
c46051b.ada
c46051c.ada
c46052a.ada
c46053a.ada
c46054a.ada
c460a01.a
c460a02.a
c47002a.ada
c47002b.ada
c47002c.ada
c47002d.ada
c47003a.ada
c47004a.ada
c47005a.ada
c47006a.ada
c47007a.ada

c47008a.ada
c47009a.ada
c47009b.ada
c48004a.ada
c48004b.ada
c48004c.ada
c48004d.ada
c48004e.ada
c48004f.ada
c48005a.ada
c48005b.ada
c48006a.ada
c48006b.ada
c48007a.ada
c48007b.ada
c48007c.ada
c48008a.ada
c48008c.ada
c48009a.ada
c48009b.ada
c48009c.ada
c48009d.ada
c48009e.ada
c48009f.ada
c48009g.ada
c48009h.ada
c48009i.ada
c48009j.ada
c48010a.ada
c48011a.ada
c48012a.ada
c490001.a
c490002.a
c490003.a
c49020a.ada
c49021a.ada
c49022a.ada
c49022b.ada
c49022c.ada
c49023a.ada
c49024a.ada
c49025a.ada
c49026a.ada
c4a005b.ada
c4a006a.ada
c4a007a.tst
c4a010a.ada
c4a010b.ada
c4a011a.ada

ACATS 4.1 User's Guide

85 29 June 2016 Core Test Files A.1

c4a012b.ada
c4a013a.ada
c4a014a.ada
c51004a.ada
c52005a.ada
c52005b.ada
c52005c.ada
c52005d.ada
c52005e.ada
c52005f.ada
c52008a.ada
c52008b.ada
c52009a.ada
c52009b.ada
c52010a.ada
c52011a.ada
c52011b.ada
c52101a.ada
c52102a.ada
c52102b.ada
c52102c.ada
c52102d.ada
c52103a.ada
c52103b.ada
c52103c.ada
c52103f.ada
c52103g.ada
c52103h.ada
c52103k.ada
c52103l.ada
c52103m.ada
c52103p.ada
c52103q.ada
c52103r.ada
c52103x.ada
c52104a.ada
c52104b.ada
c52104c.ada
c52104f.ada
c52104g.ada
c52104h.ada
c52104k.ada
c52104l.ada
c52104m.ada
c52104p.ada
c52104q.ada
c52104r.ada
c52104x.ada
c52104y.ada

c53007a.ada
c540001.a
c540002.a
c540003.a
c54a03a.ada
c54a04a.ada
c54a07a.ada
c54a13a.ada
c54a13b.ada
c54a13c.ada
c54a13d.ada
c54a22a.ada
c54a23a.ada
c54a24a.ada
c54a24b.ada
c54a42a.ada
c54a42b.ada
c54a42c.ada
c54a42d.ada
c54a42e.ada
c54a42f.ada
c54a42g.ada
c550001.a
c552001.a
c552002.a
c552a01.a
c552a02.a
c55b03a.ada
c55b04a.ada
c55b05a.ada
c55b06a.ada
c55b06b.ada
c55b07a.dep
c55b07b.dep
c55b10a.ada
c55b11a.ada
c55b11b.ada
c55b15a.ada
c55b16a.ada
c55c02a.ada
c55c02b.ada
c56002a.ada
c57003a.ada
c57004a.ada
c57004b.ada
c58004c.ada
c58004d.ada
c58004g.ada
c58005a.ada

c58005b.ada
c58005h.ada
c58006a.ada
c58006b.ada
c59002a.ada
c59002b.ada
c59002c.ada
c61008a.ada
c61009a.ada
c61010a.ada
c611001.a
c620001.a
c62002a.ada
c62003b.ada
c62004a.ada
c62006a.ada
c631001.a
c640001.a
c640002.a
c64002b.ada
c64004g.ada
c64005a.ada
c64005b.ada
c64005c.ada
c64005d0.ada
c64005da.ada
c64005db.ada
c64005dc.ada
c641001.a
c64103b.ada
c64103c.ada
c64103d.ada
c64103e.ada
c64103f.ada
c64104a.ada
c64104b.ada
c64104c.ada
c64104d.ada
c64104e.ada
c64104f.ada
c64104g.ada
c64104h.ada
c64104i.ada
c64104j.ada
c64104k.ada
c64104l.ada
c64104m.ada
c64104n.ada
c64104o.ada

c64105a.ada
c64105b.ada
c64105c.ada
c64105d.ada
c64106a.ada
c64106b.ada
c64106c.ada
c64106d.ada
c64107a.ada
c64108a.ada
c64109a.ada
c64109b.ada
c64109c.ada
c64109d.ada
c64109e.ada
c64109f.ada
c64109g.ada
c64109h.ada
c64109i.ada
c64109j.ada
c64109k.ada
c64109l.ada
c64201b.ada
c64201c.ada
c64202a.ada
c650002.a
c650003.a
c65003a.ada
c65003b.ada
c650a01.a
c650a02.a
c650b01.a
c650b02.a
c650b03.a
c660001.a
c66002a.ada
c66002c.ada
c66002d.ada
c66002e.ada
c66002f.ada
c66002g.ada
c67002a.ada
c67002b.ada
c67002c.ada
c67002d.ada
c67002e.ada
c67003f.ada
c67005a.ada
c67005b.ada

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 86

c67005c.ada
c67005d.ada
c680001.a
c72001b.ada
c72002a.ada
c730001.a
c730002.a
c730003.a
c730004.a
c73002a.ada
c730a01.a
c730a02.a
c731001.a
c7320010.a
c7320011.a
c7320012.am
c732002.a
c732a01.a
c732a02.a
c732b01.a
c732b02.a
c732c01.a
c74004a.ada
c74203a.ada
c74206a.ada
c74207b.ada
c74208a.ada
c74208b.ada
c74209a.ada
c74210a.ada
c74211a.ada
c74211b.ada
c74302a.ada
c74302b.ada
c74305a.ada
c74305b.ada
c74306a.ada
c74307a.ada
c74401d.ada
c74401e.ada
c74401k.ada
c74401q.ada
c74402a.ada
c74402b.ada
c74406a.ada
c74407b.ada
c74409b.ada
c760001.a
c760002.a

c760007.a
c760009.a
c760010.a
c760011.a
c760012.a
c760013.a
c760014.a
c760015.a
c760a01.a
c761001.a
c761002.a
c761003.a
c761004.a
c761005.a
c761006.a
c761007.a
c761010.a
c761011.a
c761012.a
c761013.a
c83007a.ada
c83012d.ada
c83022a.ada
c83022g0.ada
c83022g1.ada
c83023a.ada
c83024a.ada
c83024e0.ada
c83024e1.ada
c83025a.ada
c83025c.ada
c83027a.ada
c83027c.ada
c83028a.ada
c83029a.ada
c83030a.ada
c83030c.ada
c83031a.ada
c83031c.ada
c83031e.ada
c83032a.ada
c83033a.ada
c83051a.ada
c831001.a
c83b02a.ada
c83b02b.ada
c83e02a.ada
c83e02b.ada
c83e03a.ada

c83f01a.ada
c83f01b.ada
c83f01c0.ada
c83f01c1.ada
c83f01c2.ada
c83f01d0.ada
c83f01d1.ada
c83f03a.ada
c83f03b.ada
c83f03c0.ada
c83f03c1.ada
c83f03c2.ada
c83f03d0.ada
c83f03d1.ada
c840001.a
c840002.a
c84002a.ada
c84005a.ada
c84008a.ada
c84009a.ada
c85004b.ada
c85005a.ada
c85005b.ada
c85005c.ada
c85005d.ada
c85005e.ada
c85005f.ada
c85005g.ada
c85006a.ada
c85006b.ada
c85006c.ada
c85006d.ada
c85006e.ada
c85006f.ada
c85006g.ada
c85007a.ada
c85007e.ada
c85009a.ada
c85011a.ada
c85013a.ada
c85014a.ada
c85014b.ada
c85014c.ada
c85017a.ada
c85018a.ada
c85018b.ada
c85019a.ada
c851001.a
c851002.a

c854001.a
c854002.a
c854003.a
c86003a.ada
c86004a.ada
c86004b0.ada
c86004b1.ada
c86004b2.ada
c86004c0.ada
c86004c1.ada
c86004c2.ada
c86006i.ada
c86007a.ada
c87a05a.ada
c87a05b.ada
c87b02a.ada
c87b02b.ada
c87b03a.ada
c87b04a.ada
c87b04b.ada
c87b04c.ada
c87b05a.ada
c87b06a.ada
c87b07a.ada
c87b07b.ada
c87b07c.ada
c87b07d.ada
c87b07e.ada
c87b08a.ada
c87b09a.ada
c87b09c.ada
c87b10a.ada
c87b11a.ada
c87b11b.ada
c87b13a.ada
c87b14a.ada
c87b14b.ada
c87b14c.ada
c87b14d.ada
c87b15a.ada
c87b16a.ada
c87b17a.ada
c87b18a.ada
c87b18b.ada
c87b19a.ada
c87b23a.ada
c87b24a.ada
c87b24b.ada
c87b26b.ada

ACATS 4.1 User's Guide

87 29 June 2016 Core Test Files A.1

c87b27a.ada
c87b28a.ada
c87b29a.ada
c87b30a.ada
c87b31a.ada
c87b32a.ada
c87b33a.ada
c87b34a.ada
c87b34b.ada
c87b34c.ada
c87b35c.ada
c87b38a.ada
c87b39a.ada
c87b40a.ada
c87b41a.ada
c87b42a.ada
c87b43a.ada
c87b44a.ada
c87b45a.ada
c87b45c.ada
c87b47a.ada
c87b48a.ada
c87b48b.ada
c87b50a.ada
c87b54a.ada
c87b57a.ada
c87b62a.ada
c87b62b.ada
c87b62c.ada
c87b62d.tst
c910001.a
c910002.a
c910003.a
c91004b.ada
c91004c.ada
c91006a.ada
c91007a.ada
c920001.a
c92002a.ada
c92003a.ada
c92005a.ada
c92005b.ada
c92006a.ada
c930001.a
c93001a.ada
c93002a.ada
c93003a.ada
c93004a.ada
c93004b.ada

c93004c.ada
c93004d.ada
c93004f.ada
c93005a.ada
c93005b.ada
c93005c.ada
c93005d.ada
c93005e.ada
c93005f.ada
c93005g.ada
c93005h.ada
c93006a.ada
c93007a.ada
c93008a.ada
c93008b.ada
c940001.a
c940002.a
c940004.a
c940005.a
c940006.a
c940007.a
c940010.a
c940011.a
c940012.a
c940013.a
c940014.a
c940015.a
c940016.a
c94001a.ada
c94001b.ada
c94001c.ada
c94001e.ada
c94001f.ada
c94001g.ada
c94002a.ada
c94002b.ada
c94002d.ada
c94002e.ada
c94002f.ada
c94002g.ada
c94004a.ada
c94004b.ada
c94004c.ada
c94005a.ada
c94005b.ada
c94006a.ada
c94007a.ada
c94007b.ada
c94008a.ada

c94008b.ada
c94008c.ada
c94008d.ada
c94010a.ada
c94011a.ada
c94020a.ada
c940a03.a
c950001.a
c95008a.ada
c95009a.ada
c95010a.ada
c95011a.ada
c95012a.ada
c95021a.ada
c95022a.ada
c95022b.ada
c95033a.ada
c95033b.ada
c95034a.ada
c95034b.ada
c95035a.ada
c95040a.ada
c95040b.ada
c95040c.ada
c95040d.ada
c95041a.ada
c95065a.ada
c95065b.ada
c95065c.ada
c95065d.ada
c95065e.ada
c95065f.ada
c95066a.ada
c95067a.ada
c95071a.ada
c95072a.ada
c95072b.ada
c95073a.ada
c95074c.ada
c95076a.ada
c95078a.ada
c95080b.ada
c95082g.ada
c95085a.ada
c95085b.ada
c95085c.ada
c95085d.ada
c95085e.ada
c95085f.ada

c95085g.ada
c95085h.ada
c95085i.ada
c95085j.ada
c95085k.ada
c95085l.ada
c95085m.ada
c95085n.ada
c95085o.ada
c95086a.ada
c95086b.ada
c95086c.ada
c95086d.ada
c95086e.ada
c95086f.ada
c95087a.ada
c95087b.ada
c95087c.ada
c95087d.ada
c95088a.ada
c95089a.ada
c95090a.ada
c95092a.ada
c95093a.ada
c95095a.ada
c95095b.ada
c95095c.ada
c95095d.ada
c95095e.ada
c951001.a
c951002.a
c953001.a
c953002.a
c953003.a
c954001.a
c954010.a
c954011.a
c954012.a
c954013.a
c954014.a
c954015.a
c954016.a
c954017.a
c954018.a
c954019.a
c954020.a
c954021.a
c954022.a
c954023.a

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 88

c954024.a
c954025.a
c954026.a
c954027.a
c954a01.a
c954a02.a
c954a03.a
c960001.a
c960002.a
c960004.a
c96001a.ada
c96004a.ada
c96005a.ada
c96005b.tst
c96005d.ada
c96005f.ada
c96006a.ada
c96007a.ada
c96008a.ada
c96008b.ada
c97112a.ada
c97113a.ada
c97114a.ada
c97115a.ada
c97116a.ada
c97117a.ada
c97117b.ada
c97117c.ada
c97118a.ada
c97120a.ada
c97120b.ada
c97201a.ada
c97201b.ada
c97201c.ada
c97201d.ada
c97201e.ada
c97201g.ada
c97201h.ada
c97201x.ada
c97202a.ada
c97203a.ada
c97203b.ada
c97203c.ada
c97204a.ada
c97204b.ada
c97205a.ada
c97205b.ada
c97301a.ada
c97301b.ada

c97301c.ada
c97301d.ada
c97301e.ada
c97302a.ada
c97303a.ada
c97303b.ada
c97303c.ada
c97304a.ada
c97304b.ada
c97305a.ada
c97305b.ada
c97305c.ada
c97305d.ada
c97307a.ada
c974001.a
c974002.a
c974003.a
c974004.a
c974005.a
c974006.a
c974007.a
c974008.a
c974009.a
c974010.a
c974011.a
c974012.a
c974013.a
c974014.a
c980001.a
c980002.a
c980003.a
c990001.a
c99005a.ada
c9a003a.ada
c9a004a.ada
c9a007a.ada
c9a009a.ada
c9a009c.ada
c9a009f.ada
c9a009g.ada
c9a009h.ada
c9a010a.ada
c9a011a.ada
c9a011b.ada
ca1003a.ada
ca1004a.ada
ca1005a.ada
ca1006a.ada
ca1011a0.ada

ca1011a1.ada
ca1011a2.ada
ca1011a3.ada
ca1011a4.ada
ca1011a5.ada
ca1011a6.ada
ca1012a0.ada
ca1012a1.ada
ca1012a2.ada
ca1012a3.ada
ca1012a4.ada
ca1012b0.ada
ca1012b2.ada
ca1012b4.ada
ca1013a0.ada
ca1013a1.ada
ca1013a2.ada
ca1013a3.ada
ca1013a4.ada
ca1013a5.ada
ca1013a6.ada
ca1014a0.ada
ca1014a1.ada
ca1014a2.ada
ca1014a3.ada
ca1020e0.ada
ca1020e1.ada
ca1020e2.ada
ca1020e3.ada
ca1022a0.ada
ca1022a1.ada
ca1022a2.ada
ca1022a3.ada
ca1022a4.ada
ca1022a5.ada
ca1022a6.ada
ca11001.a
ca11002.a
ca11003.a
ca110040.a
ca110041.a
ca110042.am
ca110050.a
ca110051.am
ca11006.a
ca11007.a
ca11008.a
ca11009.a
ca11010.a

ca11011.a
ca11012.a
ca11013.a
ca11014.a
ca11015.a
ca11016.a
ca11017.a
ca11018.a
ca11019.a
ca11020.a
ca11021.a
ca11022.a
ca110230.a
ca110231.a
ca110232.am
ca1102a0.ada
ca1102a1.ada
ca1102a2.ada
ca1106a.ada
ca1108a.ada
ca1108b.ada
ca11a01.a
ca11a02.a
ca11b01.a
ca11b02.a
ca11c01.a
ca11c02.a
ca11c03.a
ca11d010.a
ca11d011.a
ca11d012.a
ca11d013.am
ca11d02.a
ca11d03.a
ca120010.a
ca120011.a
ca120012.am
ca12002.a
ca13001.a
ca13002.a
ca13003.a
ca13a01.a
ca13a02.a
ca140230.a
ca140231.a
ca140232.am
ca140233.a
ca140280.a
ca140281.a

ACATS 4.1 User's Guide

89 29 June 2016 Core Test Files A.1

ca140282.a
ca140283.am
ca15003.a
ca200020.a
ca200021.a
ca200022.am
ca200030.a
ca200031.am
ca2001h0.ada
ca2001h1.ada
ca2001h2.ada
ca2001h3.ada
ca2002a0.ada
ca2002a1.ada
ca2002a2.ada
ca2003a0.ada
ca2003a1.ada
ca2004a0.ada
ca2004a1.ada
ca2004a2.ada
ca2004a3.ada
ca2004a4.ada
ca2007a0.ada
ca2007a1.ada
ca2007a2.ada
ca2007a3.ada
ca2008a0.ada
ca2008a1.ada
ca2008a2.ada
ca2009a.ada
ca2009c0.ada
ca2009c1.ada
ca2009d.ada
ca2009f0.ada
ca2009f1.ada
ca2009f2.ada
ca2011b.ada
ca21001.a
ca21002.a
ca3011a0.ada
ca3011a1.ada
ca3011a2.ada
ca3011a3.ada
ca3011a4.ada
ca5003a0.ada
ca5003a1.ada
ca5003a2.ada
ca5003a3.ada
ca5003a4.ada

ca5003a5.ada
ca5003a6.ada
ca5003b0.ada
ca5003b1.ada
ca5003b2.ada
ca5003b3.ada
ca5003b4.ada
ca5003b5.ada
ca5004a.ada
ca5004b0.ada
ca5004b1.ada
ca5004b2.ada
ca5006a.ada
cb10002.a
cb1001a.ada
cb1004a.ada
cb1005a.ada
cb1010a.ada
cb1010c.ada
cb1010d.ada
cb20001.a
cb20003.a
cb20004.a
cb20005.a
cb20006.a
cb20007.a
cb2004a.ada
cb2005a.ada
cb2006a.ada
cb2007a.ada
cb20a02.a
cb30001.a
cb30002.a
cb3003a.ada
cb3003b.ada
cb3004a.ada
cb40005.a
cb4001a.ada
cb4002a.ada
cb4003a.ada
cb4004a.ada
cb4005a.ada
cb4006a.ada
cb4007a.ada
cb4008a.ada
cb4009a.ada
cb4013a.ada
cb40a01.a
cb40a020.a

cb40a021.am
cb40a030.a
cb40a031.am
cb40a04.a
cb41001.a
cb41002.a
cb41003.a
cb41004.a
cb5001a.ada
cb5001b.ada
cb5002a.ada
cc1004a.ada
cc1005b.ada
cc1010a.ada
cc1010b.ada
cc1018a.ada
cc1104c.ada
cc1107b.ada
cc1111a.ada
cc1204a.ada
cc1207b.ada
cc1220a.ada
cc1221a.ada
cc1221b.ada
cc1221c.ada
cc1221d.ada
cc1222a.ada
cc1223a.ada
cc1224a.ada
cc1225a.tst
cc1226b.ada
cc1227a.ada
cc1301a.ada
cc1302a.ada
cc1304a.ada
cc1304b.ada
cc1307a.ada
cc1307b.ada
cc1308a.ada
cc1310a.ada
cc1311a.ada
cc1311b.ada
cc2002a.ada
cc30001.a
cc30002.a
cc30003.a
cc30004.a
cc3004a.ada
cc3007a.ada

cc3007b.ada
cc3011a.ada
cc3011d.ada
cc3012a.ada
cc3015a.ada
cc3016b.ada
cc3016c.ada
cc3016f.ada
cc3016i.ada
cc3017b.ada
cc3019a.ada
cc3019b0.ada
cc3019b1.ada
cc3019b2.ada
cc3019c0.ada
cc3019c1.ada
cc3019c2.ada
cc3106b.ada
cc3120a.ada
cc3120b.ada
cc3121a.ada
cc3123a.ada
cc3125a.ada
cc3125b.ada
cc3125c.ada
cc3125d.ada
cc3126a.ada
cc3127a.ada
cc3128a.ada
cc3203a.ada
cc3207b.ada
cc3220a.ada
cc3221a.ada
cc3222a.ada
cc3223a.ada
cc3224a.ada
cc3225a.ada
cc3230a.ada
cc3231a.ada
cc3232a.ada
cc3233a.ada
cc3234a.ada
cc3235a.ada
cc3236a.ada
cc3240a.ada
cc3305a.ada
cc3305b.ada
cc3305c.ada
cc3305d.ada

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 90

cc3601a.ada
cc3601c.ada
cc3602a.ada
cc3603a.ada
cc3605a.ada
cc3606a.ada
cc3606b.ada
cc3607b.ada
cc40001.a
cc50001.a
cc50a01.a
cc50a02.a
cc51001.a
cc51002.a
cc51003.a
cc51004.a
cc51006.a
cc51007.a
cc51008.a
cc51009.a
cc510100.a
cc510101.a
cc510102.a
cc510103.am
cc51a01.a
cc51b03.a
cc51d01.a
cc51d02.a
cc54001.a
cc54002.a
cc54003.a
cc54004.a
cc60001.a
cc70001.a
cc70002.a
cc70003.a
cc70a01.a
cc70a02.a
cc70b01.a
cc70b02.a
cc70c01.a
cc70c02.a
cd10001.a
cd10002.a
cd1009a.ada
cd1009b.ada
cd1009d.ada
cd1009e.ada
cd1009f.ada

cd1009g.ada
cd1009h.ada
cd1009i.ada
cd1009j.ada
cd1009k.tst
cd1009l.ada
cd1009m.ada
cd1009n.ada
cd1009o.ada
cd1009p.ada
cd1009q.ada
cd1009r.ada
cd1009s.ada
cd1009t.tst
cd1009u.tst
cd1009v.ada
cd1009w.ada
cd1009x.ada
cd1009y.ada
cd1009z.ada
cd1c03a.ada
cd1c03b.ada
cd1c03c.ada
cd1c03e.tst
cd1c03f.ada
cd1c03g.ada
cd1c03h.ada
cd1c03i.ada
cd1c04a.ada
cd1c04d.ada
cd1c04e.ada
cd1c06a.tst
cd20001.a
cd2a21a.ada
cd2a21c.ada
cd2a21e.ada
cd2a22a.ada
cd2a22e.ada
cd2a22i.ada
cd2a22j.ada
cd2a23a.ada
cd2a23e.ada
cd2a24a.ada
cd2a24e.ada
cd2a24i.ada
cd2a24j.ada
cd2a31a.ada
cd2a31c.ada
cd2a31e.ada

cd2a32a.ada
cd2a32c.ada
cd2a32e.ada
cd2a32g.ada
cd2a32i.ada
cd2a32j.ada
cd2a51a.ada
cd2a53a.ada
cd2a53e.ada
cd2a83c.tst
cd2a91c.tst
cd2b11b.ada
cd2b11d.ada
cd2b11e.ada
cd2b11f.ada
cd2b16a.ada
cd2c11a.tst
cd2c11d.tst
cd2d11a.ada
cd2d13a.ada
cd30001.a
cd30002.a
cd30003.a
cd30004.a
cd300050.am
cd300051.c
cd30006.a
cd30007.a
cd30008.a
cd30009.a
cd3014a.ada
cd3014c.ada
cd3014d.ada
cd3014f.ada
cd3015a.ada
cd3015c.ada
cd3015e.ada
cd3015f.ada
cd3015g.ada
cd3015h.ada
cd3015i.ada
cd3015k.ada
cd3021a.ada
cd40001.a
cd4031a.ada
cd4041a.tst
cd4051a.ada
cd4051b.ada
cd4051c.ada

cd4051d.ada
cd5003a.ada
cd5003b.ada
cd5003c.ada
cd5003d.ada
cd5003e.ada
cd5003f.ada
cd5003g.ada
cd5003h.ada
cd5003i.ada
cd5011a.ada
cd5011c.ada
cd5011e.ada
cd5011g.ada
cd5011i.ada
cd5011k.ada
cd5011m.ada
cd5011q.ada
cd5011s.ada
cd5012a.ada
cd5012b.ada
cd5012e.ada
cd5012f.ada
cd5012i.ada
cd5012m.ada
cd5013a.ada
cd5013c.ada
cd5013e.ada
cd5013g.ada
cd5013i.ada
cd5013k.ada
cd5013m.ada
cd5013o.ada
cd5014a.ada
cd5014c.ada
cd5014e.ada
cd5014g.ada
cd5014i.ada
cd5014k.ada
cd5014m.ada
cd5014o.ada
cd5014t.ada
cd5014v.ada
cd5014x.ada
cd5014y.ada
cd5014z.ada
cd70001.a
cd7002a.ada
cd7007b.ada

ACATS 4.1 User's Guide

91 29 June 2016 Core Test Files A.1

cd7101d.ada
cd7101e.dep
cd7101f.dep
cd7101g.tst
cd7103d.ada
cd7202a.ada
cd7204b.ada
cd7204c.ada
cd72a01.a
cd72a02.a
cd7305a.ada
cd90001.a
cd92001.a
cda201a.ada
cda201b.ada
cda201c.ada
cda201e.ada
cdb0001.a
cdb0002.a
cdb0a01.a
cdb0a02.a
cdb3a01.a
cdb4001.a
cdd1001.a
cdd2001.a
cdd2a01.a
cdd2a02.a
cdd2a03.a
cde0001.a
cde0002.a
cde0003.a
ce2102a.ada
ce2102b.ada
ce2102c.tst
ce2102d.ada
ce2102e.ada
ce2102f.ada
ce2102g.ada
ce2102h.tst
ce2102i.ada
ce2102j.ada
ce2102k.ada
ce2102l.ada
ce2102m.ada
ce2102n.ada
ce2102o.ada
ce2102p.ada
ce2102q.ada
ce2102r.ada

ce2102s.ada
ce2102t.ada
ce2102u.ada
ce2102v.ada
ce2102w.ada
ce2102x.ada
ce2102y.ada
ce2103a.tst
ce2103b.tst
ce2103c.ada
ce2103d.ada
ce2104a.ada
ce2104b.ada
ce2104c.ada
ce2104d.ada
ce2106a.ada
ce2106b.ada
ce2108e.ada
ce2108f.ada
ce2108g.ada
ce2108h.ada
ce2109a.ada
ce2109b.ada
ce2109c.ada
ce2110a.ada
ce2110c.ada
ce2111a.ada
ce2111b.ada
ce2111c.ada
ce2111e.ada
ce2111f.ada
ce2111g.ada
ce2111i.ada
ce2201a.ada
ce2201b.ada
ce2201c.ada
ce2201d.dep
ce2201e.dep
ce2201f.ada
ce2201g.ada
ce2201h.ada
ce2201i.ada
ce2201j.ada
ce2201k.ada
ce2201l.ada
ce2201m.ada
ce2201n.ada
ce2202a.ada
ce2203a.tst

ce2204a.ada
ce2204b.ada
ce2204c.ada
ce2204d.ada
ce2205a.ada
ce2206a.ada
ce2208b.ada
ce2401a.ada
ce2401b.ada
ce2401c.ada
ce2401e.ada
ce2401f.ada
ce2401h.ada
ce2401i.ada
ce2401j.ada
ce2401k.ada
ce2401l.ada
ce2402a.ada
ce2403a.tst
ce2404a.ada
ce2404b.ada
ce2405b.ada
ce2406a.ada
ce2407a.ada
ce2407b.ada
ce2408a.ada
ce2408b.ada
ce2409a.ada
ce2409b.ada
ce2410a.ada
ce2410b.ada
ce2411a.ada
ce3002b.tst
ce3002c.tst
ce3002d.ada
ce3002f.ada
ce3102a.ada
ce3102b.tst
ce3102d.ada
ce3102e.ada
ce3102f.ada
ce3102g.ada
ce3102h.ada
ce3102i.ada
ce3102j.ada
ce3102k.ada
ce3103a.ada
ce3104a.ada
ce3104b.ada

ce3104c.ada
ce3106a.ada
ce3106b.ada
ce3107a.tst
ce3107b.ada
ce3108a.ada
ce3108b.ada
ce3110a.ada
ce3112c.ada
ce3112d.ada
ce3114a.ada
ce3115a.ada
ce3201a.ada
ce3202a.ada
ce3206a.ada
ce3207a.ada
ce3301a.ada
ce3302a.ada
ce3303a.ada
ce3304a.tst
ce3305a.ada
ce3306a.ada
ce3401a.ada
ce3402a.ada
ce3402c.ada
ce3402d.ada
ce3402e.ada
ce3403a.ada
ce3403b.ada
ce3403c.ada
ce3403d.ada
ce3403e.ada
ce3403f.ada
ce3404a.ada
ce3404b.ada
ce3404c.ada
ce3404d.ada
ce3405a.ada
ce3405c.ada
ce3405d.ada
ce3406a.ada
ce3406b.ada
ce3406c.ada
ce3406d.ada
ce3407a.ada
ce3407b.ada
ce3407c.ada
ce3408a.ada
ce3408b.ada

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 92

ce3408c.ada
ce3409a.ada
ce3409b.ada
ce3409c.ada
ce3409d.ada
ce3409e.ada
ce3410a.ada
ce3410b.ada
ce3410c.ada
ce3410d.ada
ce3410e.ada
ce3411a.ada
ce3411c.ada
ce3412a.ada
ce3413a.ada
ce3413b.ada
ce3413c.ada
ce3414a.ada
ce3601a.ada
ce3602a.ada
ce3602b.ada
ce3602c.ada
ce3602d.ada
ce3603a.ada
ce3604a.ada
ce3604b.ada
ce3605a.ada
ce3605b.ada
ce3605c.ada
ce3605d.ada
ce3605e.ada
ce3606a.ada
ce3606b.ada
ce3701a.ada
ce3704a.ada
ce3704b.ada
ce3704c.ada
ce3704d.ada
ce3704e.ada
ce3704f.ada
ce3704m.ada
ce3704n.ada
ce3704o.ada
ce3705a.ada
ce3705b.ada
ce3705c.ada
ce3705d.ada
ce3705e.ada
ce3706c.ada

ce3706d.ada
ce3706f.ada
ce3706g.ada
ce3707a.ada
ce3708a.ada
ce3801a.ada
ce3801b.ada
ce3804a.ada
ce3804b.ada
ce3804c.ada
ce3804d.ada
ce3804e.ada
ce3804f.ada
ce3804g.ada
ce3804h.ada
ce3804i.ada
ce3804j.ada
ce3804m.ada
ce3804o.ada
ce3804p.ada
ce3805a.ada
ce3805b.ada
ce3806a.ada
ce3806b.ada
ce3806c.ada
ce3806d.ada
ce3806e.ada
ce3806f.ada
ce3806g.ada
ce3806h.ada
ce3809a.ada
ce3809b.ada
ce3810a.ada
ce3810b.ada
ce3815a.ada
ce3901a.ada
ce3902b.ada
ce3904a.ada
ce3904b.ada
ce3905a.ada
ce3905b.ada
ce3905c.ada
ce3905l.ada
ce3906a.ada
ce3906b.ada
ce3906c.ada
ce3906d.ada
ce3906e.ada
ce3906f.ada

ce3907a.ada
ce3908a.ada
cxa3001.a
cxa3002.a
cxa3003.a
cxa3004.a
cxa3005.a
cxa3006.a
cxa3007.a
cxa3008.a
cxa4001.a
cxa4002.a
cxa4003.a
cxa4004.a
cxa4005.a
cxa4006.a
cxa4007.a
cxa4008.a
cxa4009.a
cxa4010.a
cxa4011.a
cxa4012.a
cxa4013.a
cxa4014.a
cxa4015.a
cxa4016.a
cxa4017.a
cxa4018.a
cxa4019.a
cxa4020.a
cxa4021.a
cxa4022.a
cxa4023.a
cxa4024.a
cxa4025.a
cxa4026.a
cxa4027.a
cxa4028.a
cxa4029.a
cxa4030.a
cxa4031.a
cxa4032.a
cxa4033.a
cxa4034.a
cxa4035.a
cxa4036.a
cxa4037.a
cxa5011.a
cxa5012.a

cxa5013.a
cxa5015.a
cxa5016.a
cxa5a01.a
cxa5a02.a
cxa5a03.a
cxa5a04.a
cxa5a05.a
cxa5a06.a
cxa5a07.a
cxa5a08.a
cxa5a09.a
cxa5a10.a
cxa8001.a
cxa8002.a
cxa8003.a
cxa9001.a
cxa9002.a
cxaa001.a
cxaa002.a
cxaa003.a
cxaa004.a
cxaa005.a
cxaa006.a
cxaa007.a
cxaa008.a
cxaa009.a
cxaa010.a
cxaa011.a
cxaa012.a
cxaa013.a
cxaa014.a
cxaa015.a
cxaa016.a
cxaa017.a
cxaa018.a
cxaa019.a
cxaa020.a
cxaa021.a
cxaa022.a
cxab001.a
cxab002.au
cxab003.au
cxab004.au
cxab005.au
cxac001.a
cxac002.a
cxac003.a
cxac004.a

ACATS 4.1 User's Guide

93 29 June 2016 Core Test Files A.1

cxac005.a
cxac006.a
cxac007.a
cxac008.a
cxaca01.a
cxaca02.a
cxacb01.a
cxacb02.a
cxacc01.a
cxaf001.a
cxag001.a
cxag002.a
cxah001.a
cxah002.a
cxah003.a
cxai001.a
cxai002.a
cxai003.a
cxai004.a
cxai005.a
cxai006.a
cxai007.a
cxai008.a
cxai009.a
cxai010.a
cxai011.a
cxai012.a
cxai013.a
cxai014.a
cxai015.a
cxai016.a
cxai017.a
cxai018.a
cxai019.a
cxai020.a
cxai021.a
cxai022.a
cxai023.a
cxai024.a
cxai025.a
cxai026.a
cxai027.a
cxai028.a
cxai029.a
cxai030.a
cxai031.a
cxai032.a
cxai033.a
cxai034.a

cxai035.a
cxai036.a
cxaia01.a
cxaia02.a
cxaia03.a
cxaia04.a
cxaia05.a
cxaia06.a
cxaia07.a
cxaia08.a
cxaia09.a
cxaia10.a
cxaia11.a
cxaia12.a
cxaia13.a
cxaia14.a
cxaj001.a
cxb2001.a
cxb2002.a
cxb2003.a
cxb3001.a
cxb3002.a
cxb3003.a
cxb30040.c
cxb30041.am
cxb3005.a
cxb30060.c
cxb30061.am
cxb3007.a
cxb3008.a
cxb3009.a
cxb3010.a
cxb3011.a
cxb3012.a
cxb30130.c
cxb30131.c
cxb30132.am
cxb3014.a
cxb3015.a
cxb3016.a
cxb30170.c
cxb30171.a
cxb30172.am
cxb30180.c
cxb30181.a
cxb30182.am
cxb3019.a
cxb3020.a
cxb3021.a

cxb3022.a
cxb4001.a
cxb4002.a
cxb4003.a
cxb4004.a
cxb4005.a
cxb4006.a
cxb4007.a
cxb4008.a
cxb40090.cbl
cxb40091.cbl
cxb40092.cbl
cxb40093.am
cxb5001.a
cxb5002.a
cxb5003.a
cxb50040.ftn
cxb50041.ftn
cxb50042.am
cxb50050.ftn
cxb50051.ftn
cxb50052.am
d4a002a.ada
d4a002b.ada
d4a004a.ada
d4a004b.ada
e28002b.ada
e28005d.ada
e52103y.ada
eb4011a.ada
eb4012a.ada
eb4014a.ada
ee3203a.ada
ee3204a.ada
ee3402b.ada
ee3409f.ada
ee3412c.ada
la140010.a
la140011.am
la140012.a
la140020.a
la140021.am
la140022.a
la140030.a
la140031.a
la140032.am
la140033.a
la140040.a
la140041.am

la140042.a
la140050.a
la140051.a
la140052.am
la140053.a
la140060.a
la140061.a
la140062.am
la140063.a
la140070.a
la140071.a
la140072.am
la140073.a
la140080.a
la140081.a
la140082.am
la140083.a
la140090.a
la140091.a
la140092.am
la140093.a
la140100.a
la140101.a
la140102.am
la140103.a
la140110.a
la140111.a
la140112.am
la140113.a
la140120.a
la140121.a
la140122.am
la140123.a
la140130.a
la140131.a
la140132.am
la140133.a
la140140.a
la140141.a
la140142.am
la140143.a
la140150.a
la140151.a
la140152.am
la140153.a
la140160.a
la140161.a
la140162.am
la140163.a

ACATS 4.1 User's Guide

A.1 Core Test Files 29 June 2016 94

la140170.a
la140171.a
la140172.am
la140173.a
la140180.a
la140181.a
la140182.am
la140183.a
la140190.a
la140191.a
la140192.am
la140193.a
la140200.a
la140201.a
la140202.am
la140203.a
la140210.a
la140211.am
la140212.a
la140220.a
la140221.am
la140222.a
la140240.a
la140241.a

la140242.am
la140243.a
la140250.a
la140251.am
la140252.a
la140260.a
la140261.a
la140262.am
la140263.a
la140270.a
la140271.a
la140272.am
la140273.a
la200010.a
la200011.a
la200012.am
la200020.a
la200021.a
la200022.a
la200023.am
la200030.a
la200031.a
la200032.a
la200033.am

la5001a0.ada
la5001a1.ada
la5001a2.ada
la5001a3.ada
la5001a4.ada
la5001a5.ada
la5001a6.ada
la5001a7.ada
la5007a0.ada
la5007a1.ada
la5007b0.ada
la5007b1.ada
la5007c0.ada
la5007c1.ada
la5007d0.ada
la5007d1.ada
la5007e0.ada
la5007e1.ada
la5007f0.ada
la5007f1.ada
la5007g0.ada
la5007g1.ada
la5008a0.ada
la5008a1.ada

la5008b0.ada
la5008b1.ada
la5008c0.ada
la5008c1.ada
la5008d0.ada
la5008d1.ada
la5008e0.ada
la5008e1.ada
la5008f0.ada
la5008f1.ada
la5008g0.ada
la5008g1.ada
lc300010.a
lc300011.a
lc300012.am
lc300020.a
lc300021.a
lc300022.am
lc300030.a
lc300031.a
lc300032.am

A.2 Specialized Needs Annex Test Files
This section lists the files containing Specialized Needs Annex tests; that is, tests for requirements
specified in Annex C, Annex D, Annex E, Annex G, or Annex H.

bxc3001.a
bxc3002.a
bxc5001.a
bxc6001.a
bxc6002.a
bxc6003.a
bxc6a01.a
bxc6a02.a
bxc6a03.a
bxc6a04.a
bxd1001.a
bxd1002.a
bxe2007.a
bxe2008.a
bxe2009.a
bxe2010.a
bxe2011.a
bxe2012.a
bxe2013.a

bxe2a01.a
bxe2a02.a
bxe2a03.a
bxe2a04.a
bxe2a05.a
bxe2a06.a
bxe4001.a
bxf1001.a
bxh4001.a
bxh4002.a
bxh4003.a
bxh4004.a
bxh4005.a
bxh4006.a
bxh4007.a
bxh4008.a
bxh4009.a
bxh4010.a
bxh4011.a

bxh4012.a
bxh4013.a
cxc3001.a
cxc3002.a
cxc3003.a
cxc3004.a
cxc3005.a
cxc3006.a
cxc3007.a
cxc3008.a
cxc3009.a
cxc3010.a
cxc6001.a
cxc6002.a
cxc6003.a
cxc7001.a
cxc7002.a
cxc7003.a
cxc7004.a

cxc7005.a
cxc7006.a
cxd1001.a
cxd1002.a
cxd1003.a
cxd1004.a
cxd1005.a
cxd1006.a
cxd1007.a
cxd1008.a
cxd2001.a
cxd2002.a
cxd2003.a
cxd2004.a
cxd2006.a
cxd2007.a
cxd2008.a
cxd3001.a
cxd3002.a

ACATS 4.1 User's Guide

95 29 June 2016 Specialized Needs Annex Test Files A.2

cxd3003.a
cxd4001.a
cxd4002.a
cxd4003.a
cxd4004.a
cxd4005.a
cxd4006.a
cxd4007.a
cxd4008.a
cxd4009.a
cxd4010.a
cxd5001.a
cxd6001.a
cxd6002.a
cxd6003.a
cxd8001.a
cxd8002.a
cxd8003.a
cxd9001.a
cxda001.a
cxda002.a
cxda003.a
cxda004.a
cxdb001.a
cxdb002.a
cxdb003.a
cxdb004.a
cxe1001.a
cxe2001.a
cxe2002.a
cxe4001.a
cxe4002.a
cxe4003.a
cxe4004.a
cxe4005.a
cxe4006.a
cxe5001.a
cxe5002.a
cxe5003.a
cxf1001.a
cxf2001.a
cxf2002.a
cxf2003.a
cxf2004.a

cxf2005.a
cxf2a01.a
cxf2a02.a
cxf3001.a
cxf3002.a
cxf3003.a
cxf3004.a
cxf3a01.a
cxf3a02.a
cxf3a03.a
cxf3a04.a
cxf3a05.a
cxf3a06.a
cxf3a07.a
cxf3a08.a
cxg1001.a
cxg1002.a
cxg1003.a
cxg1004.a
cxg1005.a
cxg2001.a
cxg2002.a
cxg2003.a
cxg2004.a
cxg2005.a
cxg2006.a
cxg2007.a
cxg2008.a
cxg2009.a
cxg2010.a
cxg2011.a
cxg2012.a
cxg2013.a
cxg2014.a
cxg2015.a
cxg2016.a
cxg2017.a
cxg2018.a
cxg2019.a
cxg2020.a
cxg2021.a
cxg2022.a
cxg2023.a
cxg2024.a

cxh1001.a
cxh3001.a
cxh3002.a
cxh30030.a
cxh30031.am
lxd70010.a
lxd70011.a
lxd70012.am
lxd70030.a
lxd70031.a
lxd70032.am
lxd70040.a
lxd70041.a
lxd70042.am
lxd70050.a
lxd70051.a
lxd70052.am
lxd70060.a
lxd70061.a
lxd70062.am
lxd70070.a
lxd70071.a
lxd70072.am
lxd70080.a
lxd70081.a
lxd70082.am
lxd70090.a
lxd70091.a
lxd70092.am
lxe30010.am
lxe30011.am
lxe30020.am
lxe30021.am
lxh40010.a
lxh40011.a
lxh40012.am
lxh40020.a
lxh40021.a
lxh40022.am
lxh40030.a
lxh40031.a
lxh40032.a
lxh40033.am
lxh40040.a

lxh40041.a
lxh40042.a
lxh40043.am
lxh40050.a
lxh40051.a
lxh40052.a
lxh40053.am
lxh40060.a
lxh40061.a
lxh40062.a
lxh40063.am
lxh40070.a
lxh40071.a
lxh40072.a
lxh40073.am
lxh40080.a
lxh40081.a
lxh40082.a
lxh40083.a
lxh40084.am
lxh40090.a
lxh40091.a
lxh40092.a
lxh40093.am
lxh40100.a
lxh40101.a
lxh40102.a
lxh40103.am
lxh40110.a
lxh40111.a
lxh40112.am
lxh40120.a
lxh40121.a
lxh40122.a
lxh40123.am
lxh40130.a
lxh40131.a
lxh40132.a
lxh40133.am
lxh40140.a
lxh40141.a
lxh40142.am

A.3 Foundation Code Files
This section lists the foundation files. These files contain packages that may be used by more than one
test for related objectives.

ACATS 4.1 User's Guide

A.3 Foundation Code Files 29 June 2016 96

f340a000.a
f340a001.a
f341a00.a
f390a00.a
f392a00.a
f392c00.a
f392d00.a
f393a00.a
f393b00.a
f394a00.a
f3a1a00.a
f3a2a00.a
f416a00.a
f431a00.a
f433a00.a

f460a00.a
f552a00.a
f650a00.a
f650b00.a
f730a000.a
f730a001.a
f731a00.a
f732a00.a
f732b00.a
f732c00.a
f750a00.a
f760a00.a
f940a00.a
f954a00.a
fa11a00.a

fa11b00.a
fa11c00.a
fa11d00.a
fa13a00.a
fa13b00.a
fa21a00.a
fb20a00.a
fb40a00.a
fc50a00.a
fc51a00.a
fc51b00.a
fc51c00.a
fc51d00.a
fc54a00.a
fc70a00.a

fc70b00.a
fc70c00.a
fd72a00.a
fdb0a00.a
fdb3a00.a
fdd2a00.a
fxa5a00.a
fxaca00.a
fxacb00.a
fxacc00.a
fxaia00.a
fxc6a00.a
fxe2a00.a
fxf2a00.a
fxf3a00.a

A.4 Documentation Files
This section lists all the files containing ACATS 4.1 documentation. Files with the .pdf extension are in
Adobe Acrobat format. Files with the .htm extension are in HTML; files with the extensions .gif and
.png are associated graphics files. All other files are in ASCII text format.

acats-ug.pdf
cont.gif
cover03a.pdf
cover03b.pdf
cover04a.pdf
cover04b.pdf
cover05.pdf
cover06a.pdf
cover06b.pdf
cover07.pdf
cover08.pdf
cover10.pdf
cover13.pdf
cover-b.pdf
coverkey.pdf
coversum.pdf
coverage.txt
dirs.png
find.gif
index.gif
leg-name.png
lib.gif
mod-name.png
next.gif
prev.gif
testobj.txt
ug-01.htm

ug-02.htm
ug-1.htm
ug-11.htm
ug-12.htm
ug-2.htm
ug-3.htm
ug-31.htm
ug-32.htm
ug-321.htm
ug-322.htm
ug-323.htm
ug-4.htm
ug-41.htm
ug-411.htm
ug-412.htm
ug-413.htm
ug-414.htm
ug-415.htm
ug-416.htm
ug-42.htm
ug-421.htm
ug-422.htm
ug-423.htm
ug-424.htm
ug-425.htm
ug-426.htm
ug-427.htm

ug-428.htm
ug-43.htm
ug-431.htm
ug-432.htm
ug-433.htm
ug-44.htm
ug-45.htm
ug-46.htm
ug-47.htm
ug-48.htm
ug-5.htm
ug-51.htm
ug-511.htm
ug-512.htm
ug-5121.htm
ug-5122.htm
ug-513.htm
ug-5131.htm
ug-5132.htm
ug-5133.htm
ug-5134.htm
ug-52.htm
ug-521.htm
ug-522.htm
ug-523.htm
ug-524.htm
ug-525.htm

ug-53.htm
ug-531.htm
ug-532.htm
ug-54.htm
ug-541.htm
ug-542.htm
ug-55.htm
ug-551.htm
ug-552.htm
ug-553.htm
ug-554.htm
ug-555.htm
ug-5551.htm
ug-5552.htm
ug-5553.htm
ug-5554.htm
ug-5555.htm
ug-556.htm
ug-56.htm
ug-561.htm
ug-562.htm
ug-563.htm
ug-564.htm
ug-565.htm
ug-57.htm
ug-571.htm
ug-572.htm

ACATS 4.1 User's Guide

97 29 June 2016 Documentation Files A.4

ug-58.htm
ug-6.htm
ug-61.htm
ug-611.htm
ug-612.htm
ug-613.htm
ug-614.htm
ug-615.htm
ug-62.htm
ug-621.htm
ug-622.htm
ug-623.htm
ug-63.htm
ug-631.htm
ug-632.htm
ug-64.htm
ug-65.htm
ug-a.htm
ug-a1.htm
ug-a2.htm
ug-a3.htm
ug-a4.htm
ug-a5.htm
ug-a51.htm
ug-a52.htm

ug-a53.htm
ug-a54.htm
ug-a55.htm
ug-a6.htm
ug-a7.htm
ug-a8.htm
ug-a9.htm
ug-aa.htm
ug-ab.htm
ug-ac.htm
ug-ad.htm
ug-ae.htm
ug-af.htm
ug-b.htm
ug-b1.htm
ug-b2.htm
ug-b3.htm
ug-c.htm
ug-c1.htm
ug-c2.htm
ug-c3.htm
ug-c4.htm
ug-c41.htm
ug-c42.htm
ug-d.htm

ug-d1.htm
ug-d11.htm
ug-d12.htm
ug-d13.htm
ug-d14.htm
ug-d15.htm
ug-d16.htm
ug-d17.htm
ug-d18.htm
ug-d19.htm
ug-d1a.htm
ug-d1b.htm
ug-d1c.htm
ug-d1d.htm
ug-d1e.htm
ug-d1f.htm
ug-d1g.htm
ug-d1h.htm
ug-d1i.htm
ug-d1j.htm
ug-d1k.htm
ug-d1l.htm
ug-d2.htm
ug-d21.htm
ug-d22.htm

ug-d23.htm
ug-d24.htm
ug-d25.htm
ug-d26.htm
ug-d27.htm
ug-d28.htm
ug-d29.htm
ug-d2a.htm
ug-d2b.htm
ug-d2c.htm
ug-d2d.htm
ug-d2e.htm
ug-d2f.htm
ug-d2g.htm
ug-d2h.htm
ug-d2i.htm
ug-d2j.htm
ug-d2k.htm
ug-d2l.htm
ug-e.htm
ug-f.htm
ug-toc.htm
ug-ttl.htm
usage-1.png
usage-2.png

A.5 Other Files
This section lists the files falling into the others category in the table found in Section 4.1. They are listed
in the categories described there.

A.5.1 List of ACATS 4.1 Files
acats41.lst

A.5.2 Support Units Referenced by Many Tests
checkfil.ada
enumchek.ada
fcndecl.ada
impdef.a

impdefc.a
impdefd.a
impdefe.a
impdefg.a

impdefh.a
lencheck.ada
report.a
spprt13s.tst

tctouch.ada

A.5.3 Preprocessing Tools and Data
macrosub.ada macro.dfs tsttests.dat

ACATS 4.1 User's Guide

A.5.4 Tests for Reporting Code 29 June 2016 98

A.5.4 Tests for Reporting Code
cz00004.a cz1101a.ada cz1102a.ada cz1103a.ada

A.5.5 Test Grading Tools
grade.a
grd_data.a

special.a
summary.a

trace.a
tst_sum.a

A.6 Tests With Special Requirements
The tests listed in this section have special processing requirements that are described in the internal test
commentary.

ba15001
bxc5001
bxh4001
bxh4002
bxh4003
bxh4004
bxh4005
bxh4006
bxh4007
bxh4008
bxh4009
bxh4010
bxh4011
bxh4012
bxh4013
c3a1003
c3a1004
ca11023
ca12001
cc51010
cd30005
cxb3004
cxb3006
cxb3008
cxb3013
cxb3017
cxb3018
cxb4009
cxb5004
cxb5005
cxc3001
cxc3003
cxc3004
cxc3006

cxc3008
cxc3010
cxd1004
cxd1005
cxd2001
cxd2002
cxd2003
cxd2004
cxd2006
cxd2007
cxd2008
cxd3001
cxd3002
cxd3003
cxd4001
cxd4003
cxd4004
cxd4005
cxd4006
cxd4007
cxd4008
cxd4009
cxd4010
cxda003
cxda004
cxe1001
cxe2001
cxe2002
cxe4001
cxe4002
cxe4003
cxe4004
cxe4005
cxe4006

cxe5002
cxe5003
cxg1002
cxg1005
cxg2002
cxg2003
cxg2004
cxg2006
cxg2007
cxg2008
cxg2009
cxg2010
cxg2011
cxg2012
cxg2013
cxg2014
cxg2015
cxg2016
cxg2017
cxg2018
cxg2019
cxg2020
cxg2021
cxg2022
cxg2023
cxg2024
cxh1001
cxh3001
cxh3003
la14001
la14002
la14003
la14004
la14005

la14006
la14007
la14008
la14009
la14010
la14011
la14012
la14013
la14014
la14015
la14016
la14017
la14018
la14019
la14020
la14021
la14022
la14024
la14025
la14026
la14027
la20001
lc30001
lc30002
lc30003
lxd7009
lxe3001
lxe3002
lxh4001
lxh4002
lxh4003
lxh4004
lxh4005
lxh4006

ACATS 4.1 User's Guide

99 29 June 2016 Tests With Special Requirements A.6

lxh4007
lxh4008

lxh4009
lxh4010

lxh4011
lxh4012

lxh4013
lxh4014

A.7 Test Files Added Since ACATS 4.0
The following test files are new in ACATS 4.1:
b3930110.a
b3930111.a
b3930112.a
b3930113.a
b3a1008.a
b3a10090.a
b3a10091.a
b3a1010.a
b3a20170.a
b3a20171.a
b3a20172.a
b3a20173.a
b3a20174.a
b415001.a
b415002.a
b416002.a
b416a01.a
b431005.a
b431006.a
b433003.a
b457002.a
b457003.a
b457004.a
b457005.a
b457006.a
b457007.a
b480002.a
b480003.a
b551001.a
b551002.a
b552001.a
b552a04.a
b552a05.a
b640001.a
b650005.a
b650006.a
b730010.a
b732001.a
b732c01.a
b732c02.a
b750a04.a
b750a05.a

b750a06.a
b750a08.a
b750a09.a
b750a10.a
b750a11.a
b750a12.a
b750a13.a
b831004.a
b8310050.a
b8310051.a
b8310052.a
b8310053.a
b8400020.a
b8400021.a
b8400022.a
b8400023.a
b8400024.a
b8400025.a
b840003.a
b860001.a
ba120170.a
ba120171.a
ba120172.a
ba120173.a
ba150030.a
ba150031.a
ba150032.a
ba150033.a
ba150034.a
ba150035.a
ba150036.a
ba150037.a
ba150038.a
ba150039.a
ba15003a.a
ba15003b.am
bc60001.a
bc60002.a
bc60003.a
bc60004.a
bd11002.a
bdb3a01.a

bxai001.a
bxai002.a
bxai003.a
bxai004.a
bxai005.a
bxai006.a
bxai007.a
bxai008.a
bxaia01.a
bxaia02.a
bxaia03.a
bxaia04.a
bxb3001.a
bxb3002.a
bxb3003.a
bxb3004.a
c324003.a
c324004.a
c324005.a
c390012.a
c391003.a
c3a10030.a
c3a10031.a
c3a10032.am
c3a10040.a
c3a10041.a
c3a10042.am
c3a2004.a
c416a01.a
c416a02.a
c431002.a
c433002.a
c433003.a
c433004.a
c433005.a
c433006.a
c457005.a
c457006.a
c457007.a
c540003.a
c550001.a
c552001.a

c552002.a
c640002.a
c650a02.a
c650b01.a
c650b02.a
c650b03.a
c7320010.a
c7320011.a
c7320012.am
c732002.a
c732a01.a
c732a02.a
c732b01.a
c732b02.a
c732c01.a
c760014.a
c760015.a
c831001.a
ca21002.a
cb30001.a
cb30002.a
cc510100.a
cc510101.a
cc510102.a
cc510103.am
cc60001.a
cd30008.a
cd30009.a
cdb3a01.a
cxa4037.a
cxa5016.a
cxaa021.a
cxaa022.a
cxab002.au
cxab003.au
cxab004.au
cxab005.au
cxac008.a
cxag001.a
cxag002.a
cxah001.a
cxah002.a

ACATS 4.1 User's Guide

A.7 Test Files Added Since ACATS 4.0 29 June 2016 100

cxah003.a
cxb3019.a
cxb3020.a

cxb3021.a
cxb3022.a
f416a00.a

f650b00.a
f732a00.a
f732b00.a

f732c00.a
fdb3a00.a

A.8 Documentation Files Added Since ACATS 4.0
The following documentation files are new in ACATS 4.1:
cover06a.pdf
cover06b.pdf
cover-b.pdf
ug-6.htm
ug-61.htm
ug-611.htm
ug-612.htm
ug-613.htm
ug-614.htm

ug-615.htm
ug-62.htm
ug-621.htm
ug-622.htm
ug-623.htm
ug-63.htm
ug-631.htm
ug-632.htm
ug-64.htm

ug-65.htm
ug-a55.htm
ug-ad.htm
ug-ae.htm
ug-af.htm
ug-d1c.htm
ug-d1d.htm
ug-d1e.htm
ug-d1f.htm

ug-d1g.htm
ug-d1h.htm
ug-d1i.htm
ug-d1j.htm
ug-d1k.htm
ug-d1l.htm
ug-d2j.htm
ug-d2k.htm
ug-d2l.htm

A.9 Support Files Added Since ACATS 4.0
The following support files are new in ACATS 4.1:
grade.a
grd_data.a

report.a
special.a

summary.a
trace.a

tst_sum.a

A.10 Test Files Modified Since ACATS 4.0
The following test files have been modified from their ACATS 4.0 versions:
b730009.a
b750a01.a
b750a02.a
bdd2004.a

bdd2005.a
c324001.a
c324002.a
c415001.a

cxai027.a
cc30003.a
cc30004.a
cd30006.a

cc30007.a
f552a00.a

A.11 Support Files Modified Since ACATS 4.0
The following support file has been modified from its ACATS 4.0 version:
impdef.a

A.12 Documentation Files Modified Since ACATS 4.0
The following documentation files have been modified from their ACATS 4.0 versions:
acats-ug.pdf
cover03a.pdf
cover03b.pdf
cover04a.pdf

cover04b.pdf
cover05.pdf
cover07.pdf
cover08.pdf

cover10.pdf
cover13.pdf
coverkey.pdf
coversum.pdf

dirs.png
mod-name.png
ug-01.htm
ug-21.htm

ACATS 4.1 User's Guide

101 29 June 2016 Documentation Files Modified Since ACATS 4.0 A.12

ug-1.htm
ug-11.htm
ug-12.htm
ug-2.htm
ug-3.htm
ug-31.htm
ug-32.htm
ug-321.htm
ug-322.htm
ug-323.htm
ug-4.htm
ug-41.htm
ug-411.htm
ug-412.htm
ug-413.htm
ug-414.htm
ug-415.htm
ug-416.htm
ug-42.htm
ug-421.htm
ug-422.htm
ug-423.htm
ug-424.htm
ug-425.htm
ug-426.htm
ug-427.htm
ug-428.htm
ug-43.htm
ug-431.htm
ug-432.htm
ug-433.htm
ug-44.htm
ug-45.htm
ug-46.htm
ug-47.htm
ug-48.htm
ug-5.htm

ug-51.htm
ug-511.htm
ug-512.htm
ug-5121.htm
ug-5122.htm
ug-513.htm
ug-5131.htm
ug-5132.htm
ug-5133.htm
ug-5134.htm
ug-52.htm
ug-521.htm
ug-522.htm
ug-523.htm
ug-524.htm
ug-525.htm
ug-53.htm
ug-531.htm
ug-532.htm
ug-54.htm
ug-541.htm
ug-542.htm
ug-55.htm
ug-551.htm
ug-552.htm
ug-553.htm
ug-554.htm
ug-555.htm
ug-5551.htm
ug-5552.htm
ug-5553.htm
ug-5554.htm
ug-5555.htm
ug-556.htm
ug-56.htm
ug-561.htm
ug-562.htm

ug-563.htm
ug-564.htm
ug-565.htm
ug-57.htm
ug-571.htm
ug-572.htm
ug-58.htm
ug-a.htm
ug-a1.htm
ug-a2.htm
ug-a3.htm
ug-a4.htm
ug-a5.htm
ug-a51.htm
ug-a52.htm
ug-a53.htm
ug-a54.htm
ug-a6.htm
ug-a7.htm
ug-a8.htm
ug-a9.htm
ug-aa.htm
ug-ab.htm
ug-ac.htm
ug-b.htm
ug-b1.htm
ug-b2.htm
ug-b3.htm
ug-c.htm
ug-c1.htm
ug-c2.htm
ug-c3.htm
ug-c4.htm
ug-c41.htm
ug-c42.htm
ug-d.htm
ug-d1.htm

ug-d11.htm
ug-d12.htm
ug-d13.htm
ug-d14.htm
ug-d15.htm
ug-d16.htm
ug-d17.htm
ug-d18.htm
ug-d19.htm
ug-d1a.htm
ug-d1b.htm
ug-d2.htm
ug-d21.htm
ug-d22.htm
ug-d23.htm
ug-d24.htm
ug-d25.htm
ug-d26.htm
ug-d27.htm
ug-d28.htm
ug-d29.htm
ug-d2a.htm
ug-d2b.htm
ug-d2c.htm
ug-d2d.htm
ug-d2e.htm
ug-d2f.htm
ug-d2g.htm
ug-d2h.htm
ug-d2i.htm
ug-e.htm
ug-f.htm
ug-toc.htm
ug-ttl.htm

A.13 Test Files Deleted Since ACATS 4.0
The following test files were present in ACATS 4.0 but do not appear in ACATS 4.1:

b43102a.ada cd33001.a cd33002.a

A.14 Documentation Files Deleted Since ACATS 4.0
The following documentation files were present in ACATS 4.0 but do not appear in ACATS 4.1:

cover06.pdf

ACATS 4.1 User's Guide

A.15 Support Files Deleted Since ACATS 4.0 29 June 2016 102

A.15 Support Files Deleted Since ACATS 4.0
The following support files were present in ACATS 4.0 but do not appear in ACATS 4.1:

repbody.ada repspec.ada

ACATS 4.1 User's Guide

103 29 June 2016 Parameterization Files B

Annex B: Parameterization Files
In ACATS 4.1, two methods are used to account for the use of implementation-dependent values in the
tests.

For legacy tests, a "macro" substitution technique is used. Legacy tests requiring implementation-specific
values contain symbols beginning with the '$' character; for example, the symbol $INTEGER_LAST is
used where the code expects the implementation-specific integer literal representing the largest integer.
For each implementation, these symbols must be systematically replaced with the appropriate values. A
data file, MACRO.DFS, and an Ada program, Macrosub, are provided to facilitate this substitution.

For modern tests, a hierearchy of packages is provided that contain constants and functions that provide
the desired implementation-specific values. These packages ("ImpDef" and its children) should be
modified for each implementation to provide the needed values.

Information regarding the macro substitution technique is presented in Sections B.1 and B.2. Section B.3
describes the ImpDef package hierarchy.

B.1 Macro Substitution File
The support file MACRO.DFS provides substitutions for special symbols that appear in certain ACATS
4.1 tests (indicated by the three-letter file type (extension) ".TST" and listed in Section B.2). The support
program Macrosub may be used to insert these implementation-specific values in place of the special
symbols in the test. The following excerpt from the file describes the file and its use.

-- MACRO.DFS
-- THIS FILE CONTAINS THE MACRO DEFINITIONS USED IN THE ACVC TESTS.
-- THESE DEFINITIONS ARE USED BY THE ACVC TEST PRE-PROCESSOR,
-- MACROSUB. MACROSUB WILL CALCULATE VALUES FOR THOSE MACRO SYMBOLS
-- WHOSE DEFINITIONS DEPEND ON THE VALUE OF MAX_IN_LEN (NAMELY, THE
-- VALUES OF THE MACRO SYMBOLS BIG_ID1, BIG_ID2, BIG_ID3, BIG_ID4,
-- BIG_STRING1, BIG_STRING2, MAX_STRING_LITERAL, BIG_INT_LIT, BIG_REAL_LIT,
-- AND BLANKS). THEREFORE, ANY VALUES GIVEN IN THIS FILE FOR THOSE
-- MACRO SYMBOLS WILL BE IGNORED BY MACROSUB.

-- NOTE: AS REQUIRED BY THE MACROSUB PROGRAM, THE FIRST MACRO DEFINED
-- IN THIS FILE IS $MAX_IN_LEN. THE NEXT 5 MACRO DEFINITIONS
-- ARE FOR THOSE MACRO SYMBOLS THAT DEPEND ON THE VALUE OF
-- MAX_IN_LEN. THESE ARE IN ALPHABETIC ORDER. FOLLOWING THESE
-- ARE 36 MORE DEFINITIONS, ALSO IN ALPHABETIC ORDER.

-- EACH DEFINITION IS ACCORDING TO THE FOLLOWING FORMAT:

-- A. A NUMBER OF LINES PRECEDED BY THE ADA COMMENT DELIMITER, --.
-- THE FIRST OF THESE LINES CONTAINS THE MACRO SYMBOL AS IT APPEARS
-- IN THE TEST FILES (WITH THE DOLLAR SIGN). THE NEXT FEW "COMMENT"
-- LINES CONTAIN A DESCRIPTION OF THE VALUE TO BE SUBSTITUTED.
-- THE REMAINING "COMMENT" LINES, THE FIRST OF WHICH BEGINS WITH THE
-- WORDS "USED IN: " (NO QUOTES), CONTAIN A LIST OF THE TEST FILES
-- (WITHOUT THE .TST EXTENSION) IN WHICH THE MACRO SYMBOL APPEARS.
-- EACH TEST FILE NAME IS PRECEDED BY ONE OR MORE BLANKS.
-- B. A LINE, WITHOUT THE COMMENT DELIMITER, CONSISTING OF THE
-- IDENTIFIER (WITHOUT THE DOLLAR SIGN) OF THE MACRO SYMBOL,
-- FOLLOWED BY A SPACE OR TAB, FOLLOWED BY THE VALUE TO BE
-- SUBSTITUTED. IN THE DISTRIBUTION FILE, A SAMPLE VALUE IS
-- PROVIDED; THIS VALUE MUST BE REPLACED BY A VALUE APPROPRIATE TO
-- THE IMPLEMENTATION.

-- DEFINITIONS ARE SEPARATED BY ONE OR MORE EMPTY LINES.
-- THE LIST OF DEFINITIONS BEGINS AFTER THE FOLLOWING EMPTY LINE.

ACATS 4.1 User's Guide

B.1 Macro Substitution File 29 June 2016 104

-- $MAX_IN_LEN
-- AN INTEGER LITERAL GIVING THE MAXIMUM LENGTH PERMITTED BY THE
-- COMPILER FOR A LINE OF ADA SOURCE CODE (NOT INCLUDING AN END-OF-LINE
-- CHARACTER).
-- USED IN: A26007A
MAX_IN_LEN 60

...

B.2 Macro Substitution Tests
The following test files contain the special symbols used for substituting implementation-specific values,
as described in Section B.1. This list also appears in the ACATS 4.1 "support" directory as
TSTTESTS.DAT.

A26007A.TST
AD8011A.TST
B22001A.TST
B22001B.TST
B22001C.TST
B22001D.TST
B22001E.TST
B22001F.TST
B22001G.TST
B22001I.TST
B22001J.TST
B22001K.TST
B22001L.TST
B22001M.TST
B22001N.TST
B54B01B.TST

BD2A02A.TST
BD2C01D.TST
BD2C02A.TST
BD2C03A.TST
BD4006A.TST
BD8001A.TST
BD8002A.TST
BD8003A.TST
BD8004A.TST
BD8004B.TST
BD8004C.TST
C23003A.TST
C23003B.TST
C23003G.TST
C23003I.TST
C35502D.TST

C35502F.TST
C35503D.TST
C35503F.TST
C45231D.TST
C4A007A.TST
C87B62D.TST
C96005B.TST
CC1225A.TST
CD1009K.TST
CD1009T.TST
CD1009U.TST
CD1C03E.TST
CD1C06A.TST
CD2A83C.TST
CD2A91C.TST
CD2C11A.TST

CD2C11D.TST
CD4041A.TST
CD7101G.TST
CE2102C.TST
CE2102H.TST
CE2103A.TST
CE2103B.TST
CE2203A.TST
CE2403A.TST
CE3002B.TST
CE3002C.TST
CE3102B.TST
CE3107A.TST
CE3304A.TST
SPPRT13S.TST

B.3 Package ImpDef and Its Children
The package ImpDef (for "Implementation Definitions") provides constants and functions for producing
implementation-specific values required by certain test programs. This package resides in the file
ImpDef.a in the "support" directory. Four child packages are also included in the "support" directory,
each providing the means for producing implementation-specific values required by certain test programs
for a particular Specialized Needs Annex. These packages have names of the form ImpDef.Annex_X, and
reside in files with names of the form ImpDefX.a, where 'X' is replaced by the letter designating the
relevant Annex.

The ImpDef package and each of its children should be modified for each implementation as described in
the source code. The following excerpt from the "ImpDef.a" file illustrates how these modification points
are indicated in the packages.

package ImpDef is

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- The following boolean constants indicate whether this validation will
 -- include any of annexes C-H. The values of these booleans affect the
 -- behavior of the test result reporting software.
 --
 -- True means the associated annex IS included in the validation.
 -- False means the associated annex is NOT included.

ACATS 4.1 User's Guide

105 29 June 2016 Package ImpDef and Its Children B.3

 Validating_Annex_C : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_D : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_E : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_F : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_G : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

 Validating_Annex_H : constant Boolean := False;
 -- ^^^^^ --- MODIFY HERE AS NEEDED

--=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====-=====--

 -- This is the minimum time required to allow another task to get
 -- control. It is expected that the task is on the Ready queue.
 -- A duration of 0.0 would normally be sufficient but some number
 -- greater than that is expected.

 Minimum_Task_Switch : constant Duration := 0.1;
 -- ^^^ --- MODIFY HERE AS NEEDED

...

ACATS 4.1 User's Guide

107 29 June 2016 Results of CZ Tests C

Annex C: Results of CZ Tests
The "CZ" tests are executed before any other ACATS tests to ensure that the ImpDef packages have been
properly customized and that certain support units are working properly. These tests are not considered as
Passed or Failed. If they do not perform as expected, the problems must be identified and resolved before
conformity testing can continue.

This Appendix presents sample results from executing the "CZ" tests. The actual output will differ, at
least in the time-stamp information.

C.1 Sample Output From CZ0004
The following is the output from an execution of CZ0004 with a specific implementation. Note that it
contains failure messages (indicated by '*') that are expected, as is the final FAILED report. Note also that
certain report lines depend on the customization of the ImpDef package, and will vary with the
implementation.

,.,. CZ00004 ACATS 4.1 16-05-13 09:53:13
---- CZ00004 Check that Impdef values have been supplied for the special
 needs annexes. Check that the routines in TCTouch work
 correctly.
 - CZ00004 TCTouch ACATS 4.1.
 * CZ00004 Assertion failed: Assertion Failed is expected.
 * CZ00004 Assertion failed: Assertion Failed is expected.
 * CZ00004 z should not equal Z Expecting: z Got: Z.
 - CZ00004 Three failure messages should have occurred so far.
 * CZ00004 Trace Overflow:
 xx
 xxxxxxxxxxxxxxxxxxxxxxxx.
 - CZ00004 A Trace Overflow message should have just occurred.
 - CZ00004 <><><><><> ANNEX VALIDATION STATUS <><><><><>.
 + CZ00004 Annex C validation: Annex C not supported.
 + CZ00004 Annex D validation: Annex D not supported.
 + CZ00004 Annex E validation: Annex E not supported.
 + CZ00004 Annex F validation: Annex F not supported.
 + CZ00004 Annex G validation: Annex G not supported.
 + CZ00004 Annex H validation: Annex H not supported.
 - CZ00004 <><><><><> IMPDEF <><><><><>.
 - CZ00004 Validating_Annex_C : FALSE.
 - CZ00004 Validating_Annex_D : FALSE.
 - CZ00004 Validating_Annex_E : FALSE.
 - CZ00004 Validating_Annex_F : FALSE.
 - CZ00004 Validating_Annex_G : FALSE.
 - CZ00004 Validating_Annex_H : FALSE.
 - CZ00004 Minimum_Task_Switch: 0.100000000
 - CZ00004 Switch_To_New_Task: 1.000000000
 - CZ00004 Clear_Ready_Queue: 5.000000000
 - CZ00004 Delay_For_Time_Past: 0.100000000
 - CZ00004 Time_Dependent_Reset: 0.300000000
 - CZ00004 Delay_Per_Random_Test: 1.000000000
 - CZ00004 Exceed_Time_Slice.
 - CZ00004 Non_State_String: By No Means A State.
 - CZ00004 External_Tag_Value: implementation_defined.
 - CZ00004 CD30005_1_Foreign_Address: present.
 - CZ00004 CD30005_1_External_Name: CD30005_1.
 - CZ00004 Max_Default_Alignment: 1.
 - CZ00004 Max_Linker_Alignment: 1.
 - CZ00004 CXB30130_External_Name: CXB30130.
 - CZ00004 CXB30131_External_Name: CXB30131.
**** CZ00004 FAILED ****************************.

ACATS 4.1 User's Guide

C.2 Sample Output From CZ1101A 29 June 2016 108

C.2 Sample Output From CZ1101A
The following is the output of CZ1101A from a particular implementation. The output of this test should
have the same messages (except for the time-stamp) and reported results as indicated here (including
failure reports), and the format of the output lines should be as described in the output text.

 - NO_NAME (CZ1101A) CHECK REPORT ROUTINES.
 - NO_NAME INITIAL VALUES SHOULD BE 'NO_NAME' AND 'FAILED'.
**** NO_NAME FAILED ****************************.

,.,. PASS_TEST ACATS 4.1 16-05-13 09:57:42
---- PASS_TEST CHECKING 'TEST' AND 'RESULT' FOR 'PASSED'.
 - PASS_TEST THIS LINE IS EXACTLY 'MAX_LEN' LONG. ...5...60....5...70.
 - PASS_TEST THIS COMMENT HAS A WORD THAT SPANS THE FOLD POINT. THIS
 COMMENT FITS EXACTLY ON TWO LINES. ..5...60....5...70.
 - PASS_TEST
 THIS_COMMENT_IS_ONE_VERY_LONG_WORD_AND_SO_IT_SHOULD_BE
 _SPLIT_AT_THE_FOLD_POINT.
==== PASS_TEST PASSED ============================.
 - NO_NAME CHECK THAT 'RESULT' RESETS VALUES TO 'NO_NAME' AND
 'FAILED'.
**** NO_NAME FAILED ****************************.

,.,. FAIL_TEST ACATS 4.1 16-05-13 09:57:42
---- FAIL_TEST CHECKING 'FAILED' AND 'RESULT' FOR 'FAILED'.
 * FAIL_TEST 'RESULT' SHOULD NOW BE 'FAILED'.
**** FAIL_TEST FAILED ****************************.

,.,. NA_TEST ACATS 4.1 16-05-13 09:57:42
---- NA_TEST CHECKING 'NOT-APPLICABLE'.
 + NA_TEST 'RESULT' SHOULD NOW BE 'NOT-APPLICABLE'.
++++ NA_TEST NOT-APPLICABLE ++++++++++++++++++++.

,.,. FAIL_NA_TEST ACATS 4.1 16-05-13 09:57:42
---- FAIL_NA_TEST CHECKING 'NOT_APPLICABLE', 'FAILED', 'NOT_APPLICABLE'.
 + FAIL_NA_TEST 'RESULT' BECOMES 'NOT-APPLICABLE'.
 * FAIL_NA_TEST 'RESULT' BECOMES 'FAILED'.
 + FAIL_NA_TEST CALLING 'NOT_APPLICABLE' DOESN'T CHANGE 'RESULT'.
**** FAIL_NA_TEST FAILED ****************************.

,.,. SPEC_NA_TEST ACATS 4.1 16-05-13 09:57:42
---- SPEC_NA_TEST CHECKING 'SPEC_ACT', 'NOT_APPLICABLE', 'SPEC_ACT'.
 ! SPEC_NA_TEST 'RESULT' BECOMES 'TENTATIVELY PASSED'.
 + SPEC_NA_TEST 'RESULT' BECOMES 'NOT APPLICABLE'.
 ! SPEC_NA_TEST CALLING 'SPECIAL_ACTION' DOESN'T CHANGE 'RESULT'.
++++ SPEC_NA_TEST NOT-APPLICABLE ++++++++++++++++++++.

,.,. SPEC_FAIL_TEST ACATS 4.1 16-05-13 09:57:42
---- SPEC_FAIL_TEST CHECKING 'SPEC_ACT', 'FAILED', 'SPEC_ACT'.
 ! SPEC_FAIL_TEST 'RESULT' BECOMES 'TENTATIVELY PASSED'.
 * SPEC_FAIL_TEST 'RESULT' BECOMES 'FAILED'.
 ! SPEC_FAIL_TEST CALLING 'SPECIAL_ACTION' DOESN'T CHANGE 'RESULT'.
**** SPEC_FAIL_TEST FAILED ****************************.

,.,. CZ1101A ACATS 4.1 16-05-13 09:57:42
---- CZ1101A CHECKING 'SPECIAL_ACTION' ALONE.
 ! CZ1101A 'RESULT' BECOMES 'TENTATIVELY PASSED'.
!!!! CZ1101A TENTATIVELY PASSED !!!!!!!!!!!!!!!!.
!!!! SEE '!' COMMENTS FOR SPECIAL NOTES!!

ACATS 4.1 User's Guide

109 29 June 2016 Sample Output From CZ1102A C.3

C.3 Sample Output From CZ1102A
Test CZ1102A should execute and report PASSED as illustrated below. Only the time-stamp should
differ.

,.,. CZ1102A ACATS 4.1 16-05-13 09:57:57
---- CZ1102A CHECK THAT THE DYNAMIC VALUE ROUTINES OF THE REPORT PACKAGE
 WORK CORRECTLY.
==== CZ1102A PASSED ============================.

C.4 Sample Output From CZ1103A
Test CZ1103A may produce two different forms of output, depending on whether the implementation
supports external files.

C.4.1 Output When External Files Are Supported
If the implementation under test supports the creation and use of external text files, then test CZ1103A
should produce the following report (except for differences in the time stamp). Note that failure messages
are expected.

,.,. CZ1103A ACATS 4.1 16-05-13 09:58:10
---- CZ1103A CHECK THAT PROCEDURE CHECK_FILE WORKS.
 - CZ1103A BEGIN TEST WITH AN EMPTY FILE.
 - CZ1103A BEGIN TEST WITH A FILE WITH BLANK LINES.
 - CZ1103A BEGIN TEST WITH A FILE WITH BLANK LINES AND PAGES.
 - CZ1103A BEGIN TEST WITH A FILE WITH TRAILING BLANKS.
 - CZ1103A FROM CHECK_FILE: THIS IMPLEMENTATION PADS LINES WITH
 BLANKS.
 - CZ1103A BEGIN TEST WITH A FILE WITHOUT TRAILING BLANKS.
 - CZ1103A BEGIN TEST WITH A FILE WITH AN END OF LINE ERROR.
 * CZ1103A FROM CHECK_FILE: END OF LINE EXPECTED - E ENCOUNTERED.
 - CZ1103A FROM CHECK_FILE: LAST CHARACTER IN FOLLOWING STRING
 REVEALED ERROR: THIS LINE WILL CONTAIN AN #.
 - CZ1103A BEGIN TEST WITH FILE WITH END OF PAGE ERROR.
 * CZ1103A FROM CHECK_FILE: END_OF_PAGE NOT WHERE EXPECTED.
 - CZ1103A FROM CHECK_FILE: LAST CHARACTER IN FOLLOWING STRING
 REVEALED ERROR: THIS LINE WILL CONTAIN AN @.
 - CZ1103A BEGIN TEST WITH FILE WITH END OF FILE ERROR.
 * CZ1103A FROM CHECK_FILE: END_OF_FILE NOT WHERE EXPECTED.
 - CZ1103A FROM CHECK_FILE: LAST CHARACTER IN FOLLOWING STRING
 REVEALED ERROR: THIS LINE WILL CONTAIN AN %.
 - CZ1103A BEGIN TEST WITH FILE WITH INCORRECT DATA.
 * CZ1103A FROM CHECK_FILE: FILE DOES NOT CONTAIN CORRECT OUTPUT -
 EXPECTED C - GOT I.
 - CZ1103A FROM CHECK_FILE: LAST CHARACTER IN FOLLOWING STRING
 REVEALED ERROR: LINE WITH C.
**** CZ1103A FAILED ****************************.

,.,. CZ1103A ACATS 4.1 16-05-13 09:58:10
---- CZ1103A THE LINE ABOVE SHOULD REPORT FAILURE.
 ! CZ1103A COMPARE THIS OUTPUT TO THE EXPECTED RESULT.
!!!! CZ1103A TENTATIVELY PASSED !!!!!!!!!!!!!!!!.
!!!! SEE '!' COMMENTS FOR SPECIAL NOTES!!

ACATS 4.1 User's Guide

C.4.2 Output When External Files Are Not Supported 29 June 2016 110

C.4.2 Output When External Files Are Not Supported
If the implementation under test does not support external text files, then CZ1103A produces different
output, as illustrated below.

,.,. CZ1103A ACATS 4.1 16-05-13 09:59:00
---- CZ1103A CHECK THAT PROCEDURE CHECK_FILE WORKS.
 - CZ1103A BEGIN TEST WITH AN EMPTY FILE.
 * CZ1103A TEST WITH EMPTY FILE INCOMPLETE.
 - CZ1103A BEGIN TEST WITH A FILE WITH BLANK LINES.
 * CZ1103A TEST WITH FILE WITH BLANK LINES INCOMPLETE.
 - CZ1103A BEGIN TEST WITH A FILE WITH BLANK LINES AND PAGES.
 * CZ1103A TEST WITH FILE WITH BLANK PAGES INCOMPLETE.
 - CZ1103A BEGIN TEST WITH A FILE WITH TRAILING BLANKS.
 * CZ1103A TEST WITH FILE WITH TRAILING BLANKS INCOMPLETE.
 - CZ1103A BEGIN TEST WITH A FILE WITHOUT TRAILING BLANKS.
 * CZ1103A TEST WITH FILE WITHOUT TRAILING BLANKS INCOMPLETE.
 - CZ1103A BEGIN TEST WITH A FILE WITH AN END OF LINE ERROR.
 * CZ1103A TEST WITH END_OF_LINE ERROR INCOMPLETE.
 - CZ1103A BEGIN TEST WITH FILE WITH END OF PAGE ERROR.
 * CZ1103A TEST WITH END_OF_PAGE ERROR INCOMPLETE.
 - CZ1103A BEGIN TEST WITH FILE WITH END OF FILE ERROR.
 * CZ1103A TEST WITH END_OF_FILE ERROR INCOMPLETE.
 - CZ1103A BEGIN TEST WITH FILE WITH INCORRECT DATA.
 * CZ1103A TEST WITH INCORRECT DATA INCOMPLETE.
**** CZ1103A FAILED ****************************.

,.,. CZ1103A ACATS 4.1 16-05-13 09:59:00
---- CZ1103A THE LINE ABOVE SHOULD REPORT FAILURE.
 ! CZ1103A COMPARE THIS OUTPUT TO THE EXPECTED RESULT.
!!!! CZ1103A TENTATIVELY PASSED !!!!!!!!!!!!!!!!.
!!!! SEE '!' COMMENTS FOR SPECIAL NOTES!!

ACATS 4.1 User's Guide

111 29 June 2016 Test Applicability Criteria D

Annex D: Test Applicability Criteria
Certain tests in the suite may be considered inapplicable to an implementation depending on the way the
implementation treats the implementation-dependent features of the language. A brief summary of these
implementation-dependent features and the tests they affect are listed in this appendix.

Note that the applicability of each one of these tests is based on the criteria listed in the test file. During
conformity assessment, all the implementation-dependent tests are submitted for compilation and (if
compiled successfully) are executed, with the following exceptions:

• Tests which require a floating point digits value that exceeds System.Max_Digits need not
be submitted to the compiler. (The testing laboratory may require pre-validation evidence that the
tests are properly rejected.)

• If file I/O is not supported, then the tests listed in Section D.2.15 will not be part of the
customized test suite for bare target validations and will not be run during witness testing.

D.1 Compile-Time Inapplicability
The first part of this appendix is concerned with tests for which the applicability is determined at compile
time. Class B tests that are inapplicable should be successfully compiled, or, in a few cases, should report
an error on the line marked "--N/A => ERROR". Executable tests that are inapplicable based on their
compile-time behavior must be rejected as a result of the unsupported feature. Lines containing the
implementation-dependent features are marked "--N/A => ERROR". In every case, tests may be graded
NOT-APPLICABLE only if all the following conditions are met:

• The implementation's treatment of the test is consistent with the applicability criteria given in the
test comments;

• All other tests having the same applicability criteria exhibit the same behavior; and
• The behavior is consistent with the implementation's documentation.

D.1.1 Type Short_Integer
If there is no predefined type Short_Integer, then the tests contained in the following files are not
applicable:
B36105C.DEP
B52004E.DEP
B55B09D.DEP
C45231B.DEP
C45304B.DEP

C45411B.DEP
C45502B.DEP
C45503B.DEP
C45504B.DEP
C45504E.DEP

C45611B.DEP
C45613B.DEP
C45614B.DEP
C45631B.DEP
C45632B.DEP

C55B07B.DEP
CD7101E.DEP

D.1.2 Type Long_Integer
If there is no predefined type Long_Integer, then the tests contained in the following files are not
applicable:
B52004D.DEP
B55B09C.DEP
C45231C.DEP
C45304C.DEP

C45411C.DEP
C45502C.DEP
C45503C.DEP
C45504C.DEP

C45504F.DEP
C45611C.DEP
C45613C.DEP
C45614C.DEP

C45631C.DEP
C45632C.DEP
C55B07A.DEP
CD7101F.DEP

ACATS 4.1 User's Guide

D.1.3 Other Predefined Integer Types 29 June 2016 112

D.1.3 Other Predefined Integer Types
If there are no predefined integer types with names other than Integer, Short_Integer, and
Long_Integer, then the tests contained in the following files are not applicable.
C45231D.TST CD7101G.TST

D.1.4 Fixed Point Restrictions
If System.Max_Mantissa is less than 47 or System.Fine_Delta is greater than 2.0**-47, then
the tests contained in the following files are not applicable:
C45531M.DEP
C45531N.DEP

C45531O.DEP
C45531P.DEP

C45532M.DEP
C45532N.DEP

C45532O.DEP
C45532P.DEP

D.1.5 Non-binary Values of 'Small
If 'Small representation clauses which are not powers of two are not supported, then the tests contained
in the following files are not applicable:
C45536A.DEP CD2A53A.ADA

D.1.6 Compiler Rejection of Supposedly Static Expression
Consider the following declarations:

type F is digits System.Max_Digits;
N : constant := 2.0 * F'Machine_Radix ** F'Machine_EMax;

If the declaration of N is rejected on the grounds that evaluation of the expression will raise an exception,
then the following test is not applicable:

C4A013B.ADA

D.1.7 Machine Code Insertions
If machine code insertions are not supported, then the tests contained in the following files are not
applicable:
AD8011A.TST
BD8001A.TST

BD8002A.TST
BD8003A.TST

BD8004A.TST
BD8004B.TST

BD8004C.TST

D.1.8 Illegal External File Names
If there are no strings which are illegal as external file names, then the tests contained in the following
files are not applicable:
CE2102C.TST CE2102H.TST CE3102B.TST CE3107A.TST

ACATS 4.1 User's Guide

113 29 June 2016 Decimal Types D.1.9

D.1.9 Decimal Types
If decimal types are not supported, then the tests contained in the following files are not applicable: (Note
that implementations testing Annex F must support decimal types.)
C460011.A CXAA010.A

D.1.10 Instantiation of Sequential_IO with indefinite types
If Sequential_IO does not support indefinite types, then the tests contained in the following files are not
applicable:
CE2201D.DEP CE2201E.DEP

D.1.11 Package Ada.Directories.Hierarchical_File_Names
If package Ada.Directories.Hierarchical_File_Names is not supported, then the test contained in the
following file is not applicable:
CXAG002.A

D.1.12 Convention C
If convention C is not supported, then the tests contained in the following files are not applicable:
BXB3001.A
BXB3002.A
BXB3003.A
BXB3004.A

CXB30041.AM
CXB30061.AM
CXB30132.AM
CXB30172.AM

CXB30182.AM
CXB3019.A
CXB3020.A
CXB3021.A

CXB3022.A

D.1.13 Convention COBOL
If convention COBOL is not supported, then the test contained in the following file is not applicable:
CXB40093.AM

D.1.14 Convention Fortran
If convention Fortran is not supported, then the tests contained in the following files are not applicable:
C552002.A CXB50042.AM CXB50052.AM

D.1.15 Package Interfaces.C
If package Interfaces.C is not supported, then the tests contained in the following files are not applicable:
BXB3001.A
BXB3002.A
BXB3003.A

BXB3004.A
CXB3001.A
CXB3002.A

CXB3003.A
CXB30041.AM
CXB3005.A

CXB30061.AM
CXB3007.A
CXB3008.A

ACATS 4.1 User's Guide

D.1.15 Package Interfaces.C 29 June 2016 114

CXB3009.A
CXB3010.A
CXB3011.A
CXB3012.A

CXB30132.AM
CXB3014.A
CXB3015.A
CXB3016.A

CXB30172.AM
CXB30182.AM
CXB3019.A
CXB3020.A

CXB3021.A
CXB3022.A

See also 5.5.5.2, “Foreign Language Interface Tests” for more information on processing these tests.

D.1.16 Package Interfaces.C.Strings
If package Interfaces.C.Strings is not supported, then the tests contained in the following files are not
applicable:
CXB3002.A
CXB3008.A
CXB3009.A

CXB3010.A
CXB3011.A
CXB3012.A

CXB30132.AM
CXB3014.A
CXB3016.A

CXB30182.AM

D.1.17 Package Interfaces.C.Pointers
If package Interfaces.C.Pointers is not supported, then the tests contained in the following files are not
applicable:
CXB3003.A CXB3014.A CXB3015.A CXB3016.A

D.1.18 Package Interfaces.COBOL
If package Interfaces.COBOL is not supported, then the tests contained in the following files are not
applicable:
CXB4001.A
CXB4002.A
CXB4003.A

CXB4004.A
CXB4005.A
CXB4006.A

CXB4007.A
CXB4008.A
CXB40093.AM

See also 5.5.5.2, “Foreign Language Interface Tests” for more information on processing these tests.

D.1.19 Package Interfaces.Fortran
If package Interfaces.Fortran is not supported, then the tests contained in the following files are not
applicable:
CXB5001.A
CXB5002.A

CXB5003.A
CXB50042.AM

CXB50052.AM

See also 5.5.5.2, “Foreign Language Interface Tests” for more information on processing these tests.

D.1.20 Unchecked Unions
If unchecked unions are not supported, then the tests contained in the following files are not applicable:
BXB3001.A
BXB3002.A

BXB3003.A
BXB3004.A

CXB3021.A
CXB3022.A

ACATS 4.1 User's Guide

115 29 June 2016 Special Handling Tests D.1.21

D.1.21 Special Handling Tests
Tests requiring special handling may also be not applicable. See section 5.5.5, “Tests with Special
Processing Requirements”, for details.

D.2 Reported Inapplicability
This section is concerned with tests that can detect, at runtime, certain implementation characteristics that
render the objective meaningless or prevent testing of the objective. These tests must compile and
execute, reporting "NOT_APPLICABLE" as the result. This behavior must be consistent with other tests
for related objective and with the implementation's documentation.

D.2.1 Value of Machine_Overflows is False
If Machine_Overflows is False for floating point types, then the tests contained in the following
files should report NOT_APPLICABLE:
C45322A.ADA C45523A.ADA C4A012B.ADA

D.2.2 System.Max_Digits
If the value of System.Max_Digits is greater than 35, then the test contained in the following file
should report NOT_APPLICABLE:
C4A011A.ADA

D.2.3 Floating Point Overflow
Consider the declaration

type F is digits System.Max_Digits;

If F'Machine_Overflows = False and 2.0*F'Machine_Radix**F'Machine_EMax <=
F'Base'Last then the test contained in the following file should report NOT_APPLICABLE (if it
compiles without error):
C4A013B.ADA

D.2.4 Type Duration
If Duration'First = Duration'Base'First or Duration'Last =
Duration'Base'Last then the tests contained in the following file should report
NOT_APPLICABLE:
C96005B.TST

ACATS 4.1 User's Guide

D.2.5 Text Files (Non-supported Features) 29 June 2016 116

D.2.5 Text Files (Non-supported Features)
If Use_Error or Name_Error is raised by every attempt to create or open a text file (this is the
appropriate behavior for an implementation which does not support text files other than standard input
and output), then the tests contained in the following files should report NOT_APPLICABLE:
CE2109C.ADA
CE3102A.ADA
CE3102B.TST
CE3102F.ADA
CE3102G.ADA
CE3102H.ADA
CE3102J.ADA
CE3102K.ADA
CE3103A.ADA
CE3104A.ADA
CE3104B.ADA
CE3104C.ADA
CE3106A.ADA
CE3106B.ADA
CE3107A.TST
CE3107B.ADA
CE3108A.ADA
CE3108B.ADA
CE3110A.ADA
CE3112C.ADA
CE3112D.ADA
CE3114A.ADA
CE3115A.ADA
CE3207A.ADA
CE3301A.ADA
CE3302A.ADA
CE3304A.TST
CE3305A.ADA
CE3401A.ADA
CE3402A.ADA
CE3402C.ADA
CE3402D.ADA
CE3403A.ADA
CE3403B.ADA
CE3403C.ADA
CE3403E.ADA
CE3403F.ADA
CE3404B.ADA
CE3404C.ADA
CE3404D.ADA
CE3405A.ADA

CE3405C.ADA
CE3405D.ADA
CE3406A.ADA
CE3406B.ADA
CE3406C.ADA
CE3406D.ADA
CE3407A.ADA
CE3407B.ADA
CE3407C.ADA
CE3408A.ADA
CE3408B.ADA
CE3408C.ADA
CE3409A.ADA
CE3409C.ADA
CE3409D.ADA
CE3409E.ADA
CE3410A.ADA
CE3410C.ADA
CE3410D.ADA
CE3410E.ADA
CE3411A.ADA
CE3411C.ADA
CE3412A.ADA
CE3413A.ADA
CE3413B.ADA
CE3413C.ADA
CE3414A.ADA
CE3602A.ADA
CE3602B.ADA
CE3602C.ADA
CE3602D.ADA
CE3603A.ADA
CE3604A.ADA
CE3604B.ADA
CE3605A.ADA
CE3605B.ADA
CE3605C.ADA
CE3605D.ADA
CE3605E.ADA
CE3606A.ADA
CE3606B.ADA

CE3704A.ADA
CE3704B.ADA
CE3704C.ADA
CE3704D.ADA
CE3704E.ADA
CE3704F.ADA
CE3704M.ADA
CE3704N.ADA
CE3704O.ADA
CE3705A.ADA
CE3705B.ADA
CE3705C.ADA
CE3705D.ADA
CE3705E.ADA
CE3706D.ADA
CE3706F.ADA
CE3706G.ADA
CE3804A.ADA
CE3804B.ADA
CE3804C.ADA
CE3804D.ADA
CE3804E.ADA
CE3804F.ADA
CE3804G.ADA
CE3804H.ADA
CE3804I.ADA
CE3804J.ADA
CE3804M.ADA
CE3804O.ADA
CE3804P.ADA
CE3805A.ADA
CE3805B.ADA
CE3806A.ADA
CE3806B.ADA
CE3806D.ADA
CE3806E.ADA
CE3806G.ADA
CE3806H.ADA
CE3902B.ADA
CE3904A.ADA
CE3904B.ADA

CE3905A.ADA
CE3905B.ADA
CE3905C.ADA
CE3905L.ADA
CE3906A.ADA
CE3906B.ADA
CE3906C.ADA
CE3906E.ADA
CE3906F.ADA
CXAA001.A
CXAA002.A
CXAA003.A
CXAA004.A
CXAA005.A
CXAA006.A
CXAA007.A
CXAA008.A
CXAA009.A
CXAA010.A
CXAA011.A
CXAA012.A
CXAA013.A
CXAA014.A
CXAA015.A
CXAA016.A
CXAA017.A
CXAA018.A
CXAA019.A
CXAA020.A
CXAA021.A
CXAA022.A
CXAG001.A
CXF3A06.A
CXG1003.A
EE3203A.ADA
EE3204A.ADA
EE3402B.ADA
EE3409F.ADA
EE3412C.ADA

If Use_Error or Name_Error is raised by every attempt to create or open a text file with mode
In_File, then the tests contained in the following files should report NOT_APPLICABLE:

ACATS 4.1 User's Guide

117 29 June 2016 Text Files (Non-supported Features) D.2.5

CE3102F.ADA
CE3102H.ADA
CE3104B.ADA
CE3106A.ADA
CE3108A.ADA
CE3108B.ADA
CE3112D.ADA
CE3301A.ADA
CE3302A.ADA
CE3402A.ADA
CE3403B.ADA
CE3403C.ADA
CE3403E.ADA
CE3403F.ADA
CE3404B.ADA
CE3404C.ADA
CE3404D.ADA
CE3406A.ADA
CE3406C.ADA
CE3406D.ADA
CE3407A.ADA

CE3407C.ADA
CE3408A.ADA
CE3408C.ADA
CE3409C.ADA
CE3409D.ADA
CE3409E.ADA
CE3410C.ADA
CE3410D.ADA
CE3410E.ADA
CE3411A.ADA
CE3411C.ADA
CE3412A.ADA
CE3413A.ADA
CE3413B.ADA
CE3413C.ADA
CE3602A.ADA
CE3602B.ADA
CE3602D.ADA
CE3603A.ADA
CE3604A.ADA
CE3604B.ADA

CE3605C.ADA
CE3704A.ADA
CE3704C.ADA
CE3704D.ADA
CE3704E.ADA
CE3704F.ADA
CE3704M.ADA
CE3704N.ADA
CE3704O.ADA
CE3705B.ADA
CE3705C.ADA
CE3705D.ADA
CE3705E.ADA
CE3706D.ADA
CE3706G.ADA
CE3804A.ADA
CE3804B.ADA
CE3804D.ADA
CE3804E.ADA
CE3804F.ADA
CE3804G.ADA

CE3804H.ADA
CE3804I.ADA
CE3804J.ADA
CE3804M.ADA
CE3804P.ADA
CE3805A.ADA
CE3805B.ADA
CE3806A.ADA
CE3806B.ADA
CE3806D.ADA
CE3806G.ADA
CE3902B.ADA
CE3904B.ADA
CE3905A.ADA
CE3905C.ADA
CE3905L.ADA
CE3906B.ADA
CE3906C.ADA
EE3203A.ADA
EE3204A.ADA
EE3412C.ADA

If Use_Error or Name_Error is raised by every attempt to create or open a text file with mode
Out_File, then the tests contained in the following files should report NOT_APPLICABLE:
CE2109C.ADA
CE3102A.ADA
CE3102B.TST
CE3102F.ADA
CE3102G.ADA
CE3102H.ADA
CE3102J.ADA
CE3102K.ADA
CE3103A.ADA
CE3104A.ADA
CE3104B.ADA
CE3104C.ADA
CE3106A.ADA
CE3106B.ADA
CE3107A.TST
CE3107B.ADA
CE3108A.ADA
CE3108B.ADA
CE3110A.ADA
CE3112C.ADA
CE3112D.ADA
CE3114A.ADA
CE3115A.ADA
CE3207A.ADA
CE3301A.ADA

CE3302A.ADA
CE3304A.TST
CE3305A.ADA
CE3401A.ADA
CE3402A.ADA
CE3402C.ADA
CE3402D.ADA
CE3403A.ADA
CE3403B.ADA
CE3403C.ADA
CE3403E.ADA
CE3403F.ADA
CE3404B.ADA
CE3404C.ADA
CE3404D.ADA
CE3405A.ADA
CE3405C.ADA
CE3405D.ADA
CE3406A.ADA
CE3406B.ADA
CE3406C.ADA
CE3406D.ADA
CE3407A.ADA
CE3407B.ADA
CE3407C.ADA

CE3408A.ADA
CE3408B.ADA
CE3408C.ADA
CE3409A.ADA
CE3409C.ADA
CE3409D.ADA
CE3409E.ADA
CE3410A.ADA
CE3410C.ADA
CE3410D.ADA
CE3410E.ADA
CE3411A.ADA
CE3411C.ADA
CE3412A.ADA
CE3413A.ADA
CE3413B.ADA
CE3413C.ADA
CE3414A.ADA
CE3602A.ADA
CE3602B.ADA
CE3602C.ADA
CE3602D.ADA
CE3603A.ADA
CE3604A.ADA
CE3604B.ADA

CE3605A.ADA
CE3605B.ADA
CE3605C.ADA
CE3605D.ADA
CE3605E.ADA
CE3606A.ADA
CE3606B.ADA
CE3704A.ADA
CE3704B.ADA
CE3704C.ADA
CE3704D.ADA
CE3704E.ADA
CE3704F.ADA
CE3704M.ADA
CE3704N.ADA
CE3704O.ADA
CE3705A.ADA
CE3705B.ADA
CE3705C.ADA
CE3705D.ADA
CE3705E.ADA
CE3706D.ADA
CE3706F.ADA
CE3706G.ADA
CE3804A.ADA

ACATS 4.1 User's Guide

D.2.5 Text Files (Non-supported Features) 29 June 2016 118

CE3804B.ADA
CE3804C.ADA
CE3804D.ADA
CE3804E.ADA
CE3804F.ADA
CE3804G.ADA
CE3804H.ADA
CE3804I.ADA
CE3804J.ADA
CE3804M.ADA
CE3804O.ADA
CE3804P.ADA
CE3805A.ADA
CE3805B.ADA

CE3806A.ADA
CE3806B.ADA
CE3806D.ADA
CE3806E.ADA
CE3806G.ADA
CE3806H.ADA
CE3902B.ADA
CE3904A.ADA
CE3904B.ADA
CE3905A.ADA
CE3905B.ADA
CE3905C.ADA
CE3905L.ADA
CE3906A.ADA

CE3906B.ADA
CE3906C.ADA
CE3906E.ADA
CE3906F.ADA
CXAA003.A
CXAA004.A
CXAA005.A
CXAA009.A
CXAA010.A
CXAA011.A
CXAA012.A
CXAA014.A
CXAA016.A
CXAA017.A

CXAA018.A
CXAA019.A
CXAA020.A
CXAA021.A
CXAA022.A
CXAG001.A
CXF3A06.A
CXG1003.A
EE3203A.ADA
EE3204A.ADA
EE3402B.ADA
EE3409F.ADA
EE3412C.ADA

If Use_Error or Name_Error is raised by every attempt to create or open a text file with mode
Append_File, then the tests contained in the following files should report NOT_APPLICABLE:
CXAA001.A
CXAA002.A

CXAA006.A
CXAA007.A

CXAA008.A
CXAA013.A

CXAA015.A

If Reset is not supported for text files, then the following tests should report NOT_APPLICABLE:
CE3104C.ADA CE3115A.ADA CXAA020.A

If Delete is not supported for text files, then the following tests should report NOT_APPLICABLE:
CE3110A.ADA CE3114A.ADA

If association of multiple internal text files (opened for reading and writing) to a single external file is not
supported, then the test contained in the following file should report NOT_APPLICABLE:
CE3115A.ADA

If there are no inappropriate values for either line length or page length, then the test contained in the
following file should report NOT_APPLICABLE:
CE3304A.TST

If the value of Count'Last is greater than 150_000, then the following test should report
NOT_APPLICABLE:
CE3413B.ADA

ACATS 4.1 User's Guide

119 29 June 2016 Text Files (Supported Features) D.2.6

D.2.6 Text Files (Supported Features)
If Create with mode In_File is supported for text files, then the test contained in the following file
should report NOT_APPLICABLE:
CE3102E.ADA

If Open with mode In_File is supported for text files, then the test contained in the following file
should report NOT_APPLICABLE:
CE3102J.ADA

If Create with mode Out_File is supported for text files, then the test contained in the following file
should report NOT_APPLICABLE:
CE3102I.ADA

If Open with mode Out_File is supported for text files, then the following test should report
NOT_APPLICABLE:
CE3102K.ADA

If Reset is supported for text files, then the test contained in the following file should report
NOT_APPLICABLE:
CE3102F.ADA

If Delete for text files is supported, then the test contained in the following file should report
NOT_APPLICABLE:
CE3102G.ADA

D.2.7 Sequential Files (Non-supported Features)
If Use_Error or Name_Error is raised by every attempt to create or open a sequential file (this is
appropriate behavior for an implementation which does not support sequential files), then the tests
contained in the following files should report NOT_APPLICABLE:
CE2102A.ADA
CE2102C.TST
CE2102G.ADA
CE2102N.ADA
CE2102O.ADA
CE2102P.ADA
CE2102Q.ADA
CE2102X.ADA
CE2103A.TST
CE2103C.ADA
CE2104A.ADA
CE2104B.ADA

CE2106A.ADA
CE2108E.ADA
CE2108F.ADA
CE2109A.ADA
CE2110A.ADA
CE2111A.ADA
CE2111C.ADA
CE2111F.ADA
CE2111I.ADA
CE2201A.ADA
CE2201B.ADA
CE2201C.ADA

CE2201D.DEP
CE2201E.DEP
CE2201F.ADA
CE2201G.ADA
CE2201H.ADA
CE2201I.ADA
CE2201J.ADA
CE2201K.ADA
CE2201L.ADA
CE2201M.ADA
CE2201N.ADA
CE2203A.TST

CE2204A.ADA
CE2204B.ADA
CE2204C.ADA
CE2204D.ADA
CE2205A.ADA
CE2206A.ADA
CE2208B.ADA
CXA8001.A
CXA8002.A

If Use_Error or Name_Error is raised by every attempt to create or open a sequential file with mode
In_File, then the tests contained in the following files should report NOT_APPLICABLE:

ACATS 4.1 User's Guide

D.2.7 Sequential Files (Non-supported Features) 29 June 2016 120

CE2102G.ADA
CE2102O.ADA
CE2104A.ADA
CE2104B.ADA
CE2108F.ADA
CE2111A.ADA

CE2111C.ADA
CE2111F.ADA
CE2201A.ADA
CE2201B.ADA
CE2201C.ADA
CE2201F.ADA

CE2201G.ADA
CE2201H.ADA
CE2201I.ADA
CE2201J.ADA
CE2201K.ADA
CE2201L.ADA

CE2201M.ADA
CE2201N.ADA
CE2204A.ADA
CE2205A.ADA
CE2206A.ADA
CE2208B.ADA

If Use_Error or Name_Error is raised by every attempt to create or open a sequential file with mode
Out_File, then the tests contained in the following files should report NOT_APPLICABLE:
CE2102A.ADA
CE2102C.TST
CE2102G.ADA
CE2102N.ADA
CE2102O.ADA
CE2102P.ADA
CE2102Q.ADA
CE2102X.ADA
CE2103A.TST
CE2103C.ADA
CE2104A.ADA

CE2104B.ADA
CE2106A.ADA
CE2108E.ADA
CE2108F.ADA
CE2109A.ADA
CE2110A.ADA
CE2111A.ADA
CE2111C.ADA
CE2111F.ADA
CE2111I.ADA
CE2201A.ADA

CE2201B.ADA
CE2201C.ADA
CE2201D.DEP
CE2201E.DEP
CE2201F.ADA
CE2201G.ADA
CE2201H.ADA
CE2201I.ADA
CE2201J.ADA
CE2201K.ADA
CE2201L.ADA

CE2201M.ADA
CE2201N.ADA
CE2203A.TST
CE2204A.ADA
CE2204B.ADA
CE2204C.ADA
CE2204D.ADA
CE2205A.ADA
CE2206A.ADA
CE2208B.ADA
CXA8001.A

If Use_Error or Name_Error is raised by every attempt to create or open a sequential file with mode
APPEND_FILE, then the tests contained in the following files should report NOT_APPLICABLE:
CXA8001.A

If reset to mode Out_File is not supported for sequential files, then the tests contained in the following
files should report NOT_APPLICABLE:
CE2111C.ADA CE2111F.ADA CE2111I.ADA

If reset to mode In_File is not supported for sequential files, then the tests contained in the following
files should report NOT_APPLICABLE:
CE2111F.ADA CE2111I.ADA CE2204C.ADA

If Delete for sequential files is not supported, then the tests contained in the following files should
report NOT_APPLICABLE:
CE2106A.ADA CE2110A.ADA

If the implementation cannot restrict the file capacity for a sequential file, then the test contained in the
following file should report NOT_APPLICABLE:
CE2203A.TST

D.2.8 Sequential Files (Supported Features)
If Create with mode In_File is supported for sequential files, then the test contained in the following
file should report NOT_APPLICABLE:
CE2102D.ADA

ACATS 4.1 User's Guide

121 29 June 2016 Sequential Files (Supported Features) D.2.8

If Open with mode In_File is supported for sequential files, then the test contained in the following
file should report NOT_APPLICABLE:
CE2102N.ADA

If Reset to mode In_File is supported for sequential files, then the test contained in the following file
should report NOT_APPLICABLE:
CE2102O.ADA

If Create with mode Out_File is supported, then the test contained in the following file should report
NOT_APPLICABLE:
CE2102E.ADA

If Open with mode Out_File is supported, then the test contained in the following file should report
NOT_APPLICABLE:
CE2102P.ADA

If Reset to mode Out_File is supported for sequential files, then the test contained in the following
file should report NOT_APPLICABLE:
CE2102Q.ADA

D.2.9 Direct Files (Non-supported Features)
If Use_Error or Name_Error is raised by every attempt to create or open a direct access file (this is
appropriate behavior for an implementation which does not support direct access files), then the tests
contained in the following files should report NOT_APPLICABLE:
CE2102B.ADA
CE2102H.TST
CE2102K.ADA
CE2102R.ADA
CE2102S.ADA
CE2102T.ADA
CE2102U.ADA
CE2102V.ADA
CE2102W.ADA
CE2102Y.ADA
CE2103B.TST
CE2103D.ADA
CE2104C.ADA

CE2104D.ADA
CE2106B.ADA
CE2108G.ADA
CE2108H.ADA
CE2109B.ADA
CE2110C.ADA
CE2111B.ADA
CE2111E.ADA
CE2111G.ADA
CE2401A.ADA
CE2401B.ADA
CE2401C.ADA
CE2401E.ADA

CE2401F.ADA
CE2401H.ADA
CE2401I.ADA
CE2401J.ADA
CE2401K.ADA
CE2401L.ADA
CE2403A.TST
CE2404A.ADA
CE2404B.ADA
CE2405B.ADA
CE2406A.ADA
CE2407A.ADA
CE2407B.ADA

CE2408A.ADA
CE2408B.ADA
CE2409A.ADA
CE2409B.ADA
CE2410A.ADA
CE2410B.ADA
CE2411A.ADA
CXA8003.A
CXA9001.A
CXA9002.A

If Use_Error or Name_Error is raised by every attempt to create or open a direct access file with
mode In_File, then the tests contained in the following files should report NOT_APPLICABLE:
CE2102K.ADA
CE2102U.ADA
CE2104C.ADA
CE2104D.ADA
CE2108H.ADA

CE2111B.ADA
CE2111E.ADA
CE2401A.ADA
CE2401B.ADA
CE2401C.ADA

CE2401E.ADA
CE2401F.ADA
CE2401H.ADA
CE2401I.ADA
CE2405B.ADA

CE2406A.ADA
CE2407A.ADA
CE2411A.ADA

ACATS 4.1 User's Guide

D.2.9 Direct Files (Non-supported Features) 29 June 2016 122

If Use_Error or Name_Error is raised by every attempt to create or open a direct access file with
mode Out_File, then the tests contained in the following files should report NOT_APPLICABLE:
CE2102B.ADA
CE2102K.ADA
CE2102R.ADA
CE2102W.ADA
CE2102Y.ADA
CE2103B.TST
CE2103D.ADA
CE2104C.ADA

CE2104D.ADA
CE2106B.ADA
CE2108G.ADA
CE2108H.ADA
CE2110C.ADA
CE2111B.ADA
CE2111E.ADA
CE2403A.TST

CE2404A.ADA
CE2404B.ADA
CE2405B.ADA
CE2407A.ADA
CE2407B.ADA
CE2408A.ADA
CE2409B.ADA
CE2410A.ADA

CE2410B.ADA
CE2411A.ADA
CXA8003.A
CXA9001.A
CXA9002.A

If Use_Error or Name_Error is raised by every attempt to create or open a direct access file with
mode InOut_File, then the tests contained in the following files should report NOT_APPLICABLE:
CE2102H.TST
CE2102K.ADA
CE2102S.ADA
CE2102T.ADA
CE2102U.ADA
CE2102V.ADA
CE2109B.ADA

CE2111B.ADA
CE2111E.ADA
CE2111G.ADA
CE2401A.ADA
CE2401B.ADA
CE2401C.ADA
CE2401E.ADA

CE2401F.ADA
CE2401H.ADA
CE2401I.ADA
CE2401J.ADA
CE2401K.ADA
CE2401L.ADA
CE2405B.ADA

CE2406A.ADA
CE2408B.ADA
CE2409A.ADA
CE2411A.ADA

If Delete for direct access files is not supported, then the following tests should report
NOT_APPLICABLE:
CE2106B.ADA CE2110C.ADA

If the implementation cannot restrict the file capacity for a direct file, then the test contained in the
following file should report NOT_APPLICABLE:
CE2403A.TST

D.2.10 Direct Files (Supported Features)
If Create with mode In_File is supported for direct access files, then the test contained in the
following file should report NOT_APPLICABLE:
CE2102I.ADA

If Open with mode In_File is supported for direct access files, then the test contained in the following
file should report NOT_APPLICABLE:
CE2102T.ADA

If Reset with mode In_File is supported for direct access files, then the test contained in the
following file should report NOT_APPLICABLE:
CE2102U.ADA

If Create with mode Out_File is supported for direct access files, then the test contained in the
following file should report NOT_APPLICABLE:
CE2102J.ADA

ACATS 4.1 User's Guide

123 29 June 2016 Direct Files (Supported Features) D.2.10

If Open with mode Out_File is supported for direct access files, then the test contained in the
following file should report NOT_APPLICABLE:
CE2102V.ADA

If Reset with mode Out_File is supported for direct access files, then the test contained in the
following file should report NOT_APPLICABLE:
CE2102W.ADA

If Create with mode InOut_File is supported for direct access files, then the test contained in the
following file should report NOT_APPLICABLE:
CE2102F.ADA

If Open with mode InOut_File is supported for direct access files, then the test contained in the
following file should report NOT_APPLICABLE:
CE2102R.ADA

If Reset to mode InOut_File is supported for direct access files, then the test contained in the
following file should report NOT_APPLICABLE:
CE2102S.ADA

D.2.11 Stream Files (Non-supported Features)
If Use_Error or Name_Error is raised by every attempt to create or open a stream file (this is the
appropriate behavior for an implementation which does not support stream files), then the tests contained
in the following files should report NOT_APPLICABLE:
CXAA019.A
CXAC001.A
CXAC002.A
CXAC003.A

CXAC004.A
CXAC005.A
CXAC006.A
CXAC007.A

CXAC008.A
CXACA01.A
CXACA02.A
CXACB01.A

CXACB02.A
CXACC01.A

D.2.12 Wide Text Files (Non-supported Features)
If Use_Error or Name_Error is raised by every attempt to create or open a wide text file (this is the
appropriate behavior for an implementation which does not support wide text files), then the tests
contained in the following files should report NOT_APPLICABLE:

CXAA019.A CXAB001.A CXAB002.AU CXAB004.AU

D.2.13 Wide Wide Text Files (Non-supported Features)
If Use_Error or Name_Error is raised by every attempt to create or open a wide wide text file (this is
the appropriate behavior for an implementation which does not support wide wide text files), then the
tests contained in the following files should report NOT_APPLICABLE:

CXAB003.AU CXAB005.AU

ACATS 4.1 User's Guide

D.2.14 Directory Operations (Non-supported Features) 29 June 2016 124

D.2.14 Directory Operations (Non-supported Features)
If Use_Error or Name_Error is raised by every attempt to read the current default directory, then the
tests contained in the following files should report NOT_APPLICABLE:
CXAG001.A CXAG002.A
If Use_Error or Name_Error is raised by every attempt to set the current default directory, then the
tests contained in the following files should report NOT_APPLICABLE:
CXAG001.A

If Use_Error or Name_Error is raised by every attempt to create a directory, then the tests contained
in the following files should report NOT_APPLICABLE:
CXAG001.A

D.2.15 File I/O Tests
If sequential, text, wide text, wide wide text, direct access, and stream files are not supported, along with
directory operations on them, then the tests contained in the following files should eport
NOT_APPLICABLE:

CE2102A.ADA
CE2102B.ADA
CE2102C.TST
CE2102G.ADA
CE2102H.TST
CE2102K.ADA
CE2102N.ADA
CE2102O.ADA
CE2102P.ADA
CE2102Q.ADA
CE2102R.ADA
CE2102S.ADA
CE2102T.ADA
CE2102U.ADA
CE2102V.ADA
CE2102W.ADA
CE2102X.ADA
CE2102Y.ADA
CE2103A.TST
CE2103B.TST
CE2103C.ADA
CE2103D.ADA
CE2104A.ADA
CE2104B.ADA
CE2104C.ADA
CE2104D.ADA
CE2106A.ADA
CE2106B.ADA
CE2108E.ADA

CE2108F.ADA
CE2108G.ADA
CE2108H.ADA
CE2109A.ADA
CE2109B.ADA
CE2109C.ADA
CE2110A.ADA
CE2110C.ADA
CE2111A.ADA
CE2111B.ADA
CE2111C.ADA
CE2111E.ADA
CE2111F.ADA
CE2111G.ADA
CE2111I.ADA
CE2201A.ADA
CE2201B.ADA
CE2201C.ADA
CE2201D.DEP
CE2201E.DEP
CE2201F.ADA
CE2201G.ADA
CE2201H.ADA
CE2201I.ADA
CE2201J.ADA
CE2201K.ADA
CE2201L.ADA
CE2201M.ADA
CE2201N.ADA

CE2203A.TST
CE2204A.ADA
CE2204B.ADA
CE2204C.ADA
CE2204D.ADA
CE2205A.ADA
CE2206A.ADA
CE2208B.ADA
CE2401A.ADA
CE2401B.ADA
CE2401C.ADA
CE2401E.ADA
CE2401F.ADA
CE2401H.ADA
CE2401I.ADA
CE2401J.ADA
CE2401K.ADA
CE2401L.ADA
CE2403A.TST
CE2404A.ADA
CE2404B.ADA
CE2405B.ADA
CE2406A.ADA
CE2407A.ADA
CE2407B.ADA
CE2408A.ADA
CE2408B.ADA
CE2409A.ADA
CE2409B.ADA

CE2410A.ADA
CE2410B.ADA
CE2411A.ADA
CE3102A.ADA
CE3102B.TST
CE3102F.ADA
CE3102G.ADA
CE3102H.ADA
CE3102J.ADA
CE3102K.ADA
CE3103A.ADA
CE3104A.ADA
CE3104B.ADA
CE3104C.ADA
CE3106A.ADA
CE3106B.ADA
CE3107A.TST
CE3107B.ADA
CE3108A.ADA
CE3108B.ADA
CE3110A.ADA
CE3112C.ADA
CE3112D.ADA
CE3114A.ADA
CE3115A.ADA
CE3207A.ADA
CE3301A.ADA
CE3302A.ADA
CE3304A.TST

ACATS 4.1 User's Guide

125 29 June 2016 File I/O Tests D.2.15

CE3305A.ADA
CE3401A.ADA
CE3402A.ADA
CE3402C.ADA
CE3402D.ADA
CE3403A.ADA
CE3403B.ADA
CE3403C.ADA
CE3403E.ADA
CE3403F.ADA
CE3404B.ADA
CE3404C.ADA
CE3404D.ADA
CE3405A.ADA
CE3405C.ADA
CE3405D.ADA
CE3406A.ADA
CE3406B.ADA
CE3406C.ADA
CE3406D.ADA
CE3407A.ADA
CE3407B.ADA
CE3407C.ADA
CE3408A.ADA
CE3408B.ADA
CE3408C.ADA
CE3409A.ADA
CE3409C.ADA
CE3409D.ADA
CE3409E.ADA
CE3410A.ADA
CE3410C.ADA
CE3410D.ADA
CE3410E.ADA
CE3411A.ADA
CE3411C.ADA
CE3412A.ADA
CE3413A.ADA
CE3413B.ADA
CE3413C.ADA

CE3414A.ADA
CE3602A.ADA
CE3602B.ADA
CE3602C.ADA
CE3602D.ADA
CE3603A.ADA
CE3604A.ADA
CE3604B.ADA
CE3605A.ADA
CE3605B.ADA
CE3605C.ADA
CE3605D.ADA
CE3605E.ADA
CE3606A.ADA
CE3606B.ADA
CE3704A.ADA
CE3704B.ADA
CE3704C.ADA
CE3704D.ADA
CE3704E.ADA
CE3704F.ADA
CE3704M.ADA
CE3704N.ADA
CE3704O.ADA
CE3705A.ADA
CE3705B.ADA
CE3705C.ADA
CE3705D.ADA
CE3705E.ADA
CE3706D.ADA
CE3706F.ADA
CE3706G.ADA
CE3804A.ADA
CE3804B.ADA
CE3804C.ADA
CE3804D.ADA
CE3804E.ADA
CE3804F.ADA
CE3804G.ADA
CE3804H.ADA

CE3804I.ADA
CE3804J.ADA
CE3804M.ADA
CE3804O.ADA
CE3804P.ADA
CE3805A.ADA
CE3805B.ADA
CE3806A.ADA
CE3806B.ADA
CE3806D.ADA
CE3806E.ADA
CE3806G.ADA
CE3806H.ADA
CE3902B.ADA
CE3904A.ADA
CE3904B.ADA
CE3905A.ADA
CE3905B.ADA
CE3905C.ADA
CE3905L.ADA
CE3906A.ADA
CE3906B.ADA
CE3906C.ADA
CE3906E.ADA
CE3906F.ADA
CXA8001.A
CXA8002.A
CXA8003.A
CXA9001.A
CXA9002.A
CXAA001.A
CXAA002.A
CXAA003.A
CXAA004.A
CXAA005.A
CXAA006.A
CXAA007.A
CXAA008.A
CXAA009.A
CXAA010.A

CXAA011.A
CXAA012.A
CXAA013.A
CXAA014.A
CXAA015.A
CXAA016.A
CXAA017.A
CXAA018.A
CXAA019.A
CXAA020.A
CXAA021.A
CXAA022.A
CXAB001.A
CXAB002.AU
CXAB003.AU
CXAB004.AU
CXAB005.AU
CXAC001.A
CXAC002.A
CXAC003.A
CXAC004.A
CXAC005.A
CXAC006.A
CXAC007.A
CXAC008.A
CXACA01.A
CXACA02.A
CXACB01.A
CXACB02.A
CXACC01.A
CXAG001.A
CXAG002.A
CXF3A06.A
CXG1003.A
EE3203A.ADA
EE3204A.ADA
EE3402B.ADA
EE3409F.ADA
EE3412C.ADA

D.2.16 Memory for Allocated Objects
If a large amount of memory (more than 32 megabytes for a typical implementation) is available for
allocated objects (those created by new), then the test contained in the following file should report
NOT_APPLICABLE:
CB10002.A

ACATS 4.1 User's Guide

D.2.17 Environment Variables 29 June 2016 126

D.2.17 Environment Variables
If the target execution environment does not support reading environment variables, then the tests
contained in the following files should report NOT_APPLICABLE:
CXAH001.A CXAH002.A CXAH003.A
If the target execution environment does not support creating, writing, and deleting environment
variables, then the tests contained in the following files should report NOT_APPLICABLE:
CXAH002.A CXAH003.A

D.2.18 Task Attributes
If Annex C (Systems Programming) is tested and the size of a task attribute is limited such that an
attribute of a controlled type is not supported, then the test contained in the following file should report
NOT_APPLICABLE:

CXC7003.A

D.2.19 Reserved Interrupts
If Annex C (Systems Programming) is tested and no interrupts are reserved, then the tests contained in the
following files should report NOT_APPLICABLE:
CXC3002.A CXC3005.A

D.2.20 Multiprocessor Systems
If Annex D (Real-Time Systems) is tested and the target is a multiprocessor, then the tests contained in
the following files should report NOT_APPLICABLE:
CXD2001.A
CXD2002.A
CXD2003.A

CXD2004.A
CXD2007.A
CXD2008.A

CXD6001.A
CXD6002.A
CXD6003.A

D.2.21 Non-binary Machine Radix
If Annex G (Numerics) is tested and the machine radix is not a power of two, then the test contained in
the following file should report NOT_APPLICABLE:
CXG2010.A

ACATS 4.1 User's Guide

127 29 June 2016 Guidelines for Test Development E

Annex E: Guidelines for Test Development
The guidelines used for developing recent ACATS tests are summarized in this Annex. Developers of
potential ACATS tests should follow these guidelines closely. Tests that deviate extensively from these
guidelines are far less likely to be added to the ACATS than those that follow them carefully.

• Tests should follow the test structure and organization of existing ACATS tests. Many details of
existing tests are described elsewhere in this document. Important topics include:

• Test classes (see 4.2);
• Test naming conventions (see 4.3.2 and 4.3.3);
• Test layout and prologue (see 4.4);
• Identifier and reserved word conventions (see 4.5);
• Library unit naming within tests (see 4.3.3);
• Executable test structure (see 4.6); and
• Indication of errors in B and L tests (see 4.6).

• Submitted tests should be include the standard ACAA "Grant of Unlimited Rights" (found in
most newer tests issued since 2010) or an equivalent release allowing the test to be freely used by
anyone. Under no circumstances should submitted tests contain proprietary information or code.
Submitted tests without such a grant cannot be included in the ACATS or even the submitted tests
directory.

• The test number (character positions 6 and 7) should be assigned letters rather than numbers by
submitting test authors. Letters that are likely to be unique (such as the author's initials) are
preferred. (Of course, different tests for the same clause with the same author should have
different names.) The ACAA Technical Agent will perform the final naming of tests in order to
ensure that the names are unique and appropriate. Following this guideline reduces the chance of
test conflicts between authors.

• If a single test file contains multiple compilation units, they should be given in an order such that
any dependent units follow the units they depend on (so an implementation can process the units
sequentially in order). However, it should be assumed that all units in a file will be presented to
the compiler simultaneously. If a test requires units to be presented in a specific order (as some
separate compilation tests do), the units with ordering requirements should be in separate files,
and the required order should be documented in the test prologue.

• When possible for B-Tests, only the last unit in a file should contain errors (or even better, units
with errors should be in separate files from those without errors). This avoids penalizing
implementations that process units in a file sequentially and stop on the first bad unit. (Multiple
units in a single file are fairly rare in real user code; the ACATS shouldn't require work in areas
not useful to typical users.) This guideline should be violated only when the number of units with
errors would be prohibitive to have in separate files. (The maximum number of separate files in a
test is 36 plus any foundations, because the naming conventions for tests only leave a single
character for sequence numbers.)

• C-Tests (especially those testing rules that are not runtime checks) should be written in a usage-
oriented style. That means that the tests should reflect the way the features are typically used in
practice. Using a feature with no context is discouraged. For instance, C-Tests for limited with
clauses should use them to declare mutually dependent types (the reason that limited with clauses
were added to the language) rather than just using them to replace regular with clauses.

• Tests should avoid the use of Text_IO (unless required by the test objective). In particular, C-
Tests should not create messages with Text_IO; all messages should be generated via the

ACATS 4.1 User's Guide

E Guidelines for Test Development 29 June 2016 128

subprograms in the Report package. Messages in C-Tests should be written in mixed case, not all
UPPER CASE. Failure messages should be unique, so that the exact failure can be pinpointed.
This is often accomplished by including a subtest identifier in the messages.

• Executable tests should not call routines in Report (directly, or indirectly via another package like
TCTouch or Check_File) before the call to Report.Test or after the call to Report.Result. Doing
so could cause an individual report (Comment, Failure, and so on) to not properly identify the
test, or for the overall test result to be incorrectly reported. This does not apply to the various
functions defined in Report with the exception of Legal_File_Name; these can be used freely in a
test. It also does not apply to TCTouch.Touch.

• Tests can combine multiple objectives if a test for a single objective is very short. However, the
objectives should be related, and the number of objectives in a test should be limited (to avoid
creating gigantic tests that are hard to understand and use). In particular, objectives should not be
combined if in doing so, the test will exceed 500 lines. Objectives from different clauses should
never be combined, as that makes it hard to find the associated test (it will necessarily be filed in
the wrong clause for one of the objectives).

• When possible, tests should define (and thus share) foundation code (see 4.1.4). Foundation
packages are a better alternative than creating large tests with many objectives when the primary
reason for combining the objectives is to avoid writing set-up code multiple times. Foundation
code is specific to tests for a particular clause, however, so this technique cannot be used to
combine objectives from multiple clauses.

• When a rule includes a term defined elsewhere, testing of the rule should include testing all of the
combinations implied by the term. For instance, if we have a definition like "something is either
this, that, or fuzzy", then a test for a test objective involving something should test cases where
something is this and that and fuzzy. If multiple layers of definitions make this impractical, then a
wide selection of combinations (as different as possible) should be tried. The only exception to
this rule is if separate tests of the definition exist or should exist (that is, there is a test objective to
test that the definition is appropriately implemented).

• When appropriate, tests should try a variety of things. For instance, when testing subprograms,
both procedures and functions should be tested, with varying numbers of parameters, and with
different modes and types. Similarly, types should be more than just Integer – tagged types, tasks,
protected types, and anonymous access types should be tried. However, adding variety should not
be used as an excuse to create multiple tests for an objective when one will do. That is, variety is
a secondary goal; exhaustive coverage of possibilities isn't needed (unless the testing includes
testing a term defined elsewhere, as described in the previous guideline). Remember that the goal
isn't to test combinations of features; the point of using variety is to ensure that the objective
being tested works in more than just the simplest cases.

• Tests should generally use only the 7-bit ASCII characters. However, some tests will need to use
other characters in order to test Wide_Wide_Character support, Unicode characters in identifiers,
and the like. Such tests should be encoded in UTF-8 and start with a UTF-8 Byte Order Mark.
Tests should only use the code points that were assigned in version 4.0 of the Unicode standard;
when possible, using only commonly used characters such as Greek and Cyrillic characters is
preferred. (Such characters are more likely to be present in the fonts available to ACATS users;
users will be more likely to be able to view the tests as intended if common characters are used.)

• When constructing tests that check to see that run-time checks are made, take special care that
11.6 permissions don't render the test impotent. 11.6(5) allows language-defined checks to be
optimized away if the result of the operation is not used (even if the exception is handled). That
means it is critical that the values that fail checks are used in some way afterwards (even though a
correct program will never execute that code). Failure to do that could allow a compiler to
optimize the entire test away, and that would require the test to be corrected later.

ACATS 4.1 User's Guide

129 29 June 2016 Guidelines for Test Development E

• When creating a B-Test for which different parts test different errors, each error should identify
the intended failure. The standard error indication includes a colon; any needed text can follow
that colon. If the error identification will not fit on one line, place it somewhere else and index to
it. One common way to do this is to put a list of intended errors into the header, labeling each
with a letter. Then each error comment can just identify the letter of the intended error.

• Tests that cover test objectives that are documented as untested are especially welcome as test
submissions. Tests that cover previously tested objectives are less likely to be included in the test
suite.

Submitted tests can be sent to the ACAA Technical Agent (agent@ada-auth.org) via e-mail; include a
subject of "Submitted ACATS Test" in your e-mail. The agent will attempt to work with all submitters to
correct critical definencies, and will attempt to publicly add tests to the submitted tests index in a timely
fashion. However, there can be no promise that submitted tests (or a similar test for a similar objective)
will ever be added to the ACATS.

ACATS 4.1 User's Guide

131 29 June 2016 Definitions F

Annex F: Definitions
ACATS Modification List. (Abbreviated AML) A list maintained by the ACAA documenting the
currently modified and withdrawn tests. It also documents any new tests that have been or will be added
to the test suite. The ACATS modification list is updated from time to time as challenges from
implementers are received and processed, new tests are created, or as other technical information is
received.

Acceptable result. The result of processing an ACATS test program that meets the explicit grading
criteria for a grade of "passed" or inapplicable.

ACVC Implementer's Guide. (Abbreviated AIG) A document describing the test objectives used to
produce test programs for [Ada83] ACVC versions (1.1-1.11). AIG section references are embedded in
[Ada83] test naming conventions.

Ada. Short for Ada programming language. The term Ada by itself always refers to the most current
ISO/IEC standard document(s); if a specific version of the language standards is meant it will always be
referred to explicitly (for instance, as [Ada83] or [Ada95]).

Ada Conformity Assessment Authority. (Abbreviated ACAA) The part of the certification body that
provides technical guidance for operations of the Ada certification system.

Ada Conformity Assessment Laboratory. (Abbreviated ACAL) The part of the certification body that
carries out the procedures required to perform conformity assessment of an Ada implementation.
(Formerly AVF)

Ada Conformity Assessment Test Report. (Abbreviated ACATR) A report summarizing the results of
formal ACATS testing. Test Reports are issued only after witness testing is completed, and contain a
summary of the testing (including which Specialized Needs Annexes were tested, any test modifications
needed, and the values used in customizing the support files). Recent test reports can be found on-line at
http://www.ada-auth.org/cpl.html, linked from the Certified Processors List.

Ada implementation. An Ada compilation system, including any required run-time support software,
together with its host and target computer systems.

Ada Joint Program Office. (Abbreviated AJPO) An organization within the U.S. Department of
Defense that sponsored the development of the ACVC and formerly provided policy and guidance for an
Ada certification system.

Ada programming language. The language defined by the current Ada Standard documents.

Ada Resource Association. (Abbreviated ARA) The trade association that sponsors the Ada conformity
assessment system.

Ada Standard documents. The document(s) that define the Ada programming language, currently the
Ada Standard [Ada2012] along with its Technical Corrigendum [TC1-2012] Future corrigendum
documents are also included (corrigenda fix bugs in a Standard).

Ada Validation Facility. (Abbreviated AVF) Former designation of an Ada Conformity Assessment
Laboratory.

Ada Validation Organization. (Abbreviated AVO) Organization that formerly performed the functions
of the Ada Conformity Assessment Authority.

ACATS 4.1 User's Guide

F Definitions 29 June 2016 132

Certification Body. The organizations (ACAA and ACALs) collectively responsible for defining and
implementing Ada conformity assessments, including production and maintenance of the ACATS tests,
and award of Ada Conformity Assessment Certificates.

Certified Processors List. (Abbreviated CPL) A published list identifying all certified Ada
implementations. The CPL is available on the ACAA Internet site (www.ada-auth.org).

Challenge. A documented disagreement with the test objective, test code, test grading criteria, or result of
processing an ACATS test program when the result is not PASSED or INAPPLICABLE according to the
established grading criteria. A challenge is submitted to the ACAA.

Conforming implementation. An implementation that produces an acceptable result for every applicable
test. Any deviation constitutes a non-conformity.

Core language. Clauses 2-13 and Annexes A, B, and J of [Ada95]. All implementations are required to
implement the core language. The tests for core language features are required of all implementations.

Coverage documents. Documents containing an analysis of every paragraph of the Ada Standard
documents. Each paragraph has an indication of whether it contains a testable Ada requirement, and if so,
suggested test objectives to cover the requirements of the paragraphs. Paragraphs that include objectives
also indicate what ACATS test(s) specifically test those objectives.

Deviation. Failure of an Ada implementation to produce an acceptable result when processing an ACATS
test program.

Event Trace. A list of interesting events that occurs during the compilation, binding/linking, and
execution of one or more ACATS tests. An abstraction of the implementation-specific details used by the
grading tool.

Foundation Code. Code used by multiple tests; foundation code is designed to be reusable. Generally a
foundation is a package containing types, variables, and subprograms that are applicable and useful to a
series of related tests. Foundation code is never expected to cause compile time errors. It may be compiled
once for all tests that use it or recompiled for each test that uses it; it must be bound with each test that
uses it.

Grading Tool. A tool to automate grading of ACATS tests. Uses an event trace and test summary to
determine the pass or fail results of ACATS tests.

Legacy Tests. Tests that were included in ACVC 1.12 that have been incorporated into later ACVC and
ACATS versions. The vast majority of these tests check for language features that are upwardly
compatible from [Ada83] to later versions of Ada. Some of these tests have been modified from the
ACVC 1.12 versions to ensure that Ada rules are properly implemented in cases where there were
extensions or incompatibilities from [Ada83] to later versions of Ada.

Modern Tests. Tests that have been constructed and added to the ACATS since the release of ACVC
1.12. These tests usually test features added to Ada since [Ada83]. Modern tests have a coding style more
like that used by typical programmers than the Legacy tests, and have a different naming convention.

Range indicator. A range indicator provides detailed information about the expected location of an error;
tests using range indicators can be graded more accurately by the grading tool.

Specialized Needs Annex. (Abbreviated SNA) One of annexes C through H of [Ada95]. Conformity
testing against one or more Specialized Needs Annexes is optional. There are tests that apply to each of
the Specialized Needs Annexes. Results of processing these tests (if processed during a conformity
assessment) are reported on the certificate and in the Certified Processors List.

ACATS 4.1 User's Guide

133 29 June 2016 Definitions F

Test Objective. The intended purpose of an ACATS test. A test objective ought to be relatable to rules
given in the Standards that define Ada.

Test Objectives Document. A document containing the test objectives used for Modern ACATS tests.
Information on Legacy tests is not included.

Test Summary. A list of information about one or more ACATS tests, describing the test requirements to
the grading tool.

Validated Compilers List. (Abbreviated VCL) Former designation of the Certified Processors List.

Validated Implementation. Informally used to mean Conforming Implementation.

Validation. Informally used to mean conformity assessment.

Withdrawn Test. A test found to be incorrect and not used in conformity testing. A test may be incorrect
because it has an invalid test objective, fails to meet its test objective, or contains erroneous or illegal use
of the Ada programming language. Withdrawn tests are not applicable to any implementation. Withdrawn
tests are often modified and restored to subsequent ACATS releases.

Witness Testing. Conformity assessment testing performed in the presence of ACAL personnel. Witness
testing adds the assurance that the test procedures were followed and that the results were verified.

ACATS 4.1 User's Guide

135 29 June 2016 References

References
[Ada2012]
 ANSI/ISO/IEC 8652:2012, Information technology — Programming languages — Ada,

December 2012 (The Ada 2012 Reference Manual, essentially the same document, can be found
online at http://www.adaic.org/ada-resources/standards/ada12/.)

[Ada83] ANSI/MIL-STD-1815A-1983, ISO 8652:1987, FIPS 119 Reference Manual for the Ada
Programming Language — superseded by ISO-8652:95) (This can be found online at
http://archive.adaic.com/standards/ada83.html.)

[Ada95] ANSI/ISO/IEC 8652:1995, Information technology — Programming languages — Ada,
January 1995 (An unofficial version can be found online at
http://archive.adaic.com/standards/ada95.html.)

[Amend1] ISO/IEC 8652:1995/AMD 1:2007, Information technology — Programming languages —
Ada — Amendment 1, March 2007. (An unofficial version can be found at http://www.ada-
auth.org/amendment.html. An unofficial document (“Ada 2005 Reference Manual”) that merges
[Amend1] with [Ada95] and [TC1] can be found at http://www.adaic.org/ada-
resources/standards/ada05/.)

[ISO99] ISO/IEC 18009:1999, Information technology — Programming languages — Ada:
Conformity Assessment of a Language Processor, December 1999

[Pro31] Ada Resource Association: Operating Procedures for Ada Conformity Assessments Version
3.1, December 2013 (This can be found online in various formats at http://www.ada-
auth.org/info.html.)

[TC1] ISO/IEC 8652:1995/COR 1:2001, Information technology — Programming languages —
Ada — Technical Corrigendum 1, June 2001. (An unofficial version can be found at
http://www.ada-auth.org/grab-bag.html.)

[TC1-2012]
 ISO/IEC 8652:20012/COR 1:2016, Information technology — Programming languages —

Ada — Technical Corrigendum 1, February 2016. (An unofficial version can be found at
http://www.ada-auth.org/corrigendum1-12.html.)

ACATS 4.1 User's Guide

137 29 June 2016 Index

Index

A
ACAA
 See Ada Conformity Assessment

Authority
ACAL
 See Ada Conformity Assessment

Laboratory
ACATR
 See Ada Conformity Assessment Test

Report
ACATS
 See Ada Conformity Assessment Test

Suite
ACATS Modification List 5.1.1, F
acceptable result F
ACVC
 See Ada Compiler Validation Capability

(ACVC)
ACVC Implementer's Guide 4.3.1, F
Ada 1, F
Ada Compiler Validation Capability 1
Ada Conformity Assessment Authority 1,

F
Ada Conformity Assessment Laboratory

1, F
Ada Conformity Assessment Test Report

5.4.1, F
Ada Conformity Assessment Test Suite 1
Ada implementation 1, F
Ada Joint Program Office 1, F
Ada programming language 1, F
Ada Resource Association 1, F
Ada Standard documents 1.1, F
Ada Validation Facility 1, F
Ada Validation Organization 1, F
AIG
 See ACVC Implementer's Guide
AJPO
 See Ada Joint Program Office
AML 5.1.1
 See also ACATS Modification List
ARA
 See Ada Resource Association
AVF
 See Ada Validation Facility
AVO
 See Ada Validation Organization

B

batch file 5.4.1

C

certification body F
certified processors list F
challenge F
command script 5.4.1
complete coverage 1.2

conforming implementation F
core language 5.5.1, F
coverage documents F
CPL
 See certified processors list

D

deviation F

E

event trace 6.2, F

F

file
 event trace 6.2
 test summary 6.3
foundation code 4.1.4, F

G

Grading Tool 6.1, F

I

implementation-dependent values B
inapplicable test 5.6.4

L

legacy tests 4.1.3, F
location indicator 6.3.2

M

macro substitition B
macro substitution 5.2.2
manual grading request 6.4
modern tests 4.1.3, F

P

processing
 foreign language tests 5.5.4
 inapplicable tests 5.5.1
 SNA tests 5.5.4
 special handling tests 5.5.5
 withdrawn tests 5.5.1

R

range indicator 6.3.2, F
rule
 Ada language 3.1

S

SNA
 See specialized needs annex, specialized

needs annex
special handling test 5.5.5
specialized needs annex F
split
 a B-Test 4.2.2, 5.2.5
support files 5.3.1

T

test
 allowed modification AML

classification 5.2.5
 inapplicable 5.6.4
 modified AML classification 5.2.5
 new AML classification 5.5.4
 pending new AML classification 5.5.4
 special handling 5.5.5
 withdrawn 5.6.5
test objective 3, F
test objectives document 3, F
test summary 6.3, F

V

validated compilers list F
validated implementation F
validation F
VCL
 See validated compilers list

W

withdrawn test 5.6.5, F
witness testing F

